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Abstract— We consider a single-hop wireless network con-
sisting of α · N sources, where α ≥ 1 is a scaling factor.
These sources are randomly distributed around a single base-
station/access-point and utilize the IEEE 802.11 standard for
medium access control. The transmission speed of each node
C, the minimum contention window CWmin, and the maximum
contention window CWmax, are all multiplied by the scaling
factor α. Further, all protocol time-intervals are multiplied by
1

α
.
We show that as the scaling factor α increases, the packet

delays become independent of α, and therefore, of the number
of sources (α ·N ) sharing the wireless channel. At the same time,
the user’s perceived throughput and drop ratio remain almost
invariant.

This result is not only of theoretical interest, but also of great
practical interest, as it clearly identifies the set of the system’s
parameters that we should aim to (simultaneously) scale in future
versions of the IEEE 802.11 protocol (or in new protocols that
utilize similar ideas), so that the system can support a very large
number of users, while continuing to deliver to each user at least
as good performance as before.

Index Terms—IEEE 802.11 networks, Performance-preserving
scaling laws.

I. INTRODUCTION

The IEEE 802.11 MAC protocol [1] has gained widespread
popularity and has been adopted as the de-facto layer 2 proto-
col for wireless local area networks (WLANs). Because of its
popularity, there has been a large body of work focusing on
its analytical modeling, e.g. [2], [3], [4], [5], simulation study,
e.g. [6], [7], and measurement-based performance evaluation,
e.g. [8], [9], [10].

We summarize the protocol’s main functionality. Time is
slotted with the duration of each slot equal to a constant value,
which we will be calling SlotTime. A station that wants to
transmit a frame first senses the medium. If the medium is idle,
the station waits for a time interval called DIFS (Distributed
Inter-Frame Space) and senses again. If the medium is free the
frame is transmitted. If the receiver gets the frame correctly it
sends an acknowledgment (ACK) to the sender after a SIFS
(Short Inter-Frame Space) time interval.

If the medium is found to be busy at any time instance that
a station wishes to transmit, a back-off procedure is invoked.
When invoked, the station waits until the medium is free
for a DIFS time and starts a random timer uniformly dis-
tributed between {0...CWmin − 1} time-slots. The parameter
CWmin is called minimum contention window. The timer is
decremented as long as the medium is free. If at any time

instance the medium becomes busy the timer is frozen, and it is
decremented when the medium becomes free again for a DIFS
time. When the timer reaches zero the frame is transmitted.

A collision (which occurs when two or more stations trans-
mit at the same time) is detected through the lack of an ACK.
If a collision occurs the station backs-off again; the back-
off timer is now uniformly distributed in {0...2CWmin − 1}.
And, in general, after the ith < m consecutive unsuccess-
ful attempt the back-off timer is uniformly distributed in
{0...2iCWmin − 1}, whereas for i ≥ m it is uniformly
distributed in {0...2mCWmin − 1}. The value CWmax =
2mCWmin is called maximum contention window. The maxi-
mum value of i is equal to the Long Retransmit Limit if the
RTS-CTS (Ready-To-Send-Clear-To-Send) option is used, or
equal to the Short Retransmit Limit if the RTS-CTS option
is not used. After i reaches its maximum value the frame is
dropped. 1

In this paper we consider a wireless network consisting of
αN sources, where α ≥ 1 is a scaling factor. The sources are
distributed around a single base-station/access-point and utilize
the IEEE 802.11 standard for medium access control. The
sources generate traffic destined to the base station according
to some arbitrary arrival process. We consider the single-hop
case, where the base station is within the transmission range
of each source (e.g., such as in the popular Wi-Fi WLANs).
Further, for ease of exposition, in this paper we also assume
that each source is within the range of every other source, so
that a transmission can be sensed by all stations. (The same
results hold even if this is not the case, and will be published
in a longer version of the paper.)

We scale the transmission speed of each source C, the
minimum contention window CWmin, and the maximum
contention window CWmax, by the factor α. In other
words, C, CWmin, and CWmax become αC, αCWmin , and
αCWmax. Further, we also scale all protocol time-intervals,
i.e. the SIFS and DIFS durations, and the SlotTime value,
by 1

α
. 2 We show that as the scaling factor α increases

the packet delays initially decrease and then quickly become
independent of α, and therefore, of the factor by which the
number of sources that share the wireless channel increases.

1Note that when the RTS-CTS option is used, a station that wishes to transmit a
frame first sends an RTS (Ready-to-Send) message to the destination, in order to reserve
the channel. The transmission of the actual frame starts when the station under study
receives a CTS (Clear-to-Send) message from the destination. Under this scheme, the
vast majority of collisions involve RTS frames and not actual data frames.

2Note that usually DIFS = SIFS +2SlotTime, in which case we only need
to scale the SIFS and the SlotTime durations.
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At the same time, the user’s perceived throughput and drop
ratio remain almost invariant. Besides the theoretical interest,
a main practical contribution of this result is that it clearly
identifies the set of the system’s parameters that we should aim
to (simultaneously) scale in future versions of the IEEE 802.11
protocol (or in new protocols that utilize similar ideas), so that
the system can support a very large number of users while
continuing to deliver to each user at least as good performance
as before.

The rest of the paper is organized as follows. In Section
II we briefly discuss related work. In Section III we study
how the system behaves under the aforementioned scaling,
assuming a saturated scenario, where each source always has
a packet/frame to send. We waive this assumption in Section
IV, and present simulation results in Section V to verify our
theoretical arguments. Conclusions along with a discussion on
the applicability of the results, and future work directions,
follow in Section VI.

II. RELATED WORK

The idea of scaling a network in a manner that performance
is preserved has been extensively studied for the case of
wireline networks that resemble the Internet. For example,
Psounis et al. [11], [12] have introduced a method called
SHRiNK that creates a slower version of the original network
and can predict significant performance measures by observing
the slower replica. Further, Papadopoulos et al. [13] have
introduced two methods called DSCALEd and DSCALEs
that perform topological downscaling by retaining only the
congested links of the original network, and extrapolate the
performance of the downscaled network to that of the larger
Internet.

In the context of wireless networks, to our best knowl-
edge, the only relevant to this studies are the recent ones
by Papadopoulos et al. [14], and by Naik et al. [15]. In
[14] it has been shown that it is possible to predict the full
behavior of an arbitrary mobile ad hoc network deployed in
an outdoor environment at one spatial scale, by a suitably
scaled replica consisting of the same number of nodes but
deployed in an outdoor environment at another spatial scale.
This is accomplished by preserving the link statistics. And,
[15] does the same for static ad hoc networks operating in
indoor environments. In this paper, we investigate whether
performance can be preserved while scaling (e.g. increasing)
the number of nodes of the wireless network.

Another somewhat relevant body of work focuses on find-
ing the maximum achievable throughput and characterizing
capacity-delay tradeoffs and connectivity in wireless ad hoc
networks as the number of nodes increases, e.g. see [16],
[17], [18], and references therein. These studies are primarily
interested in the asymptotic behavior of the system and derive
analytical results usually under quite simplified models for the
MAC protocol. As mentioned earlier, here we study whether
performance can be preserved while increasing the number
of nodes in a wireless network, by appropriately scaling the
system’s parameters. Further, we are primarily interested on
the exact network behavior as a function of the number of

nodes, and not on asymptotic results. And, we study this in a
realistic manner, by considering all aspects of the IEEE 802.11
MAC protocol.

III. THE SATURATED CASE

In the analysis that follows we use the subscript α on the
various parameters of interest, in order to denote that these
correspond to an α-scaled system. We first assume that each
station has always a frame available for transmission, that
is, we first consider the saturated case scenario. We start
by studying how the average contention window and the
probability that there is a collision, vary with α.

A. Average contention window and collision probability

Let mα = log2

(

αCWmax

αCWmin

)

= log2

(

CWmax

CWmin

)

= m1. Given
that a station has a frame to transmit it can be easily shown,
e.g. see [3], that its average contention window size at some
arbitrary time is:

Wα =
1 − pα − pα(2pα)mα

1 − 2pα

αCWmin

2
, (1)

where pα is the probability that the station under study
experiences a collision when it attempts to transmit a frame.

The probability that a station transmits in some time-slot can
be approximated by 1

Wα
[3], [4]. And therefore, the collision

probability, which is the probability that at least one other
station transmits in the same time-slot, is given by:

pα = 1 − (1 −
1

Wα

)αN−1

= 1 − (1 −
1 − 2pα

1 − pα − pα(2pα)mα

2

αCWmin

)αN−1, (2)

where αN is the total number of sources sharing the channel,
as mentioned earlier. We are now ready to state our first
theorem.

Theorem 1: Under the scaling we perform the collision
probability is approximately independent of α, that is, pα ≈
p1, and Wα ≈ αW1.

Proof: First, recall that mα = m1. Equation (2) can be
approximated by:

pα ≈ 1 − exp

(

−(αN − 1)
1 − 2pα

1 − pα − pα(2pα)mα

2

αCWmin

)

= 1 − exp

(

−
(αN − 1)

α

1 − 2pα

1 − pα − pα(2pα)m1

2

CWmin

)

≈ 1 − exp

(

−N
1 − 2pα

1 − pα − pα(2pα)m1

2

CWmin

)

From the above relation we can deduce that pα ≈ p1, and
therefore, from Equation (1), that Wα ≈ αW1. 3

3Notice that we have used the fact that (1 − x)k
≈ exp(−kx), which is accurate

if k is not too small and x is not too large. In our case, k corresponds to αN − 1,
which is not small if the product αN is not small. Therefore, this requirement is satisfied
even for α = 1 as long as N − 1 is not too small. As we will demonstrate in Section
V via simulations, an N ≥ 4 is sufficient for these approximations to take place.
Further, x corresponds to 1

Wα
≤ 1

αCWmin
. Since, by the protocol’s specifications,

CWmin = 31 [1], x ≤ 1

α
· 1

31
, which is small as required, even for α = 1.
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The intuition behind Theorem 1 is that while the number
of competing stations increases by a factor α, the probability
that each station transmits at some arbitrary slot decreases by
a factor α (due to the scaling we perform to the maximum and
minimum contention window sizes), thus leaving the collision
probability almost unaltered. However, as we will see next,
while the transmission probability decreases, the scaling we
perform to the protocol’s time-intervals ensures that the actual
time duration until a station successfully transmits its frame,
remains virtually unchanged.

B. Frame Service Time

We are now ready to study how the service time of a frame
behaves as a function of the scaling factor α. The frame service
time is defined as the time elapsed from the moment that
the frame becomes the Head-of-Line frame in the interface
transmission queue (i.e. it is ready for transmission for the
first time), until it is successfully received by the destination.
As we can deduce from the description of the MAC protocol
in the previous section, there are four components contributing
to the service time of a frame: (i) The total number of back-
off slots the station has to wait before its frame is successfully
transmitted, (ii) the total amount of time the back-off counter
of the station under study is kept frozen because of frame
transmissions and/or collisions among the other stations that
share the channel, (iii) the total amount of time lost due to
collisions of the frame under study, and (iv) the time needed
to transmit the frame under study. For ease of exposition, we
first analyze the frame service time ignoring the amount of
time that the back-off counter is kept frozen. We denote this
time duration by Ta. Then, we compute the time duration that
the timer is kept frozen, which we denote by T tf

a , and add it
to Ta to get the total frame service time T tot

α . Our analysis is
inspired by the analysis in [3] and [4].

For simplicity, let’s assume a constant frame length, and
denote the (successful) frame transmission time in an α-scaled
system by T frame

α . Note that this time also includes the time
needed to reserve the channel in the case where the RTS-
CTS mechanism is used, as well as the time to receive an
ACK from the receiver. In other words, T frame

α = T RTS
α +

T CTS
α +T dframe

α +SIFSα+T ACK
α , where T RTS

α /T CTS
α is the

time required to transmit an RTS/CTS message in an α-scaled
system, T dframe

α is the time needed to transmit the actual data
frame, T ACK

α is the required time to transmit an ACK, and
SIFSα is the SIFS duration. Also, let’s denote the duration of
a collision by T COLL

α . According to the protocol, T COLL
α =

DIFSα+T RTS
α . In situations where RTS-CTS messages are not

used, T frame
α = T dframe

α + SIFSα + T ACK
α , and the duration

of a collision is simply given by T COLL
α = DIFSα +T dframe

α .
Before proceeding, recall that we scale all protocol time

intervals by 1
α

. This means that DIFSα = DIFS1

α
, SIFSα =

SIFS1

α
, and SlotTimeα = SlotTime1

α
. Further, we also scale the

transmission speed (C) of each node by α. Therefore, it is

easy to see that T frame
α =

T
frame
1

α
, and T COLL

α =
T COLL
1

α
.

Let X i
α denote a random variable that is uniformly dis-

tributed in {0...2iαCWmin − 1} ≈ {0...2iαCWmin}, and let

BOα be the random variable that represents the number of
back-off slots a station needs to count down before its frame
is successfully transmitted. Further, denote by T k

α the service
time of a frame given that there were k collisions (of this
frame), and assume for now that there are no events that freeze
the back-off counter.

Since we are assuming a saturated scenario, a station will
sense the medium to be busy in its first transmission attempt
and will set its back-off timer (after a DIFSα interval) to
BOα = X1

α time-slots. When the back-off timer reaches zero
the station will successfully transmit the frame with probability
1−pα ≈ 1−p1 (as the collision probability is pα ≈ p1). Hence,
with probability 1 − p1, T 0

α = DIFSα + X1
α × (SlotTimeα) +

T frame
α . If there is a collision and the node successfully trans-

mits its frame on its second attempt (an event with probability
p1(1−p1)), then BOα = X1

α +X2
α, and hence T 1

α = DIFSα+
X1

α × (SlotTimeα) + T COLL
α + X2

α × (SlotTimeα) + T frame
α .

And, in general, if there are k collisions before a successful
transmission (an event that occurs with probability pk

1(1−p1)),
T k

α = DIFSα+
∑k+1

i=1 X i
α×(SlotTimeα)+kT COLL

α +T frame
α .

Notice that the random variables X i
α and αX i

1 have the same
distribution. Hence, it is easy to see that T k

α can be written as
follows:

T k
α =

DIFS1

α
+

k+1
∑

i=1

X i
1 × (SlotTime1)+

kT COLL
1

α
+

T frame
1

α
.

(3)
Let Kmax be the maximum number of collisions allowed by
the protocol before a frame is dropped (e.g. as defined by
the Long Retransmit Limit, as explained earlier). The frame
service time Tα (which ignores events that freeze the back-off
timer) is therefore given by:

Tα =

Kmax
∑

k=0

T k
αpk

1(1 − p1). (4)

Notice that Kmax is not scaled by our operations in any way.
We can now state our second theorem.

Theorem 2: Under the scaling we perform, and ignoring
events that freeze the back-off counter, the frame service time
initially decreases as we increase α, and then its distribution
converges to a limiting distribution that does not depend on
α. 4

Proof: From Equation (3) we can see that as α increases
T k

α decreases for all k. Therefore, by Equation (4), Tα also
decreases. Further, as α → ∞, T k

α →
∑k+1

i=1 X i
1×(SlotTime1),

i.e. becomes independent of α for all k, and therefore, Tα also
becomes independent of α.

Now let’s account for events that freeze the back-off counter.
As mentioned before, each station senses the medium in each
time-slot. If other stations transmit in the same time-slot (either
successfully or unsuccessfully) the back-off counter at the
station under study is kept frozen. We are interested in the total
time duration T tf

α that the timer is kept frozen between two

4When we say that a (positive) random variable X is smaller compared to a (positive)
random variable Y , we mean that P (X ≤ x) = P (Y ≤ x + δ), ∀x and for some
constant δ > 0.
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successful transmissions in an α-scaled system. This quantity
can be written as follows:

T tf
α =

BOα
∑

i=1

1[colli]T
COLL
α

+

BOα
∑

i=1

1[transi](T
frame
α + DIFSα), (5)

where BOα is the back-off counter between two successful
transmissions of the station under study as defined earlier, and
1[colli]/1[transi] are indicator functions, which are 1 if there
was respectively a collision/transmission in slot i due to the
other αN − 1 stations that compete for the channel, and zero
otherwise. The probability qc

α that there is a collision in some
time-slot among these other stations, is just the probability
that two or more of these stations attempt a transmission. It
is easy to see that this probability can be expressed as:

qc
α = 1 − (1 −

1

Wα

)αN−1 −
αN − 1

Wα

(1 −
1

Wα

)αN−2,

where the second and third term on the right hand side of the
relation are respectively the probabilities that no other station
and exactly one other station transmit in some time-slot. As
before (and recalling that Wα ≈ αW1), we can make the
following approximations:

qc
α ≈ 1 − exp

(

−
αN − 1

Wα

)

−
αN − 1

Wα

exp

(

−
αN − 2

Wα

)

≈ 1 − exp

(

−
N

W1

)

−
N

W1

exp

(

−
N

W1

)

≈ qc
1.

The above suggests that the collision probability among the
other αN − 1 stations is approximately independent of the
scaling factor α. The intuition behind this is the same as the
one for Theorem 1. And, the same holds for the probability
qsc
α that there is a successful transmission among the other

αN −1 stations, which is just the probability that exactly one
of these stations transmits:

qsc
α =

αN − 1

Wα

(1 −
1

Wα

)αN−2 ≈
αN − 1

Wα

exp

(

−
αN − 2

Wα

)

≈
N

W1

exp

(

−
N

W1

)

≈ qsc
1 .

Further, from our earlier discussion it is easy to see that BOα

and αBO1 have the same distribution. Also, since T COLL
α =

T COLL
1

α
, T frame

α =
T

frame
1

α
and DIFSα = DIFS1

α
, Equation (5)

can be written as follows:

T tf
α =

αBO1
∑

i=1

1

α
1[colli]T

COLL
1

+

αBO1
∑

i=1

1

α
1[transi](T

frame
1 + DIFS1)

=

BO1−1
∑

i=0

T COLL
1

1

α





αi+α
∑

j=αi+1

1[collj])





+

BO1−1
∑

i=0

(T frame
1 + DIFS1)

1

α





αi+α
∑

j=αi+1

1[transj])





≈

BO1−1
∑

i=0

T COLL
1 qc

1 +

BO1−1
∑

i=0

(T frame
1 + DIFS1)q

sc
1 , (6)

where the last approximation holds for sufficiently large α by
the Law of Large Numbers, where 1

α

(

∑αi+α
j=αi+1 1[collj ]

)

→

qc
1, and 1

α

(

∑αi+α

j=αi+1 1[transj ]

)

→ qsc
1 . (Note that the conver-

gence here is expected to occur in practice for small values of
α, as the events of collisions or successful transmissions on
different time-slots are loosely correlated due the protocol’s
back-off mechanism.) We can now state the following theorem,
whose proof follows immediately from the above arguments.

Theorem 3: Under the scaling we perform the total time
duration that the timer is kept frozen between two successful
transmissions is approximately independent of α.

Since the total service time of a frame in an α-scaled system
is T tot

α = Tα + T tf
α (where Tα as given by Equation (4) and

T tf
α as given by Equation (6)), we can state the following

corollary for T tot
α :

Corollary 1: Under the scaling we perform, as the scaling
factor α increases, the frame service time T tot

α first decreases,
and then its distribution converges to a distribution that is
independent of α.

C. User throughput and drop ratio

Since the collision probability is approximately independent
of the scaling factor α, and considering the fact that the
maximum number of allowed collisions (Kmax) before a
frame is dropped is not altered by the scaling we perform,
we expect the frame drop ratio to remain almost invariant as
we vary α. Further, since the frame drop ratio and service
time are both independent of α, so is the user’s perceived
throughput.

IV. THE NON SATURATED CASE

We now assume that frames arrive at the interface transmis-
sion queue of each source in an α-scaled system, according
to some arbitrary arrival process at a rate of λ frames per
unit of time. The average frame arrival rate per station per
time-slot in an α-scaled system is therefore λSlotTimeα =
λSlotTime1

α
, and the aggregate arrival rate (from all stations) is
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λtot
α = αNλSlotTime1

α
= NλSlotTime1 = λtot

1 (i.e. independent
of α). 5

Now, assume that there are no frame collisions, and let Cα

be the service rate of an α-scaled system, i.e. the total number
of frames that the system can transmit per unit of time. Since
we scale the transmission speed of every node in the system by
α, and the SIFS and DIFS durations by 1

α
, we are essentially

speeding up the service rate of the system by the factor α.
Therefore, Cα = αC1. The total number of frames that an
α-scaled system can transmit per time-slot, µtot

α , is µtot
α =

CαSlotTimeα = αC1
SlotTime1

α
= µtot

1 (i.e. also independent of
α.)

Accounting for collisions, the effective service rate (per
time-slot) of an α-scaled system is µtoteff

α = (1 − pα)µtot
α =

(1 − pα)µtot
1 , where pα denotes the collision probability as

before. An arriving frame is backlogged if at the instant
of arrival the system is non-empty. The probability that the
system is empty when an arbitrary arrival occurs is:

π0
α = 1 −

λtot
α

µtoteff
α

= 1 −
λtot

1

(1 − pα)µtot
1

.

Therefore, an arbitrary arriving frame is transmitted imme-
diately (after a DIFSα time interval) with probability π0

α, in
which case the contention window size is 0, and with proba-
bility 1−π0

α it is backlogged, in which case the corresponding
average contention window is given by Equation (1). Thus, the
average contention window size is now given by:

Wα = (1 − π0
α)

1 − pα − pα(2pα)mα

1 − 2pα

αCWmin

2

=
λtot

1

(1 − pα)µtot
1

1 − pα − pα(2pα)m1

1 − 2pα

αCWmin

2
.

And, the collision probability is:

pα = 1 − (1 −
1

Wα

)αN−1

= 1 − (1 −
2(1 − 2pα)(1 − pα)µtot

1

αCWmin(1 − pα − pα(2pα)m1)λtot
1

)αN−1.

By performing the same approximations as in the saturated
case scenario, it is easy to show again that p1 ≈ pα and Wα ≈
αW1. Notice that this also means that µtoteff

α = µtoteff
1 and

π0
α = π0

1 . Further, it is also easy to see (given the description
of the MAC protocol in Section I) that Equation (4) now
becomes:

Tα = π0
1(

T frame
1

α
+

DIFS1

α
)+(1−π0

1)

(

Kmax
∑

k=0

T k
αpk

1(1 − p1)

)

,

(7)
where T k

α is given by Equation (3), as before. In addition, as
with pα, we can show again that qc

α ≈ qc
1 and qsc

α ≈ qsc
1 , and

5Notice that we assume homogeneous sources, i.e. sources with the same
arrival rate λ. In the case of non-homogeneous sources, if the arrival rate
of each source when α = 1 is λi, i ∈ (1...N), the aggregate arrival rate
is λ

tot

1
=

P

N

i=1
λiSlotTime1. To have λ

tot
α = λ

tot

1
, we can assume, for

example, that the number of sources of each rate λi is scaled by α, ∀i ∈

(1...N).

therefore, that Equation (6) holds here as well. Thus, we can
conclude that all theorems and corollaries that we have stated
for the saturated case, hold for the non-saturated case as well.
In addition, for the non-saturated case, we can also state the
following lemma:

Lemma 1: Under the scaling we perform, as the scaling
factor α increases, the queueing delay of a frame (i.e. its
waiting time in the interface transmission queue) initially
decreases and then its distribution converges to a distribution
that is independent of α.

Proof: Since the frame arrival process at each station
remains the same as we scale the system, and the frame service
time initially decreases, the queueing delay also decreases.
Since the frame service time distribution becomes independent
of α, the queueing delay distribution also becomes indepen-
dent of α.

V. SIMULATIONS

In this section we perform experiments with the ns-2
simulator [19] in order to verify our theoretical arguments.
The ns-2 simulator provides one of the most accurate IEEE
802.11 MAC layer implementations [19], and it is perhaps
the most popular simulator for wireless network performance
evaluation.

We consider two scenarios that yield a qualitatively different
behavior. In both scenarios, packets are generated at each
source according to a Poisson process and are destined to the
base station. (Similar results hold for any other packet arrival
process.) In the first scenario, the packet arrival/generation
rate at each source is 100packets/sec. This corresponds to a
scenario where there is high contention. In the second scenario,
this rate is 67packets/sec. This corresponds to a scenario
where there is low contention. In both cases the packet size is
256bytes. The initial number of sources/stations is N = 4, and
we show results for 4, 8, 16, 32, 64 and 128 sources, i.e. when
α = 1, 2, 4, 8, 16 and 32 respectively. In both scenarios we
scale the system’s parameters as described before. (The initial
values for the system’s parameters, i.e. before performing any
scaling, are the ones used by default in the ns-2 simulator.)

Figure 1 refers to the first scenario and shows how the
packet drop ratio, the source throughput, and the average
packet delay (including both queueing and service time),
behave as we vary the number of sources. Figure 2 does the
same for the second scenario.

From Figure 1 we observe that the system’s performance
remains almost invariant as the number of sources increases.
And, this is the case for all performance metrics we con-
sider, even for small values of α. This is expected for the
drop ratio, and hence for the source’s throughput, according
to our earlier theoretical arguments. Notice that an N as
small as 4 is sufficient to invoke the approximations of
Theorem 1. (Also, notice that since the drop ratio is around
34%, the source’s throughput is around its expected value,
which is 100packets/sec × 256bytes/packet × (1 − 0.34) ≈
17000bytes/sec.) The reason that the delay remains almost
invariant for even small α’s as well, is because there is high
contention. In this case, since the collision probability is pretty
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Fig. 1. (i) Drop ratio, (ii) source throughput, and (iii) average packet delay, as a function of the number of sources. (Scenario 1.)

high and the sum in Equation (3) dominates (when there is a
large number of collisions) the rest of the relation’s terms that
depend on α, the one portion of the frame service time that is
given by Equation (7) is virtually independent of α. Further,
as mentioned earlier, the other portion of the frame service
time, which is given by Equation (6) is also approximately
independent of α (even for small α’s).

Figure 2 shows again that the packet drop ratio and source
throughput remain almost invariant as we increase the number
of sources, as expected. (Notice that in this case the drop
ratio is pretty low, around 5%, and the source’s throughput
is again around its expected value, which is 67packets/sec ×
256bytes/packet × (1 − 0.05) ≈ 16300bytes/sec.) However,
in contrast to the previous scenario, here we first observe a
notable decrease in the average packet delay. Further, we also
observe that this notable decrease stops after the number of
sources becomes 16, which corresponds to α = 4. This is
because, in this case, there is lower contention and the terms
that depend on α have a greater influence on the frame service
time, especially when α is not large, as we can deduce from
our theoretical analysis. However, as we observe, convergence
is taking place quite fast.

Therefore, both of the above scenarios are in agreement
with our theoretical arguments and the approximations that
took place.

VI. DISCUSSION AND FUTURE WORK

In this paper we have studied some important scaling
properties of single-hop IEEE 802.11 wireless networks. In
particular, we have identified a set of system’s parameters
that we should aim to scale as the number of users sharing
the channel increases, in order not to degrade each individual
user’s perceived performance. We have supported our results
using both rigorous theoretical analysis and ns-2 simulations.

A natural question to ask is how easy it is to scale the
system parameters that we have identified in this paper, in
practice. Clearly, one can easily scale the minimum and
maximum contention window sizes (CWmin and CWmax) of
the IEEE 802.11 protocol, however the transmission speed C
as well as all the IEEE 802.11 protocol’s time-intervals (i.e.
the SIFS, DIFS, and SlotTime durations) that we also wish
to scale, depend on the hardware technology that is being
used. Therefore, to be able to support a large number of
users in currently deployed and future IEEE 802.11 networks,

we believe that we should aim in developing technology that
will allow the scaling of these parameters by the desired
factors. Notice that developing technology that allows the
scaling of some of the parameters that we have identified
in this paper, has been the trend for increasing the capacity
of these networks. For example, C = 11Mbps for IEEE
802.11b [20], whereas C = 54Mbps for IEEE 802.11g [21].
Further, SlotTime = 20µsec and SIFS = 10µsec in IEEE
802.11b, whereas SlotTime = 9µsec and SIFS = 5µsec in
IEEE 802.11g. In this paper, we have rigorously established
the exact amount of scaling that it is required for the system
parameters, in order to preserve individual user performance
as the total number of users increases. Interestingly enough,
we have found that a scaling factor, which is equal to the
factor by which the number of users increases, is sufficient to
preserve performance.

However, note that it may not be possible to have arbitrarily
large scaling factors. For example, in the IEEE 802.11 spec-
ifications [20], [21], the SlotTime duration should be larger
than the sum of the MAC-layer processing time and the air
propagation time. Therefore, since we can only improve the
processing time, the SlotTime duration cannot get smaller than
the air propagation time (<< 1µsec), which immediately gives
an upper bound on the scaling factor that we could ever have.
How close to this upper bound can we get, is an interesting
open question.

Further, it is interesting to point out that in this paper we
were starting from smaller networks and moving to larger
networks (i.e. we have studied the network behavior as the
number of users increases). One can also move the opposite
direction, i.e. downscale larger networks. It is easy to see that
as long as the downscaling factor 0 < α < 1 is not too small,
one can accurately predict the performance of larger networks
from scaled-down replicas that consist of fewer nodes. This is
important for simulations and experiments with testbeds where
one could experiment with network miniatures, which are
much easier to manage, and have much lower computational
requirements and costs.

One of the most interesting future work directions is to
investigate whether similar scaling properties hold for multi-
hop wireless networks, which can be either static or mobile.
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Fig. 2. (i) Drop ratio, (ii) source throughput, and (iii) average packet delay, as a function of the number of sources. (Scenario 2.)
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