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Abstract— In our earlier work [1], [2] we have presented
two methods to scale down the topology of the Internet, while
preserving important performance metrics. We have shown that
the methods can be used to greatly simplify and expedite
performance prediction. The key insight that we have leveraged is
that only the congested links along the path of each flow introduce
sizable queueing delays and dependencies among flows. Based on
this, we have shown that it is possible to infer the performance of
the larger Internet by creating and observing a suitably scaled-
down replica, consisting of the congested links only. However, two
main assumptions of our approach were that uncongested links
are known in advance, and that the queueing delays imposed by
such links are negligible.

In this paper we provide rules that can be used to identify
uncongested links when these are not known, and we theoretically
establish the conditions under which the negligible queueing
delay assumption is valid. In particular, we first identify scenarios
under which one can easily deduce whether a link imposes
negligible queueing by inspecting the network topology. Then,
we identify scenarios in which this is not possible and use known
results based on the large deviations theory to approximate the
queue length distribution. Finally, we use this approximation to
decide which links are uncongested, and show that in the many-
sources limit the queueing delays of uncongested links are indeed
negligible. Our results are verified using simulations with TCP
traffic.

I. INTRODUCTION

Understanding the behavior of the Internet and predicting
its performance are important research problems. These prob-
lems are made difficult because of the Internet’s large size,
heterogeneity and high speed of operation.

Researchers use various techniques to deal with these prob-
lems: modeling, e.g. [3], [4], [5], [6], measurement-based
performance characterizations, e.g. [7], [8], [9], [10], [11], and
simulation studies, e.g. [12], [13], [14], [15]. However, these
techniques have their limitations.

First, the heterogeneity and complexity of the Internet
makes it very difficult and time consuming to devise realistic
traffic and network models. Second, due to the increasingly
large bandwidths in the Internet core, it is very hard to obtain
accurate and representative measurements. And further, even
when such data are available it is very expensive and inefficient
to run realistic simulations at meaningful scales.

To sidestep some of these problems, Psounis et al. [16], [17],
[18] have introduced a method called SHRiNK, that predicts
network performance by creating and observing a slower
downscaled version of the original network.1 In particular,

1SHRiNK: Small-scale Hi-fidelity Reproduction of Network Kinetics.

SHRiNK downscales link capacities such that, when a sample
of the original set of TCP flows is run on the downscaled
network, a variety of performance metrics, e.g. the end-to-end
flow delay distributions, are preserved.

This technique has two main benefits. First, by relying only
on a sample of the original set of flows, it reduces the amount
of data we need to work with. Second, by using actual traffic,
it short-cuts the traffic characterization and model-building
process. These in turn, expedite simulations and experiments
with testbeds, while ensuring the relevance of the results.
However, this technique did not solve the important problem
of having to work with large and complex network topologies.

With the above problem in mind, we have proposed in [1],
[2] two methods that can be used to scale down the topology
of the Internet, while preserving the same performance metrics
and having the same benefits with SHRiNK.2 In particular, by
defining a link to be congested if the link imposes packet drops
or significant queueing delays, we have shown that it is possi-
ble to infer the performance of the larger Internet by creating
and observing a suitably scaled-down replica, consisting of
the congested links only. Further, based on the observation
that the majority of backbone links are uncongested [19],
[20], [21], [22] we have demonstrated that these methods
can be used in practice, to dramatically simplify and expedite
performance prediction. However, two main assumptions of
our approach were that congested links are known in advance
(e.g. by utilizing a performance measurement tool), and that
the queueing delays imposed by uncongested links can be
completely ignored.

This paper complements our earlier work. In particular, we
keep the assumption that we know all the congested links
that cause packet drops, but we relax the requirement that
we know which of the other links can be considered as
uncongested, i.e. of not imposing significant delays. Then, we
provide rules to identify uncongested links by either inspecting
the network topology, or whenever this is not possible, by
using a known model from the large deviations theory (based
on Fractional Brownian Motion (FBM)), to approximate the
queue distribution. Our motivation for this is that while packet
drops may be easily detected by a monitoring tool, accurately
measuring queueing delays in high-speed backbone networks
is quite difficult [8], [23], [19]. Further, we also study the

2We called the methods DSCALEd (Downscale using delays), and
DSCALEs (Downscale using sampling).



conditions under which queueing delays become negligible,
and use the aforementioned model to theoretically justify our
arguments.

Using the large-deviations model in practice, requires
knowledge of the average λ and of the variance σ2 of the
packet arrival process on every link of interest. However,
measuring the traffic at the packet level to determine these
parameters in high-speed backbone routers, has been proven
to be a very difficult task, e.g. [19], [20]. One may argue that
it may be easier to measure the exact queueing delays and
hence that the model is of no practical use.

In this paper we show that both λ and σ2 can be easily and
accurately inferred from flow-level information. Given that it
is much easier to monitor flows than to monitor packets in
a router, e.g. [19], [20], we argue that the model can be of
great practical use. This argument is further strengthened by
the fact that information on flows can be either collected on the
link we want to study or at the edges of a backbone network.
Collecting flow information at the edge routers and combined
with their routing information, will give us information on
each link of the network. This alleviates the burden of having
to monitor many links and makes the measuring procedure
scalable. 3

While an expression for λ is quite intuitive and has been
derived in the past, e.g. in [19], as the product of the average
flow arrival rate and of the expected flow size, estimating σ2 is
much more involved. In this paper we derive a new expression
for σ2. What distinguishes our expression from earlier ones
[19], [20], [25] is that it requires less flow-level information
and it has been derived without any assumptions, by explicitly
taking into consideration the TCP feedback mechanism and
long-range dependence.

The rest of the paper is organized as follows. In Section II
we briefly review the main idea in scaling down the topology
of the Internet. Further, we identify the scenarios under which
one can easily deduce whether a link imposes negligible
queueing, by just inspecting the topology. For the scenarios
in which this is not possible, we review in Section III the
large-deviations model we will be using to approximate the
queue distribution. In Section IV we explicitly identify the
conditions that should hold in the context of TCP networks for
this model to be valid. In Section V we compute the packet-
level information required to use the model, from flow-level
information. In Section VI we validate the model and our
theoretical arguments using simulations with TCP traffic. In
the same section, we also demonstrate how to use the model
to decide whether a link can be ignored, when performing
downscaling. Comparison with earlier work follows in Section
VII, and we conclude in Section VIII.

II. SCALING-DOWN NETWORK TOPOLOGY

In this section we briefly review the main idea in scaling
down the Internet topology. For more details, the interested

3Tools such as NetFlow already provide flow information in Cisco routers
[24].

reader is referred to our published work [2], [1]. Before
proceeding, let’s clearly define what we mean by an “uncon-
gested” link in the context of downscaling. An uncongested
link is a link which: (i) does not impose any packet drops,
and (ii) its queueing delays are negligible compared to the
total end-to-end delays of the packets that traverse it, e.g. one
order of magnitude smaller. Most of the backbone links have
both of these properties [21], [22], [23], [19], [20], [8], [7].

Now, as an illustrative example, let’s consider the topology
shown in Figure 1. In this topology we can see two congested
links, and two groups of flows, Grp1 and Grp2. 4 Observe
that Grp1 traverses only the one congested link, whereas Grp2
traverses both.

Fig. 1. Original network.

In [1], [2] we have presented two methods (DSCALEd
and DSCALEs) that build a scaled replica consisting of the
congested links only, along with the groups of flows that
traverse them. For the example shown in Figure 1, the resulting
scaled replica is shown in Figure 2. Then, the methods adjust
the round-trip times in the scaled replica appropriately, such
that the performance of the replica can be extrapolated to that
of the original network.

Fig. 2. Scaled replica.

Our main assumption was that we know in advance which
links of the original network can be considered as uncongested.
However, while links that cause packet drops can be easily
identified by a monitoring tool, measuring the queueing delays
on every other link to determine whether these are negligible,
is clearly a not scalable procedure. Further, it becomes critical
in high-speed backbone routers, e.g. see [8], [23], [19]. Hence,
our motivation in this paper is to provide simple rules that

4A group of flows consists of those flows that follow the same network
path.



can be used to identify links that impose negligible queueing,
without having to explicitly measure their delays.

Our starting point is based on the observation that each link
that belongs to the path of a group of flows (e.g. the path of
Grp1 in Figure 1), can be considered as being part of sub-
topologies similar to those shown in Figures 3(i) ... 3(iii). For
example, as if it was link Q2 in Figure 3(i), or link Q2 in
Figure 3(ii), or link Q1 in Figure 3(iii). (The arrows corre-
spond to groups of flows, the C’s are capacities, Src1...SrcN
correspond to sources, and Dst1...DstN to destinations.)

(i) (ii)

(iii)

Fig. 3. Toy network topologies used to illustrate when a link can be
considered as uncongested by topology inspection.

Now, let’s study the conditions under which these links
impose insignificant queueing. Let’s first concentrate on the
topology shown in Figure 3(i). Clearly if C1 ≤ C2 there is
not going to be any queueing at Q2, whereas if C1 > C2

significant queueing at Q2 is possible. Now, let’s move to the
topology shown in Figure 3(ii). If

∑N
j=1 C1j ≤ C2 there is

not going to be any queueing at Q2, but if
∑N

j=1 C1j > C2

significant queueing at Q2 is possible. Finally, let’s study the
topology shown in Figure 3(iii). If C1 ≤

∑N

j=1 C2j we can

have significant queueing at Q1. Now, if C1 >
∑N

j=1 C2j ,
the C2j’s will regulate the arrivals at Q1 (through the TCP
feedback mechanism) and queueing is expected to be quite
low.

Hence, summarizing, the only case where one can decide
by inspecting the network, that a link imposes negligible
queueing, is the case where the link carries traffic from/to
links for which the sum of their capacities is smaller than the
capacity of the link.

For the rest of the cases, we will use a model from the theory
of large deviations to approximate the queue distribution. In
the next section we review this model. For ease of exposition
we will be assuming a single link shared by N sources, similar
to the one shown in Figure 4 (i.e. without any links attached to
either of its edges). It will be clear that the procedure we will
be using for deciding whether this link imposes significant
queueing, will be directly applicable to the cases discussed
earlier.

Fig. 4. Single link shared by N sources.

III. PRELIMINARIES

In this section we review the large-deviations model that we
will use.

Consider a single link shared by N sources (e.g. like the
one shown in Figure 4). For simplicity, assume that these
sources are homogeneous, i.e. they generate traffic according
to the same process. Now, let AN (t) = AN (0, t) denote the
traffic generated by the superposition of these N sources in the
interval (0, t], with t ∈ R

+ or t ∈ Z. Further, let λ denote the
mean input rate of a single source. Then E[AN (t)] = Nλt.
Now, let the queue’s service rate be scaled with the number of
sources, i.e. let the queue drain at rate CN ≡ NC. To ensure
stability, we assume that λ < C.

We are now interested in the steady-state probability P (Q >
δBN ) of the buffer content exceeding some prespecified level
δBN > 0, where 0 < δ ≤ 1 and BN is again scaled with
the number of sources, i.e. BN ≡ NB. Assuming an infinite
buffer size, this probability can be expressed in terms of the
aggregate cumulative arrival process AN (t), as follows (e.g.
see [26] and references therein): 5

P (Q > δNB) = P

(

sup
t≥0

[AN (t) − NCt] > δNB

)

. (1)

Now, let’s assume than AN (t) is a Gaussian process. Hence,
its distribution can be completely characterized by its mean
E[AN (t)] = Nλt, and its variance v(t) = Var[AN (t)].
Further, let’s assume that the N sources are loosely correlated
such that v(t) ≈ Nσ2t2H , where σ2t2H is the variance of
the traffic from a single source in the interval (0, t], and
H ∈ [0.5, 1). 6 Finally, let’s write:

I(H) =
(C − λ)2H(δB)2−2H

2σ2K2(H)
, (2)

where K(H) = HH(1 − H)1−H .
Using large-deviations theory, it can be shown that the

following relationship holds for P (Q > δNB), when N is
large (e.g. see [26], [28]) :

P (Q > δNB) ≤ exp (−NI(H)). (3)

5This probability is often used to approximate the corresponding probability
in a system with finite buffer equal to NB, when N is large [27].

6The exact equality corresponds to the Fractional Brownian Motion (FBM)
process with Hurst parameter H . For H = 0.5 the process has independent
increments, whereas for H > 0.5 the increments of the process are long-range
dependent [26].



This relation is known in the literature as the many-sources
asymptotic upper bound and the function I(H) is called the
large deviations rate function. If N is sufficiently large, Equa-
tion (3) is often used to approximate the queue distribution. 7

The effectiveness of this model has been demonstrated in
the context of open-loop networks, e.g. see [29], [30], [26],
and has been used several times in arguments in the context of
TCP networks, e.g. see [31], [32], [33]. Next, we review the
reasons and clearly identify under which conditions the model
is valid in this latter context.

IV. APPLICATION TO TCP NETWORKS

In this section we identify the reasons why the model
discussed above is valid in the context of high-speed TCP
networks. For this, let’s consider a link/router with capacity
NC, buffer size NB, and propagation delay Tprop, shared by
N source-destination pairs, as shown in Figure 5.

Fig. 5. Simplified link model.

Suppose that each source generates TCP flows according to
some process, and that each flow consists of a number of pack-
ets that follows some distribution. Of course, packet arrivals at
the router are dictated by the TCP feedback dynamics. Finally,
assume that the drop-tail policy is adopted by the router.

We argue that the link shown in Figure 5 is a realistic
representation of an Internet link since: (i) TCP flows in the
Internet arrive at random times and have random sizes, (ii) to
keep the utilization fixed, the capacity will usually grow with
the number of source-destination pairs sharing the link, (iii)
despite many proposals for sophisticated active queue man-
agement (AQM) schemes, drop-tail is still the most popular
AQM [34], and (iv) routers today are sized according to the
rule-of-thumb, where the buffer size equals the bandwidth-
delay product [35], and hence the buffer will also grow with
N .

If we also assume that N is sufficiently large and that each
source generates a large number of flows, the above link will
correspond to a high-speed backbone link. Such links usually
multiplex hundreds of thousands of TCP flows [19], [36].

Now, it is well documented that if multiple TCP flows share
a bottleneck link, they can be synchronized with each other
[37], [38], [39]. They are coupled because they experience
packet drops at roughly the same time and hence halve
their window sizes at the same time. However, flows are not

7Many-sources asymptotics have been derived for other input processes as
well. For a nice review of the results we refer the interested reader to [26],
[28].

synchronized in a backbone router that carries a large number
of them, with various round-trip, processing and startup times.
These variations are sufficient to prevent synchronization, and
this has been demonstrated in real networks [36], [21], [40].

Under the assumption of a large number of desynchronized
TCP flows, it has been recently argued that the evolution of the
flow window sizes becomes loosely correlated, and hence the
distribution of their sum can be well approximated by a Gaus-
sian distribution. This is justified by the Central Limit Theorem
(CLT) as well as also by empirical measurement [36], [33].
The assumption of weak window correlations is strengthened
further by the fact that backbone links are generally over-
provisioned, (i.e., the network is designed so that a backbone
link utilization stays below 50%, in the absence of link failure
[22]), and thus drops on such links are rare. (However, this
last condition is not a requirement for desynchronization to
exist.)

Under the above observations, the applicability of the model
presented in the previous section seems quite promising, since
the model requires that: (i) The link is scaled by the number
of sources N , (ii) the arrival process from each source is
Gaussian, and (iii) there are no significant correlations between
different sources. Further, the model also accounts for long-
range dependence in the traffic originating from the same
source, which is a well-known characteristic of traffic in the
Internet [41], [10], [42].

However, as we observe, using the model requires knowl-
edge of the average λ and of the variance σ2 of the packet
arrival process of a source. Further, it also requires knowledge
of the parameter H . As mentioned earlier, it is difficult and not
scalable to estimate these parameters by monitoring packets on
every link of interest. As we have said, we prefer to monitor
flows, which is much easier [19], [20].

Thus, in the next section we show how to compute these
parameters from flow-level information. Before proceeding
however, recall that we are interested in deciding of whether
a link that does not impose packet drops, imposes significant
delays. Therefore, we will be assuming links that do not
impose any packet drops.

V. PARAMETER ESTIMATION

In this section we use known expressions to compute λ and
H , and we derive a new expression for σ2.

We assume knowledge of some flow-level information on
the link of interest. In particular, if there are N source-
destination pairs sharing the link, we assume that we know: (i)
the flow size distribution F (s) of the flows traversing the link,
(ii) the total average arrival rate of flows at the link, denoted
by rN , and (iii) the average of the total number of active flows
on the link E[AN ], and of its variance Var(AN ). 8 This flow-
level information can be easily extracted from a router, e.g.
using NetFlow [24].

We express the average flow arrival rate for a source-
destination pair as r = rN

N
and the average number of

8We say that a flow is “active” on a link, if the link belongs to the path of
the flow, and the flow has more data packets to send.



active flows for a pair as E[A] = E[AN ]
N

. Finally, we write
Var(A) = Var(AN )

N
. This last equality assumes that there are

no dependencies among different sources, which as mentioned
before, is the case for backbone links. We start by giving the
expression for λ.

A. Estimating λ

Let S be the random variable representing the size of a flow.
Since we know F (s) we can compute the average flow size
E[S]. Since there are no drops, an intuitive and well-known
expression for λ (e.g. see [19]) is:

λ = rE[S]. (4)

The relation above states that the average packet arrival rate
is equal to the average arrival rate of flows times the average
amount of load brought by each flow. Note, that for a system
to be stable (in the sense that the number of active flows never
grows to infinity) it is required that rE[S] < C [5]. Hence,
for the system under study we assume that this holds, which
yields λ < C. Recall, that this last condition is required in
order to be able to invoke the model of Section III.

Next, we use another known result to show how one can
estimate the parameter H .

B. Estimating H

The long-range dependence of Internet traffic has been
shown to be the result of a heavy-tailed flow size distribution
[42], [21]. A heavy-tailed distribution is one in which P (S >
s) ∼ s−α, 1 < α < 2, as s → ∞.

At large time-scales, e.g. greater than the round-trip time,
the parameter H is directly related to the parameter α (called
the shape parameter) of the size distribution. According to
[42]:

H =
3 − α

2
. (5)

Since we know F (s), we can use the above Equation to
approximate H . Next, we derive an expression for σ2.

C. Estimating σ2

The expression for σ2 is given in the following Theorem:
Theorem 1:

σ2 =
E[A]Var(W ) + (E[W ])2Var(A)

(E[RTT ])2H
, (6)

where E[W ] is the average congestion window size of a flow
and Var(W ) its variance, E[RTT ] is the average round-trip
time of a flow, and the rest of the parameters as defined earlier.

Proof: Assume that the time is slotted with the duration
of slot i be equal to the current round-trip time. Now, denote
by P the total number of packets that belong to a source-
destination pair in some time-slot. Thus, P =

∑A

j=1 Wj ,
where A is the random variable representing the number of
active flows of a pair in a time-slot, and Wj is the random
variable representing the congestion window size of flow j,

j ∈ {1...A}. By the conditional variance formula [43] we
have:

Var(P ) = E[Var(P |A)] + Var(E[P |A]). (7)

Since there are no drops, the Wj’s (j ∈ 1...A) are independent
of the random variable A. It is then easy to see that:

E[Var(P |A)] = E[A]Var(W ), (8)

and:
Var(E[P |A]) = (E[W ])2Var(A). (9)

Now, recall from Section III that σ2t2H is the variance of
the amount of traffic that is injected into the network by a
source in the interval (0, t]. Denote this amount of traffic by
A1(t), and let N(t) be the number of time-slots elapsed by
time t. We can write A1(t) =

∑N(t)
i=1 P (i), where P (i) is the

random variable representing the number of packets of a pair
in slot i.

In steady-state the P (i)’s are identically distributed.
Accounting for long-range dependence in the sequence
{P (i), i = 1, 2, ..., N(t)}, we can write Var(A1(t)) =
(N(t))2HVar(P ) = σ2t2H . Now, for t large enough N(t) =

t
E[RTT ] , and hence:

σ2 =
Var(P )

(E[RTT ])2H
. (10)

From Equations (7)...(10) we get Equation (6).

Now, recall that E[A] and Var(A) in Equation (6) are known
quantities. Hence, what remains to complete the calculation of
σ2 is to compute E[W ], Var(W ) = E[W 2] − (E[W ])2, and
E[RTT ].

We begin by E[RTT ]. Let E[D] be the average number
of round-trips that a flow needs in order to complete. Using
Little’s Law we can write:

E[RTT ] =
E[A]

rE[D]
. (11)

Since E[A] and r are known, we only need to compute E[D].
For this, we proceed as follows.

Suppose that the maximum window size of a flow is Wmax.
We divide flows into two categories: (i) short flows, whose
size is less than or equal to 2Wmax, and (ii) long flows whose
size is larger than 2Wmax. Given TCP’s AIMD (Additive-
Increase-Multiplicative-Decrease) mechanism, this separation
implies that a short flow spends its lifetime in slow start, and
may send Wmax packets at most once during its lifetime. We
can write:

E[D | short flow] =

E[blog2 Sc + 1
[S−

∑blog2 Sc−1

i=0
2i>0]

| S ≤ 2Wmax], (12)

where 1[.] = 1 if the condition in the brackets is satisfied, and 0
otherwise. Now, long flows spend approximately log2 2Wmax



round-trip times in slow-start and then send Wmax packets per
round-trip for the rest of their lifetime. Hence:

E[D | long flow] =

E[blog2 2Wmaxc + b
S −

∑blog2 2Wmaxc−1
i=0 2i

Wmax

c + 1[R(S)>0]],

where:

R(S) = S−

[

∑blog2 2Wmaxc−1
i=0 2i + b

S−
∑blog2 2Wmaxc−1

i=0
2i

Wmax
cWmax

]

.

Since we know F (s), we can compute and uncondition the
expectations above and find E[D].

Since we have computed the expected flow size and the
expected number of rounds a flow needs to complete, it is
easy to see that the average window size of a flow is: 9

E[W ] =
E[S]

E[D]
. (13)

What remains now is to compute the mean square window
size of a flow E[W 2]. For this, we first need to find an
expression for the expectation, of the sum of the squares of
the window sizes that a flow reaches during its lifetime. We
denote this expectation by E[S∗]. Considering TCP’s AIMD
mechanism as we did before, and distinguishing again short
and long flows we can write:

E[S∗ | short flow] =

E[

blog2 Sc−1
∑

i=0

(2i)2 + (S −

blog2 Sc−1
∑

i=0

2i)2 | S ≤ 2Wmax], (14)

E[S∗ | long flow] =

E[

blog2 2Wmaxc−1
∑

i=0

(2i)2 + b
S −

∑blog2 2Wmaxc−1
i=0 2i

Wmax

c(Wmax)2

+ (R(S))2 | S > 2Wmax], (15)

where R(S) as defined above. As before, knowing F (s),
we can uncondition these expectations and find E[S∗]. The
relation for E[W 2] is now given in the following lemma:

Lemma 1:

E[W 2] =
E[S∗]

E[D]
, (16)

where E[S∗] and E[D] as defined earlier.
Proof: Assume again that the time is slotted with the

duration of the current slot be equal to the current round-
trip time. Now, let Y be the sum of the squares of the
window sizes, of all active flows that belong to a pair, i.e.
Y =

∑A

j=1 W 2
j . As before, since there are no drops the Wj’s

(j ∈ 1...A) are independent of the random variable A. We can
write:

E[Y ] = E[W 2]E[A]. (17)

Now, E[Y ] can be also written as:

9A formal proof for this relation goes along the same lines with the proof
of Lemma 1, which we will state shortly.

E[Y ] = lim
t→∞

∑N(t)
i=1

∑A(i)
j=1 (W i

j )
2

N(t)
, (18)

where N(t) is the number of time-slots elapsed by time t as
before, A(i) is the number of active flows in slot i, and W i

j

is the congestion window size of flow j (j ∈ 1...A(i)).
Let F (t) be the total number of flows that have completed

service within N(t) slots. E[D] can be also expressed as
follows:

E[D] = lim
t→∞

∑N(t)
i=1 A(i)

F (t)
. (19)

Further, the average number of active flows in a slot can be
written as:

E[A] = lim
t→∞

∑N(t)
i=1 A(i)

N(t)
. (20)

Now, equations (19) and (20) yield:

lim
t→∞

N(t)

F (t)
=

E[D]

E[A]
. (21)

Finally, since there are no drops it is easy to see that:

E[S∗] = lim
t→∞

∑N(t)
i=1

∑A(i)
j=1 (W i

j )
2

F (t)
. (22)

Now, from Equations (18), (21) and (22) we can deduce that:

E[Y ] =
E[S∗]

E[D]
E[A]. (23)

From Equations (23) and (17) we get Equation (16).

We have now computed all the parameters required to estimate
σ2.

VI. SIMULATIONS

We now present simulation results using the ns-2 simulator
[44] in order demonstrate how the model of Section III can be
used in downscaling, and to verify our theoretical arguments.
We use the setup shown in Figure 5. Each source-destination
pair generates TCP flows according to a Poisson process at rate
r = 95flows/sec. 10 The number of data packets S in each flow
follows a bounded Pareto distribution with average E[S] =
11.54, maximum 106, and shape parameter 1.36. (Notice that
rE[S] < C, and hence the system is stable.) The size of an IP
data packet is 1040 bytes, the two-way propagation delay of
the link is 2Tprop = 100ms, C = 10Mbps = 1200packets/sec,
and B = 2TpropC = 120packets. Finally, Wmax = 20packets
and the simulation time of each experiment was 10000sec.

We first start by verifying that the aggregate arrival process
can be approximated by a Gaussian distribution. Figures 6(i)

10The flow arrival process does not have to be Poisson. We have used this
based on the argument in [5] according to which, since network sessions
arrive as a Poisson process [45], [46], [10] network flows are as if they were
Poisson. (In particular, the equilibrium distribution of the number of flows in
progress is as if flows arrive as a Poisson process.)



and 6(ii) show that this is indeed the case, even for N ’s as
small as 1 and 6 respectively. Note that for N = 1 the average
number of active flows was approximately E[A] = 40, and
the packet drop ratio was around 1.2%. This implies that the
Gaussian approximation is accurate even when the number
of multiplexed flows is relatively small and there are packet
drops. This is in agreement with the observations in [36].

0 100 200 300 400
0

0.2

0.4

0.6

0.8

1

Packets

P
ro

ba
bi

lit
y

CDF of Normal (148, 62)
CDF of Aggregate Number of Arrivals

300 400 500 600 700 800 900 1000 1100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Packets

P
ro

ba
bi

lit
y

CDF of Normal (684, 99.8)
CDF of Aggregate Number of Arrivals

(i) (ii)

Fig. 6. The commulative distribution function (CDF) of the sum of the
aggregate number of arrivals passing through the router during a round-trip
time, and its approximation with a Gaussion CDF with the same parameters:
(i) N=1, and (ii) N=6.

For N = 6, the total average number of active flows is
161.88, and the percentage of dropped packets 0.02%. In this
case, because there are more flows active in the system, the
Gaussian approximation is more accurate. This is evident from
Figure 6(ii). Also, notice that the drop ratio is smaller than the
case where N = 1. This is in agreement with Equation (3),
which implies that for any level δ > 0, as N increases, the
probability that the buffer content exceeds δNB decreases.
This also means that the queueing delays decrease. Hence,
flows spend less time in the system when N = 6. This is
also verified by observing that the number of active flows per
source when N = 6 is E[A] = 161.88

6 = 26.98, which is less
than the number of active flows when N = 1.

Now, let’s test whether the model of Section III can be used
to decide whether a link imposes negligible queueing delays.
Recall that for the purposes of downscaling we are interested
in cases where there are no packet drops. As we have observed
from the simulator drops stop occurring for N > 10. Thus,
we will demonstrate results for N = 11, 16, and 32. However,
we will also show results for N = 6, where N is relatively
small and there are some drops, just to check how accurate
the model is in such scenarios.

We estimate λ, σ2 and H , using the formulas of the previous
section. 11 We compute that λ = 1096packets/sec and that
H = 0.82. Now, recall that according to our procedure,
in order to compute σ2 we also need estimates for E[A]
and Var(A). These are extracted from the simulator. The
rest of the parameters required to compute σ2 are: E[D] =
2.6rounds (which gives E[W ] = 4.44packets), and E[S∗] =
127.5packets (which gives E[W 2] = 49packets). Table I gives
the values for E[A],Var(A), Var(P ), and the resulting σ2, as
we vary N .

11Recall that we ignore packet drops in our calculations, which occur when
N = 6.

N E[A] Var(A) Var(P ) (packets/RTT) σ2 (packets/sec)
6 26.98 46.07 1699 64166
11 25.34 30.00 1334 55838
16 24.83 27.47 1269 54919
32 24.72 25.92 1235 53838

TABLE I

FLOW- AND PACKET- LEVEL STATISTICS AT THE LINK.

Before proceeding, we make some comments regarding the
values of σ2. As we observe from Table I, σ2 decreases as N
increases. This is again in agreement with Equation (3): since
queueing delays decrease, the variance of the arrivals (which
are regulated by TCP) decreases. Further, we observe that the
difference becomes less notable as N increases. This implies
that the queueing delays become less and less significant. We
verify this next. 12

Figure 7 shows that the queueing delays indeed become
negligible as N increases. Further, it shows that the model is
quite accurate in approximating the queue distribution if N is
sufficiently large, as expected.
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Fig. 7. Queue exceedance probability P (Q > δNB) against the buffer level
δ: (i) N = 6, (ii) N = 11, (iii) N = 16, and (iv) N = 32.

In particular, from the Figure we observe that for all N ’s
the curve given by the model has (approximately) the correct
slope for a wide range of values δ. Further, the model captures
the speed by which the exceedance probability decays as N
increases, and for N ≥ 16 it accurately predicts the queue
distribution. This verifies that our parameter estimation was
correct. Further, it validates that the model can be used in the
context of TCP networks, and in particular in the context of

12Notice that in this scenario, where flows arrive as a Poisson process,
one can find the limiting σ2, by taking the queueing delays to be zero and
modeling the system at the flow level as an M/G/∞ queue. The distribution
of the number of active flows will be Poisson [5], with parameter given by
Equation (11), taking E[RTT ] = 2Tprop. Equation (7) then degenerates to
Var(P ) = E[A]E[W 2] = 1210, yielding σ2 = 52818.



downscaling, to identify links with negligible queueing delays.
Next, we summarize our procedure and give specific guidelines
of how to use the model.

Application to network downscaling: Suppose that we
have a backbone network and we wish to build a scaled-
down replica using the downscaling techniques presented in
[2]. Recall that according to the methods, the scaled system
will consist of all the congested links that cause packet drops
(identified by a monitoring tool), and those links that cause
significant queueing delays. To identify links with negligible
queueing delays and ignore them, we follow the steps below:

1) From the network topology and routing information, we
identify and ignore every link for which the traffic it
carries is being forwarded from/to links for which the
sum of their capacities is smaller that the capacity of the
link. (See Section II).

2) For all other links we use a flow-level measurement tool,
e.g. such as NetFlow [24], to estimate: (i) The flow-
size distribution, (ii) the flow arrival rate, and (iii) the
average, and the variance of the number of active flows.

3) We use Equations (4)...(6) to compute λ, H , and σ2 for
each of these links, as described in Section V.

4) We use Equation (3) to approximate the queue distribu-
tion on each of these links.

5) From the network topology and traffic matrix we calcu-
late for each of these links the average two-way end-to-
end propagation delay among the groups of flows that
traverse them.

6) As a rule-of-thumb, we ignore all those links for which
their maximum queueing delay is one order of magni-
tude smaller than the corresponding two-way end-to-end
propagation delay, with probability above 90%.

As an illustrative example, suppose that the average two-
way end-to-end propagation delay among the groups of flows
traversing the link shown in Figure 5 is 200ms. According
to our rules we ignore this link, if the probability that its
maximum queueing delay is below 20ms, is larger than 90%.
It is easy to see that in our scenario a 20ms queueing delay
corresponds to δ = 0.2. As we can see from Figure 7, the
model correctly predicts that we can ignore this link for the
vast majority of cases of interest (e.g. for all N ≥ 16, where
there are no drops).

VII. RELATED WORK

In this Section we review related work on the applicability
of the model of Section III, and on estimating σ2. For related
work on network downscaling, we refer the interested reader
to [2].

The model presented in Section III has been derived in
several studies and its effectiveness has been verified in the
context of open-loop networks, e.g. see [29], [30], [26]. Its
applicability has been also demonstrated for Internet backbone
traffic, e.g. [41]. And it has been used in this later context by
authors, for their theoretical arguments, e.g. in [32], [33].

In this study we have shown that this model can be also
effectively applied in the context of network downscaling.

Further, we have clearly identified the necessary conditions for
the model to be applicable, and we have used ns-2 simulations
with TCP traffic to validate it.

In contrast to earlier studies that have utilized the model, by
extracting its parameters from packet-level information, e.g.
[41], in this study we have chosen to infer this information
from flow-level statistics. In the process, we derived a formula
that relates the variance σ2 of the packet arrival process to
some flow-level information. The most relevant to this studies
are the ones in [19], [20], [25]. We now explain the main
differences of our approach.

First, for their formula derivation, all of these studies have
assumed flows that arrive to the system according to a Poisson
process. In addition, in [25] the author has also assumed a
bufferless link model and modeled the number of active flows
as an M/G/∞ queue. During our formula derivation, none
of these assumptions have been made. Further, in [19], [20]
the notion of “shots” was introduced to describe how flows
transmit their packets. To accurately estimate the variance
requires correct estimates for the shapes of the shots, which
in general requires further measurements. Further in [25] it is
assumed that packets of a flow are spread uniformly in time.
In contrast, in our study we have not made any assumptions
on how flows transmit their packets. We have explicitly taken
into consideration TCP’s AIMD mechanism and long-range
dependence.

Finally, the study in [19], [20], which is the most related
to our study, derives a variance formula that requires (in
addition to the flow arrival rate), knowledge of the expectation
E[S2

D
], where S is the flow size and D the flow duration.

This implies that one needs to keep track of flow sizes and
their corresponding durations. In our study we still require
knowledge of the flow sizes, but we do not need to keep track
the corresponding durations. Instead, we only need estimates
on the first two moments of the number of flows on a router,
which can be easily measured, independently from the flow
sizes.

VIII. CONCLUSION AND FUTURE WORK

This paper complements our earlier work [1], [2] where
two methods were presented to scale down the topology of
the Internet, while preserving performance. In particular, we
have provided guidelines that can be used to decide whether
a link imposes negligible queueing delays, and hence can be
ignored when building the scaled replica.

This study is also important independently from network
downscaling. In this paper we have also demonstrated how
a well-known model from the large-deviations theory can be
utilized in practice, and in the process, we have derived a
formula that relates the variance of the packet arrival process
to flow-level statistics.

Our future work consists of verifying the model and our
parameter estimation for larger network topologies under
various loads.
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