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Abstract—Experimentation with mobile ad hoc network
testbeds is preferred to simulations for performing high fidelity
testing. But, at the same time, realistic experimentation with
large-scale network testbeds is more difficult, time-consuming,
and expensive.

To side-step some of these problems several researchers, e.g.
[1], [2], have recently suggested experimentation on scaled-down
replicas and have managed to downscale some specific indoor
network realizations with no mobility. However, the question of
whether a scaled-down replica can reproduce the behavior of an
arbitrary large-scale mobile ad hoc network, in a timely manner,
and under realistic outdoor conditions, remains an interesting
open problem.

In this work we investigate ways of constructing suitably
scaled-down replicas, both in space and time, that can predict
the performance of large-scale mobile ad hoc networks with high
accuracy. We consider both large- and small-scale fading effects.
Further, we present necessary and sufficient conditions for the
scaling to be possible, and identify some of the issues that may
arise in practice. Finally, we argue that it is not possible to
build arbitrarily smaller replicas, and that the factor by which
one scales down the original network (in space) depends on the
carrier frequency.

I. INTRODUCTION

The popularity and scale of mobile ad hoc networks have
grown rapidly in recent years. The community has developed
many protocols tailored for such networks and deployments
with several hundreds of nodes over significantly sized regions
already exist.

Measuring the performance of such large-scale networks
and predicting their behavior under new protocols, architec-
tures and load conditions are important research problems.
These problems are made difficult by the complex nature of
wireless channels, the increasing number of nodes, and the
growing size of the deployment area.

A commonly accepted practice in the research community is
to use simulations for testing and evaluating the performance
of such networks. However, it is very expensive and inefficient
to accurately run large-scale simulations (e.g. with several
hundreds of nodes), which incorporate realistic models for the
wireless channel that faithfully capture radio propagation and
error characteristics.

For some of these reasons, experimentation with wireless
network testbeds seems to be preferred by many researchers
for performing high fidelity testing and performance evalua-
tion, e.g. [3], [4], [5]. But, at the same time, realistic experi-
mentation with testbeds deployed on large-sized physical areas
introduces another set of limitations. First, it is quite difficult

to configure, manage and troubleshoot such testbeds. Second,
such testbeds can have high maintenance costs. And third, it is
very time-consuming to gather network statistics and hence to
evaluate the performance of new protocols and architectures
in a timely manner.

To side-step some of these problems, researchers, e.g. [1],
[2], [6], have recently suggested experimentation on smaller-
scale testbed miniatures. They have accomplished to shrink
a wireless network testbed into a smaller space, by reducing
the communication range of nodes and the distance between
them, while maintaining link characteristics. However, these
studies have only considered downscaling some specific indoor
network realizations with no mobility and remained mostly
focused on the implementation and deployment aspects of the
testbed miniatures. Hence, the question of whether a scaled-
down replica can reproduce the behavior of an arbitrary
large-scale mobile network under realistic outdoor propagation
mechanisms, remains an interesting open problem. And, the
question of whether one can expedite experimentation while
preserving network behavior has not been studied either.

In this paper we attempt to answer the following funda-
mental questions: Consider an arbitrary mobile ad hoc network
deployed in an area of size A, with n nodes, arbitrary mobility,
traffic and routing protocol, and a realistic outdoor propagation
model that incorporates both large- and small-scale fading
effects. (i) Can we deploy the same network in an area of size
αA (0 < α ≤ 1) and yield the same performance (i.e. can
we perform space-downscaling)? (ii) What are the necessary
and sufficient conditions? (iii) In what sense is performance
preserved? (iv) How small can we go, i.e. how small can α get?
(v) Can we speed-up the scaled replica by some factor δ > 1
(or scale down the experimentation time by 1/δ), and yield the
same performance (i.e. can we perform time-downscaling)?

Our theoretical analysis coupled with realistic simulations
give concrete answers to all of these questions. Interestingly
enough we find that both space and time downscaling is
possible, under fairly general assumptions, and that the factor
α by which one can scale down the original network in space,
depends on the carrier frequency fc.

The organization of the paper is as follows: Section II briefly
discusses prior work on scaling down networks. Section III
performs space-downscaling, under the assumption that the
communication range is an ideal circle, and that the received
signal power is a deterministic function of distance. Section
IV extends the space-downscaling methodology for the case
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of realistic large- and small-scale propagation models. Under
these models the received signal power is a random variable
that can exhibit significant fluctuations and time-correlations
due to mobility. Section V performs time-downscaling on top
of space-downscaling. Section VI presents realistic simula-
tions that verify our theoretical arguments, and Section VII
concludes the paper giving directions for future work.

II. RELATED WORK

The design of performance-preserving network downscaling
techniques (that is, techniques where performance metrics of
a large-scale network, e.g. throughput, packet delays, etc.,
are preserved by a suitably scaled-down replica), has been
extensively studied for the case of wireline networks that
resemble the Internet. For example, Psounis et al. [7] have
introduced a method called SHRiNK that creates a slower
version of the original network and can predict significant
performance measures by observing the slower replica. Fur-
ther, Papadopoulos et al. [8] have introduced two methods
called DSCALEd and DSCALEs that perform topological
downscaling by retaining only the congested links of the
original network, and extrapolate from the performance of
the downscaled network to that of the larger Internet. These
techniques can be used to reduce the amount of traffic and the
size of the network that one works with, thus enabling scalable
performance prediction and simulation.

There have been very few studies of the question of whether
one can design a performance-preserving network downscaling
technique for the case of wireless networks. The most relevant
to our work is the one by Naik et al. [2]. In this line of
work the authors show via simple theoretical arguments and
experiments that it is possible to deploy the Kansei testbed [9]
into a smaller area and yield the same performance, as if the
same testbed was deployed in a larger area. This is achieved by
appropriately reducing the separation distances between nodes
and their transmission range. However, the Kansei testbed
comprises a static indoor wireless network with a specific
symmetric topology [9]. And because the network is static, the
authors have completely ignored small-scale fading effects that
are due to mobility and can cause significant fluctuations and
time-correlations in the received signal power. In our work,
we want to investigate if a similar downscaling is possible
for arbitrary mobile ad hoc networks operating in outdoor
environments in the presence of both large- and small-scale
fading effects.

Other lines of work have mainly focused on the implemen-
tation and deployment aspects of their indoor miniaturized
testbeds, e.g. [1], [6], [10]. In [10] the authors have also
presented some preliminary thoughts of how they could build
their testbed in order to emulate small-scale propagation
effects. Our work is very different. We are not interested in
building a particular indoor testbed, but instead we want to
investigate whether the full behavior of an arbitrary mobile ad
hoc network deployed in an outdoor environment at one spatial
scale, can be preserved by a suitably scaled replica deployed
in an outdoor environment at another spatial scale.

And, finally, in-contrast to any existing prior work, we also
perform time-downscaling of the wireless network, which can
be used to significantly expedite the time required to perform
experiments with testbeds.

III. SPACE-DOWNSCALING OF MOBILE AD HOC

NETWORKS

In this section we present the space-downscaling methodol-
ogy. For ease of exposition we assume for now that: (a) the
communication range is an ideal circle around the transmitter,
and (b) the received signal power is a deterministic function of
distance. These assumptions imply that if a receiver is within
the communication circle, it receives all packets. Otherwise,
it loses all packets.

A. General methodology

Consider an arbitrary static ad hoc network, which is
deployed in an area of size A = xy square units and where
every node i (i = 1...n) has a transmission radius of TRi

units, as shown in Figure 1(i). Let 0 < α ≤ 1 be a scaling
factor and perform the following operations to this system:
(i) Multiply the x and y dimensions of the area by

√
α, (ii)

multiply the xi and yi coordinates of every node i by
√

α,
and (iii) multiply the transmission radius of every node i by√

α. The result of this operation is the scaled-in-space by a
factor α system, depicted in Figure 1(ii).

(i)

(ii)

Fig. 1. (i) Original system (area size = A square units), and (ii) scaled-in-
space system (area size = αA square units). (In this example α = 0.25.)

It is easy to see that because all node inter-distances and the
transmission radius are scaled by our operations by the same
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factor, the structure of the configuration of the original system
is not affected by the downscaling we perform.

Now, lets consider mobility. In this case we want to ensure
that the structure of the two configurations is the same at every
time t. Assume that at time t = 0 the original system is the one
shown in Figure 1(i) and that we have performed operations
(i)...(iii) and built the scaled replica shown in Figure 1(ii).
Now, let di ≥ 0 denote the distance that node i will travel
in the original system and let vi(t) be its traveling speed at
time t ≥ 0. Because all distances in the original system were
scaled by

√
α we should also scale di by the same factor, ∀i.

And, since we scale the travel distance by
√

α, to ensure that
the topologies of the two systems change at the same speed
we should also scale vi(t) by

√
α, ∀i, t. We are now ready to

state our first theorem:
Theorem 1: Perform the following operations to an arbi-

trary mobile ad hoc network, in order to build a scaled-in-
space by a factor α replica: (i) Multiply the x and y dimensions
of the area by

√
α, (ii) multiply the xi and yi coordinates of

every node i by
√

α, (iii) multiply all distances travelled by
nodes by

√
α, (iv) multiply the speed of nodes by

√
α, and

(v) multiply the transmission radius of every node by
√

α. If
the propagation delays are insignificant and the same external
arbitrary traffic is applied in the original and scaled systems,
then (under assumptions (a) and (b)) the two systems will yield
the same performance as a function of time, ∀ 0 < α ≤ 1.

Proof: From the previous discussion we can see that
the configuration of the original system is just a zoomed
version of the configuration of the scaled system at every
time t ≥ 0. Further, if the propagation delays are insignificant
in the original system, they will remain insignificant in the
scaled system, since in the latter all distances are decreased.
Under the same external traffic it is easy to see that packets
are successfully received at each node at exactly the same
times between the two systems. Hence, the packet arrivals
(and transmissions) at each node also occur at exactly the
same times, and thus the two systems will yield the same
performance as a function of time.
Remark: While the insignificant propagation delay assump-
tion holds for the majority of ad hoc networks, there are some
classes of such networks, e.g. underwater networks, where
this assumption is no longer true [11]. Hence, in such cases
the propagation delays of the scaled network will be smaller
than those of the original network. While this may not be
a significant issue for the case of arbitrary traffic without
feedback, it is unclear whether one can preserve performance
in the case of arbitrary traffic with feedback, as the round-trip
times in the scaled system will be different.

B. Scaling down the transmission range

So far, we have described the general space-downscaling
methodology. However, we have not described yet how to
achieve the downscaling of the transmission range of nodes,
which might seem trivial, but in practice, it requires some
thought as it depends on the propagation model under consid-
eration.

For illustration purposes lets consider two simple models,
namely the free-space propagation model and the two-ray
ground reflection model [12]. Under these models, assump-
tions (a) and (b) are both satisfied. (We consider more realistic
models in the next section.)

The free-space propagation model assumes the ideal propa-
gation condition that there is only one clear line-of-sight path
between the transmitter and the receiver. The received signal
power in free space at distance d from the transmitter is given
by:

Pr(d) =
PtGtGrλ

2
c

(4π)2d2L
, (1)

where Pt is the transmitted signal power, Gt and Gr are the
antenna gains of the transmitter and the receiver respectively,
L(L ≥ 1) is the system loss factor not related to propagation,
and λc is the carrier wavelength. The two-ray ground reflec-
tion model considers both the line-of-sight path between the
transmitter and the receiver and a ground reflection path. The
received power at distance d from the transmitter is predicted
by:

Pr(d) =
PtGtGrh

2
t h

2
r

d4L
. (2)

In Equation (2), ht and hr are the heights of the transmit and
receive antennas respectively.

One way to scale down the transmission radius by
√

α under
the previous two models, is to ensure that the received signal
power at distance

√
αd from the transmitter in the scaled

system equals the received signal power at distance d from
the transmitter in the original system, ∀d. To accomplish this,
we choose to scale down the transmission power Pt in the
scaled system appropriately, keeping the rest of the antenna
characteristics unaltered. Hence, if the free-space model is
assumed we see from Equation (1) that we should multiply Pt

in the scaled system by α since Pr(d) is inversely proportional
to d2. If the two-ray ground reflection model is assumed, Pt

in the scaled system should be multiplied by α2 since Pr(d)
is now inversely proportional to d4.

IV. SPACE-DOWNSCALING OF MOBILE AD HOC

NETWORKS UNDER REALISTIC PROPAGATION MODELS

In this section we investigate in what sense is performance
preserved by the scaled-in-space replica under more realistic
propagation models. In general, these models can be classi-
fied into two categories: (i) large-scale, and (ii) small-scale
propagation models.

Large-scale propagation models usually characterize the re-
ceived signal power over large transmitter-receiver separation
distances (e.g. over several hundreds or thousands of meters).
The free-space model and the two-ray ground reflection model
we saw earlier can be classified as large-scale models. How-
ever, they are unrealistic since they predict the received signal
power as a deterministic function of distance and represent the
communication range as an ideal circle around the transmitter.
In reality however, the received signal power at a certain
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distance from a transmitter is a random variable, e.g. due to
shadowing effects caused by obstructions in the environment
such as buildings, hills, etc. A realistic large-scale propagation
model that incorporates randomness in the received signal
power is the log-normal shadowing model [12], which we will
shortly study.

In many cases, the received signal power over very short
travel distances (a few wavelengths) or short time durations
(on the order of seconds), may also exhibit rapid fluctuations
and time-correlations. These phenomena are mainly due to mo-
bility and to multipath propagation effects caused by reflecting
objects and scatterers in the environment. These phenomena
can have a significant impact on system’s performance. While
large-scale models can be used in this case for predicting the
local average signal strength over certain transmitter-receiver
separation distances, the fluctuations around the local average
as well as the time-correlations, are characterized via small-
scale propagation models [12]. A realistic small-scale model
that we study in this paper is the Ricean/Rayleigh fading
model.

A. Space-downscaling under log-normal shadowing

The shadowing propagation model consists of two parts.
The first part is known as the path loss model and predicts
the average received signal power at distance d from the
transmitter, denoted by Pr(d). It uses a close-in reference
distance d0. Pr(d) is computed relative to Pr(d0) as follows:

Pr(d) = Pr(d0)
(

d0

d

)n

, (3)

where n is called the path loss exponent and Pr(d0) is
computed from Equation (1).

The second part of the shadowing model reflects the vari-
ation of the received signal power around the average. It
is a log-normal random variable, that is, it is of Gaussian
distribution if measured in dB. The overall shadowing model
is represented (in dB) by:

Pr(d)dB = Pr(d)dB + XdB , (4)

where Pr(d) is defined by Equation (3) and XdB is a Gaussian
random variable with zero mean and standard deviation σdB ,
called the shadowing deviation. Both the path loss exponent
and the shadowing deviation, depend on the environment and
are obtained by field measurement [12]. Hence, its natural to
make the following assumption:

Assumption 1: The scaled system is deployed in an environ-
ment that yields the same path loss exponent n and shadowing
deviation σdB , as the original environment.

In the previous section we saw that in a scaled-in-space
by a factor α replica, the received signal power at distance√

αd from the transmitter should be equal to the received
signal power at distance d from the transmitter in the original
system, ∀d. However, there, the received signal power was a
deterministic function of distance whereas now it is a random
variable (given by Equation (4)). Therefore, we now require

that the distribution of the received signal power at distance√
αd from the transmitter in the scaled system be the same

with the distribution of the received signal power at distance d
from the transmitter in the original system, ∀d. As XdB is the
same between the two systems, to accomplish this, we only
need to scale down the average received power Pr(d). Like
before, we choose to do this by scaling down the transmission
power Pt. Let d0 be equal in the two systems. Then, by looking
at Equations (1) and (3), it is easy to deduce that Pt in the
scaled system should be multiplied by (

√
α)n.

We can now state the following proposition, whose proof
follows immediately from the above discussion.

Proposition 1: To construct a scaled-in-space by a factor α
replica under the log-normal shadowing propagation model,
perform steps (i)...(iv) of Theorem 1, and (step (v)) multiply
the transmission power of every node by (

√
α)n. If the

propagation delays are insignificant and the same arbitrary
traffic is applied in the original and scaled systems, then
under Assumption 1, the two systems will yield the same
performance in distribution, ∀ 0 < α ≤ 1.

B. Space-downscaling under Ricean/Rayleigh fading

Under Ricean fading the received signal power at a certain
distance d from the transmitter, is also dependent on time t
[12] and is given as follows [13]:

Pr(t, d) =
P ls

r (d)
2(K + 1)

[
(x1(t) +

√
2K)2 + x2

2(t)
]
, (5)

where P ls
r (d) is the received signal power as predicted by

a large-scale model at distance d from the transmitter, K
is the Ricean K-factor that depends on the structure of
the environment and determined by measurement, and x1(t),
x2(t) are zero-mean Gaussian random variables with unit
variance. (For K = 0 the model is the well-known Rayleigh
fading model.) The important difference here comparing to
the previous model we studied, is that the random variable
xi(t) (i = 1, 2) can exhibit time-correlations due to Doppler
spreading that is caused by the mobility of the nodes [12]. 1

Hence, for a fixed d, {Pr(t, d), t ≥ 0} is now a stochastic
process.

Before proceeding, we first state the following assumption,
which implies that the scaled system is deployed in an envi-
ronment with similar structural properties (e.g. with respect to
reflecting objects, scatterers, etc.) as the original environment.

Assumption 2: The scaled system is deployed in an envi-
ronment that yields the same Ricean K-factor as the original
environment.

Now, as before, we require that the distribution of the
received signal power at distance

√
αd from the transmitter

in the scaled system be the same with the distribution of the
received signal power at distance d from the transmitter in the
original system, ∀d. However, now we also need to ensure
that the time-correlations in the received signal power, due

1For simplicity, we assume that the motion of other objects in the environ-
ment is negligible compared to the motion of the mobile nodes.
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to Doppler spreading, remain the same between the two sys-
tems. (This is important, as these time-correlations determine
significant performance measures, such as the level crossing
rate, the average fade duration, and so on.) Mathematically
speaking, we have to ensure that for any fixed d the finite-
dimensional distributions of {Pr(t, d), t ≥ 0} are the same
between the two systems, i.e. the stochastic process remains
the same. To accomplish this for the model under study, it is
enough to ensure that the maximum Doppler shift remains the
same [12].

The maximum Doppler shift is defined as fm = vfc

c , where
v is the perceived relative velocity between the transmitter and
the receiver, fc the carrier frequency, and c the speed of light.
(Recall that fc = c

λc
.) Since all node speeds in the scaled

system are multiplied by
√

α, for fm to remain the same, fc

must be divided by the same factor.
However, a scaling factor α that will cause a significant

alteration of the carrier frequency may not be desirable or
possible in practice. For example, a factor α that will shift
the carrier frequency to another frequency band may alter the
propagation characteristics of the signal significantly. 2 As a
rule of thumb, we believe that the scaled carrier frequency
should, at least, belong to the same frequency band as the
original carrier frequency. This is based on the well-known
fact that in practice, propagation characteristics of frequencies
belonging to the same band are similar, e.g. see [14] and refer-
ences therein. Given the original frequency band of operation
and carrier frequency, this requirement provides a lower bound
on the scaling factor α that we can have, and hence an answer
to the question of “How small can we go?”.

However, since a change of the carrier frequency may cause
problems, one might also think that it may be preferable not
to scale down the speed of nodes in the scaled system, so that
we could maintain the same maximum Doppler shift, without
the need of altering the carrier frequency. However, this will
cause the topology of the scaled system to change at a faster
speed comparing to the topology of the original system. This
in turn, will cause proactive routing protocols, e.g. DSDV
[15], to perform poorer in the scaled system, since they won’t
be updating the routing tables fast enough to compensate for
the more dynamic topology. This, for example, may cause
more packet drops in the scaled system, as a larger number
of stale routing table entries will direct them to be forwarded
over more broken links. And, reactive routing protocols, e.g.
DSR [16], will impose a larger routing overhead to the scaled
system in order to keep up with the more dynamic topology.
This implies a larger number of routing packets, which in turn,
could increase the probability of packet collisions and delay
data packets in network interface transmission queues, making
again the scaled system performing worse.

Hence, to avoid the above issues, we prefer to scale down
the speed of nodes (by

√
α), and hence scale the carrier

frequency (by 1/
√

α), under the following assumption:

2Other reasons may include the need for significant hardware changes, the
unavailability of the requested frequencies, etc.

Assumption 3: If α is the desired scaling factor, then scaling
the original carrier frequency fc by 1/

√
α is feasible, i.e. fc√

α
does not belong to another frequency band, and we can operate
the scaled system on this new frequency. (In this case the
corresponding scaling factor α is also called feasible.)

We now scale down the transmission power in the scaled
system so that the value of P ls

r (.) (see Equation (5)) at distance√
αd from the transmitter, is equal to the value of P ls

r (.) at
distance d from the transmitter in the original system. (We
have described earlier how this can be done depending on the
large-scale model under consideration.) This ensures that for
an arbitrary time t, the distribution of the received signal power
at distance

√
αd from the transmitter in the scaled system is

the same to the distribution of the received signal power at
distance d from the transmitter in the original system, ∀d. And
since we have scaled the carrier frequency by 1/

√
α, we have

ensured similar time-correlations of the received signal power
in the two systems. We now state the following proposition
whose proof immediately follows from the above arguments.

Proposition 2: To construct a scaled-in-space by a factor α
replica under Ricean/Rayleigh fading, perform steps (i)...(iv)
of Theorem 1, and (step (v)) multiply the transmission power
of every node as described earlier according to the large-scale
model assumed, and (step (vi)) multiply the carrier frequency
by 1/

√
α. If the propagation delays are insignificant and the

same arbitrary traffic is applied in the original and scaled
systems, then under Assumptions 2 and 3, the two systems will
yield the same performance in distribution, for every feasible
0 < α ≤ 1.

V. TIME-DOWNSCALING OF MOBILE AD HOC NETWORKS

We now present the time-downscaling methodology. The
method can be used in conjunction with space-downscaling in
order to expedite experimentation.

Consider an original system under either a deterministic
propagation model, or the log-normal shadowing model, and
suppose that we have built a scaled-in-space by a factor
α replica, according to the procedures we have described
earlier. Also, suppose that some arbitrary routing protocol is
employed, and let δ > 1 be a scaling factor.

In order to perform time-downscaling, we perform the fol-
lowing operations to the scaled-in-space replica: (i) Multiply
all times t ≥ 0 at which nodes will initiate a trip by 1

δ ,
(ii) multiply all node speeds by δ (and hence the duration
of each trip by 1

δ ), (iii) multiply the inter-arrival times of the
external network arrivals by 1

δ , (iv) multiply the transmission
bandwidth by δ (and hence the packet transmission time by
1
δ ), (v) speed-up all the operations of the routing protocol by
δ, 3 and (vi) speed-up all the MAC layer operations by δ. 4

The result of the above operations is a scaled-in-time
replica, by a factor of 1

δ . It is easy to see that since both the

3For example if the DSDV routing protocol is used, multiply all protocol
timeouts, e.g. the periodic update time-interval, the minimum triggered update
period, etc., by 1

δ
.

4This can be accomplished by multiplying all the time constants that are
maintained by the MAC layer, e.g. the slot time duration, etc., by the factor
1
δ

.
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external arrival process and all network operations are scaled
in time by the same factor, the only difference between the
scaled-in-time replica and the original system, is that, whatever
happens in the latter at time t, happens in the former at time
t
δ .

Now, suppose that the scaled-in-space replica was con-
structed assuming the Ricean/Rayleigh fading model, and that
we have performed the operations (i)...(vi) in order to build
the scaled-in-time replica. Also, recall that under small-scale
fading, the received signal power exhibits time-correlations.
Since the scaled-in-time replica runs on a different time-scale
compared to the original system, we have to ensure that similar
time-correlations exist in the new time-scale. In other words,
if the received signal power is correlated for a time duration
τ in the original system, it should be correlated for a time
duration of τ

δ in the scaled-in-time replica. To check this, we
consider the coherence time Tc, which is the time domain dual
to Doppler spread [12].

The coherence time represents the time duration over which
two signals have strong potential for amplitude correlation
and it is approximately given by Tc ≈ C

fm
, where C > 0

a constant, and fm the maximum Doppler shift [12]. (Recall
that fm = vfc

c .) Hence, to have similar time-correlations, we
have to check that Tc in the scaled-in-time replica is divided
by δ.

Recall from the previous section that fm in the original
system is equal to that of the scaled-in-space system. Now,
since we are multiplying all node speeds by δ, fm is also
multiplied by δ. Thus, Tc is divided by the same factor, as
required. We can now state our final theorem. Its proof follows
immediately from our discussion.

Theorem 2: Under a deterministic propagation model, the
scaled-in-time replica preserves the performance of the origi-
nal system as a function of time. Under log-normal shadowing
or Ricean/Rayleigh fading, performance is preserved in distri-
bution. These results hold ∀ δ > 1.

Hence, rather than performing experiments with the original
system for some time duration T , one can perform experiments
with the scaled-in-time replica for a much smaller time dura-
tion T

δ � T (for δ large), hence reaching to conclusions about
the network behavior much faster.

VI. SIMULATIONS

In this section we use the ns-2 simulator [17] to verify
our theoretical arguments and to demonstrate how accurately
the scaled replica can predict the performance of the original
network under realistic settings. We show results with and
without time-downscaling. We compare the end-to-end packet
delays, the system’s throughput, and the drop ratio (defined
as the ratio of the total number of packets received over the
total number of packets sent), between the original and scaled
systems, under the log-normal shadowing model, and the
Ricean/Rayleigh fading model. Current ns-2 implementations
only simulate the large-scale log-normal shadowing model. To
simulate small-scale Ricean/Rayleigh fading we have applied
the ns-2 extension described in [13].

The original network consists of 50 nodes and it is deployed
in an area of some size A. Each node has an omnidirectional
antenna with gain G = 1 and height h = 1.5m. The
transmission power is Pt = 0.2818W, the carrier frequency
fc = 914MHz, and the system loss L = 1. Under these values
the receiving threshold at the physical layer is set such that the
transmission range as predicted by a deterministic large-scale
model (e.g. see Equations (1) and (2)) is 250m. The interface
queue length is set to 250 packets, the packet size is 84bytes,
and the wireless bandwidth is 1Mbps.

Half of the nodes are sources generating traffic according
to a Poisson process at a rate of 0.2packets/sec, destined
to a randomly selected destination. The nodes are moving
according to the Random Waypoint mobility model [18]. The
time that each node pauses after a trip is uniformly distributed
between 0sec and 10sec. And the speed of each node during a
trip is uniformly distributed between 1m/s and 19m/s. Finally,
the routing protocol used is the DSDV protocol [15]. 5

The scaled-in-space replica is deployed in an area of size
αA, according to the procedure of the propagation model
under consideration, as described earlier. We set α = 0.01. For
performing time-downscaling to the scaled-in-space replica,
we used δ = 10, and followed the procedure described in the
previous section.

For the shadowing propagation model we have d0 = 10m,
n = 4 and σdB = 6dB, for both the original and scaled
systems. This setting simulates a shadowed outdoor urban
area. For the Ricean fading model we set K = 6 in both
systems, and for Rayleigh fading K = 0. We first show results
where we have performed space-downscaling only.

A. Simulation results with space-downscaling only

For the experiments presented here, the simulation time for
both the original and scaled systems was 2000sec. Figure 2
shows the distribution of the end-to-end packet delays (up to a
delay of 40ms), under the aforementioned propagation models,
for an original area size A = 1400x1400m2. (Similar results
hold for other area sizes.)

It is evident from the plots that the scaled-in-space system
can predict the distribution of the end-to-end delays of the
original system with a high accuracy. For the cases of Ricean
and Rayleigh fading, we also present the distributions of the
end-to-end packet delays when the carrier frequency is not
scaled according our procedure (i.e. not multiplied by 1√

α
),

but instead retained equal to that of the original system. As we
can see, in these cases performance prediction is less accurate
as expected, since the received signal power does not exhibit
the same time-correlations between the two systems.

Figure 3 shows how accurately the scaled-in-space replica
can predict the packet drop ratio of the original system for
various area sizes. And Figure 4 does the same for the system’s
throughput. For the cases of Ricean and Rayleigh fading, we
present again the results when the carrier frequency of the

5Similar results hold for non-Poisson arrival processes, other mobility
models, and other routing protocols.
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Fig. 2. Distribution of end-to-end packet delays under (i) log-normal shadowing, (ii) Ricean fading, and (iii) Rayleigh fading. (Space-downscaling only.)
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Fig. 3. Packet drop ratio under (i) log-normal shadowing, (ii) Ricean fading, and (iii) Rayleigh fading. (Space-downscaling only.)
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Fig. 4. System throughput under (i) log-normal shadowing, (ii) Ricean fading, and (iii) Rayleigh fading. (Space-downscaling only.)

original system is not scaled according to our procedure. Also,
notice that the plots show the normalized area size for the
scaled system, where the normalization is done as follows: if
αA is the area size of the scaled system, then αA

α = A is its
normalized area size.

It is again evident from the plots that the scaled system can
predict the performance of the original system quite accurately,
and that if the carrier frequency is not scaled according
to our procedure, performance prediction is inaccurate, as
expected. Next, we show results, where in addition to space-
downscaling, we have also performed time-downscaling.

B. Simulation results with space- and time-downscaling

Figures 5...7 show how accurately the scaled system (in both
space and time) can predict the performance of the original
system, under the log-normal shadowing and the Ricean fading
models. (The results for Rayleigh fading are similar. We do not

present those due to space limitations.). Recall that now, the
scaled replica runs δ times faster than the original system. For
the results presented here, we have run the original system for
2000sec of simulation time, and the scaled replica for 200sec
only, since δ = 10.
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Fig. 5. Packet drop ratio (i) under log-normal shadowing, and (ii) under
Ricean fading. (Space- and Time- downscaling.)
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Fig. 6. Normalized system throughput (i) under log-normal shadowing, and
(ii) under Ricean fading. (Space- and Time- downscaling.)
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Fig. 7. Normalized average end-to-end packet delays (i) under log-normal
shadowing, and (ii) under Ricean fading. (Space- and Time- downscaling.)

Notice that the plots show the normalized throughput and
delay for the scaled system, where the normalization is done as
follows: (normalized throughput)=(throughput)/δ, and (nor-
malized delay)=(delay)·δ. These normalizations can be easily
justified by the construction of the scaled-in-time system, as all
time-intervals were multiplied by 1

δ . Also, the normalization
of the area size is performed as described earlier. From the
plots we observe again that the scaled replica can predict
performance quite accurately.

VII. CONCLUSION AND FUTURE WORK

In this paper we have studied ways of constructing suit-
ably scaled-down replicas for efficient performance prediction
of large-scale mobile ad hoc networks. We have identified
necessary and sufficient conditions for the downscaling to
be possible, and we have supported our results using both
theoretical arguments and realistic simulations.

We have several interesting directions for future work. First,
we believe that it is very interesting to investigate whether
one could build a suitable scaled-in-space replica, under small-
scale fading, without the need of scaling the carrier frequency.
If such a downscaling is possible, it would alleviate the
problems that may arise when attempting to scale the carrier
frequency, and hence would allow us to build even smaller
replicas.

Second, we are planning to investigate whether one can
build scaled-down replicas for the case of ad hoc networks
with significant propagation delays, and in such cases to study
the impact of downscaling on traffic with feedback, e.g. such
as TCP traffic. The downscaling in this case could be used to
facilitate efficient testbed experimentation for emerging classes
of such kind of networks, e.g. such as underwater networks.

Third, we plan to perform experiments on actual testbeds
to further validate our findings under more realistic settings.

And finally, note that in this study the number of nodes
between the original and scaled systems was left unaltered.
This made it feasible to build scaled-down replicas having
the same connectivity properties and carry the same amount
of traffic, as the original network. Another interesting, yet
challenging, future work direction is to investigate whether
we could build scaled-down replicas consisting of only a
fraction of nodes from the original network. In this case, it
is unclear how one can maintain the same connectivity and
traffic between the original and scaled systems. However, this
kind of downscaling could be used to reduce the computational
requirements of simulations and expedite experiments, since
we would need to work with fewer nodes. While this has
been done for the case of wireline networks that resemble
the Internet [8], no such study exists for the case of mobile
wireless networks.
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