
A Peer-to-Peer Cooperation Enhancement
Scheme and its Performance Analysis

Wei-Cherng Liao, Fragkiskos Papadopoulos, Konstantinos Psounis
Department of Electrical Engineering, University of Southern California, Los Angeles, USA

Email: {weicherl,fpapadop,kpsounis}@usc.edu

Abstract— The performance of peer-to-peer systems depends
on the level of cooperation of the system’s participants.
While most existing peer-to-peer architectures have assumed
that users are generally cooperative, there is great evidence
from widely deployed systems suggesting the opposite. To
date, many schemes have been proposed to alleviate this
problem. However, the majority of these schemes are either
too complex to use in practice, or do not provide strong
enough incentives for cooperation.

In this work we propose a scheme based on the general
idea that offering uploads brings revenue to a user, and
performing downloads has a cost. We also introduce a
theoretical model that predicts the performance of the
system and computes the values of the scheme’s parameters
that achieve a desired performance. Our scheme is quite
simple and very easy to implement. At the same time, it
provides very strong incentives for cooperation and improves
the performance of P2P networks significantly. In particular,
theory and realistic simulations show that it reduces the
query response times and file download delays by one order
of magnitude, and doubles the system’s throughput.

Keywords: P2P networks, user cooperation, theoretical
analysis, realistic simulations.

I. INTRODUCTION

Peer-to-peer (P2P) systems provide a powerful infras-
tructure for large-scale distributed applications, such as
file sharing. While cooperation among the system’s partic-
ipants is a key element to achieve good performance, there
has been growing evidence from widely deployed systems
that peers are usually not cooperative. For example, a
well known study of the Gnutella file sharing system in
2000 reveals that almost 70% of all peers only consume
resources (download files), without providing any files to
the system at all [1]. This phenomenon is called “free-
riding”.

Despite the fact that this phenomenon was identified
several years ago, recent studies of P2P systems show that
the percentage of free-riders has significantly increased
[2]. This is not because industry and academia have
ignored the problem. There is a large body of work on
incentive mechanisms for P2P networks, varying from
centralized and decentralized credit-based mechanisms,
e.g. [3], [4], [5], [6], to game-theoretic approaches and

This paper is based on “An Efficient Algorithm for Resource Sharing
in Peer-to-Peer Networks”, a preliminary version published in the
Proceedings of 5th International IFIP-TC6 Networking Conference,
Coimbra, Portugal, May 15-19, 2006, by Wei-Cherng Liao, Fragkiskos
Papadopoulos, and Konstantinos Psounis.

utility-based schemes, e.g. [7], [8], to schemes that at-
tempt to identify and/or penalize free-riders, e.g. [9], [10],
[11], the last two being proposed by the popular KaZaA
and eMule systems. The problem of free-riders is hard
to tackle because the solution has to satisfy conflicting
requirements: minimal overhead, ease of use, and at the
same time good amount of fairness and resilience to
hacking.

In this paper we propose and study the performance of
an efficient algorithm that is very easy to use, it enforces
users to be fair, and it can be implemented in a number
of ways that tradeoff overhead and resilience to malicious
users. According to the algorithm, users use tokens as
a means to trade bytes within the system. A user earns
Kup tokens for each byte he/she uploads to the system
and spends Kdown tokens for each byte he/she downloads
from the system. The user also gains Kon tokens for each
second his/her machine is on the system (i.e. it is online).
A user can initiate a download only if the number of
tokens that he/she has is large enough to download the
complete file.

The proposed algorithm relies on the general idea that
users should be awarded for offering uploads and staying
online, and pay for performing downloads. While others
have proposed solutions that use the same general idea
in the past, e.g. [6], [8], there are a number of questions
that either have not been addressed at all or have been
studied via simulations only: (i) How should one tune
the parameters that dictate the gain from uploads and the
cost of downloads? Specifically to our scheme, what is
the right value for the parameters Kon, Kup, Kdown? (ii)
What is the exact effect of such an algorithm on overall
system performance over a wide range of conditions? (iii)
Would a small number of malicious users, that manage
to subvert the scheme, degrade overall performance no-
ticeably? (iv) Is it possible to trade off one performance
metric for another by varying the parameters of the
algorithm, e.g. trade off download delay for total system
capacity? Our theoretical analysis of the performance
of the resulting system, coupled with extensive realistic
simulations, gives concrete answers to all these questions.
Interestingly enough, it shows that the query response
times and file download delays can be reduced by one
order of magnitude while being able to sustain higher
user download demands.

An important aspect of any solution to the free-riding
problem is if the information about the users’ behavior

24 JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 7, NOVEMBER/DECEMBER 2006

© 2006 ACADEMY PUBLISHER

is determined and maintained locally and without any
interaction with the other peers of the system (localized
solutions), or it is determined and maintained by either a
centralized authority (non-localized centralized solutions),
or by the continuous exchange of information among the
system’s participants (non-localized distributed solutions).
Localized solutions are simple and impose very little
overhead but they are easy to subvert. Non-localized
solutions are hard to subvert but are complex to use in
practice. (KaZaA, eMule, and BitTorrent all use localized
approaches.) In any case, our proposed scheme can be
easily implemented in any way, and we describe later in
the paper how to implement it efficiently with each one
of the approaches.

The rest of the paper is organized as follows: In Section
II we briefly discuss prior work on providing incentives
for P2P systems. In Section III we provide a detailed
description of the proposed scheme. In Section IV we
provide a mathematical model that predicts the perfor-
mance of the system and gives guidelines on how to set
the scheme’s parameters. In Section V we present realistic
experiments of P2P systems on top of TCP networks.
In Section VI we briefly discuss some implementation
thoughts and finally conclude in Section VII.

II. RELATED WORK

There has been a large body of work on incentive
mechanisms for P2P networks. Three of the most popular
localized schemes are the ones implemented by the eMule
[11], the KaZaA [12], and the BitTorrent [13] systems.
eMule rewards users that provide files to the system
by reducing their waiting time when they upload files
using a scoring function (called QueueRank). Similarly,
in KaZaA, each peer computes locally its Participation
Level as a function of download and upload volumes, and
peers with high participation levels have higher priority
[10]. A disadvantage of both of these schemes is that they
provide relatively weak incentives for cooperation since
peers that have not contributed to the system at all can
still benefit from it, if they are patient enough to wait in
the upload queues. Other problems include that they favor
users with high access bandwidth, which may result in
frustration or a feeling of unfairness [14], and that they
are vulnerable to the creation and distribution of hacked
daemons that do not conform to the desired behavior [15].
BitTorrent uses a different scheme that is specific to its
architecture. Each peer periodically stops offering uploads
to its neighbors that haven’t been offering uploads to
him/her recently. This scheme is hard to subvert. However,
it suffers from some unfairness issues and it only works
with “BitTorrent-style” systems, that is, in systems where
files are broken into pieces, and downloading a file
involves being connected to almost all of ones neighbors
in order to collect and reassemble all the pieces of the
file.

Non-localized proposals are primarily concerned with
creating systems that cannot be subverted. Some of them
make use of credit/cash-based systems. They achieve

protection from hackers by either using central trusted
servers to issue payments (centralized approach), e.g.
[3], [4], or by distributing the responsibility of transac-
tions to a large number of peers (distributed approach),
e.g. [6]. Other distributed approaches use lighter-weight
exchanged-based mechanisms, e.g. [16], or reputation
management schemes, e.g. [5]. These mechanisms are
indeed hard to subvert but they are also quite complex
to use in practice [16].

In this paper we decouple the issue of how to design
an algorithm to prevent free-riding from the issue of how
to implement this algorithm in a P2P system. We first
propose an efficient scheme that provides very strong
incentives for cooperation. We show this via both theory
and simulations. Then, we show that the scheme is
generally applicable to any P2P system and comment on
how to implement it using either a localized, or a non-
localized approach. Another important contribution is the
theoretical analysis of the performance of a P2P system
with and without the proposed scheme. The analysis
yields a set of equations that are used to predict the
system’s performance under a wide range of conditions,
and to tune the parameters of the scheme.

III. A SIMPLE AND EFFECTIVE ALGORITHM

As mentioned earlier, the algorithm uses tokens as a
means to trade bytes within the system. Each user is given
an initial number of tokens M when he/she first joins the
network. This allows new users to start downloading a
small number of files as soon as they join the system.
When a user rejoins the system he/she uses the amount
of tokens he/she previously had.

Users spend Kdown tokens for each byte they download
from the system and earn Kup tokens for each byte they
upload to the system. This forces users to offer files for
upload proportionally to the number of files they want
to download. Further, users gain Kon tokens/sec while
being online. This mechanism of accumulating tokens
serves two purposes. First, it allows users who are not
contacted frequently for uploads to gain tokens by just
being online, which is more fair towards users with low
access bandwidth [14]. Second, it provides an incentive
for users to keep their machines on the system even when
they are not downloading a file, which helps to prevent
the so-called problem of “low availability” [17]. Note that
the value of Kon should be relatively small, in order to
prevent users from gaining many tokens by just keeping
their machines on without providing any uploads. Finally,
a user can initiate a download only if the number of
tokens he/she currently possesses is greater or equal to
the number of tokens required to download the requested
file.

This scheme provides strong incentives for cooperation.
Free-riders are “forced” to provide some uploads to the
system in order to gain tokens fast enough to sustain
their desirable download demands. Some free-riders may
decide to share their files as soon as they are out of tokens.
Others may adopt a more dynamic behavior and decide to

JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 7, NOVEMBER/DECEMBER 2006 25

© 2006 ACADEMY PUBLISHER

adjust the number of uploads they provide to the system as
a function of the number of tokens they currently have. In
any case, the change in the free-rider’s behavior increases
the amount of available system resources tremendously,
which, in turn, significantly improves the system’s perfor-
mance, as we shall see in Section V.

IV. A MATHEMATICAL MODEL FOR THE PROPOSED
SCHEME

In this section we derive a mathematical model, which
can be used to tune the parameters of the scheme and to
predict the system’s performance. Tuning the parameters
of the scheme is important because an arbitrary setting of
their parameters may lead to several undesired situations.
For example, giving a large value to Kon may provide
tokens to the free-riders fast enough, so that there won’t be
any reason for them to start sharing their files with the sys-
tem. As another example, giving relatively small values
to both Kon and Kup may reduce the token accumulation
rate of cooperative users so much such that they cannot
sustain their download demands. Further, predicting the
performance of the system from the model is beneficial
because the alternative is P2P simulations/experiments,
and those either involve a significantly smaller number
of peers than the number in reality, or are prohibitively
expensive.

A. Token Dynamics

We assume a system that implements the proposed
scheme, which we call “system with the tokens”. Recall
that Kdown and Kup are expressed in tokens/byte and
Kon in tokens/sec. Now, let Cdown and Cup denote the
file download and upload speeds of a user (access line
bandwidth), both expressed in bytes/sec. The user spends
KdownCdowndt tokens if he/she is downloading files from
other peers during time (t, t + dt). Also, he/she earns
Kondt tokens if he/she is online during time (t, t + dt)
and KupCupdt tokens if other users are downloading files
from the user under study during time (t, t+dt). Let T (t)
denote the number of the user’s tokens at time t, with
T (0) ≥ 0. We can then write the following differential
equation:

dT (t)
dt

= KonIon(t) + KupCupIup(t)

−KdownCdownIdown(t), (1)

where

Ion(t) =

{
1 if the user is online in (t, t+dt)

0 otherwise
,

Iup(t) =

{
1 if the user provides uploads in (t, t+dt)

0 otherwise
,

Idown(t) =

{
1 if the user performs downloads in (t, t+dt)

0 otherwise
.

Taking expectations on both sides of Equation (1), and
interchanging the expectation with the derivative on the

left hand side1, we get:

dE[T (t)]
dt

= KonPon(t) + KupCupPup(t)

−KdownCdownPdown(t), (2)

where Pon(t) is the probability that the user is online at
time t, Pup(t) is the probability that the user provides
uploads to the system at time t, and Pdown(t) is the
probability that the user performs downloads from the
system at time t. Note that Equation (2) can be regarded
as a fluid model describing the token dynamics.

Pon(t), Pup(t), and Pdown(t) depend on how the
user behaves given the number of tokens that he/she
has at some point in time, and on his/her download
demands. Along these lines, one can define user profiles,
e.g. for non-freerider and free-rider users, and solve the
corresponding differential equation. The solution can be
used to study how the expected amount of tokens of
the particular class of users evolves as a function of
time, for different values of the scheme’s parameters
and for different download and upload speeds. We next
demonstrate this by considering free-rider users, under a
simplistic profile that captures their main behavior. (One
can also perform a similar study for non-freerider users.)

B. A Free-rider Profile Example: The Linear Model

As mentioned earlier, free-riders are motivated to pro-
vide uploads to the system when they do not have enough
tokens to sustain their download demands and they may
lose their willingness to provide uploads, as the amount
of tokens they possess is larger than the amount of tokens
they need. To capture the main characteristics of this
behavior we introduce a simple model, which we call the
Linear Model.

According to the Linear Model, a free-rider provides
uploads to the system with a high (constant) probability,
say Pupmax, when his/her amount of tokens is less than
some threshold, say Tth1. When his/her amount of tokens
reaches Tth1, the probability that he/she provides uploads
to the system is linearly decreasing as the amount of
tokens he/she possesses continues to increase. (This is the
reason why we call it the Linear Model.) The decrease
continues until the amount of tokens he/she has reaches
some threshold, say Tth2. After Tth2, we assume that
the free-rider provides uploads to the system with some
low (constant) probability, say Pupmin. This behavior is
depicted in Figure 1 and characterized by Equation (3). 2

Pup(t) =





Pupmax if T (t) ≤ Tth1

Pupmin if T (t) ≥ Tth2

Pupmax

(
1− C1

T (t)− Tth1

Tth2 − Tth1

)
otherwise

,

(3)

1Taking into account that T (t) is bounded in practice, we can use
the bounded convergence theorem [18] to justify the interchange.

2Determining more realistic free-rider profiles of their upload behav-
ior as a function of the amount of tokens they possess, is an interesting
and challenging research problem in its own right, and it is out of the
scope of this paper.

26 JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 7, NOVEMBER/DECEMBER 2006

© 2006 ACADEMY PUBLISHER

Pupmax

Pupmin

Tth1 Tth2

T(t)

Pup(T(t))

Figure 1. The Linear Model for Pup.

where C1 =
Pupmax − Pupmin

Pupmax
.

For ease of exposition, we assume that Pon(t) = 1,
i.e. users are always online, and that Pdown(t) = Pdown,
i.e. independent of time t. Then, Equation (2) along with
Equation (3) yield:

dE[T (t)]
dt

=





Kon + C2 − C3 if T (t) < Tth1

Kon − C3

+C2

(
1− C1

T (t)− Tth1

Tth2 − Tth1

)
otherwise

,

(4)
where

C2 = KupCupPupmax,

C3 = KdownCdownPdown.

Solving the above differential equation with an initial
condition T (0) = 0, gives:

E[T (t)] =





(Kon + C2 − C3)t if t < t0
C4Tth1 + Kon + C2 − C3

C4

+
C3 −Kon − C2

C4eC4(t−t0)

otherwise
,

(5)
where

C4 =
KupCup(Pupmax − Pupmin)

Tth2 − Tth1
,

t0 =
Tth1

Kon + KupCupPupmax −KdownPdownCdown
.

We can now assign values to Kon, Kup, Kdown, Cup,
Cdown, Pupmax, Pupmin, Tth1, Tth2, and Pdown, and
use Equation (5) to study the dynamics of the expected
amount of tokens of a free-rider. For example, Figure 2
shows how the expected number of tokens evolves as a
function of time, when Kon = 1000 tokens/sec, Kup =
0.5 tokens/byte, Kdown = 1 tokens/byte, Cup = 1.5Mbps,
Cdown = 1.5Mbps, Pupmax = 1, Pupmin = 0.1, Tth1 =

106 tokens, Tth2 = 107 tokens, and Pdown = 0.3.
From the plot we can observe that, initially, the expected
amount of tokens increases linearly as a function of time,
which represents the first part of Equation (5) (where
t < t0 = 84). After the amount of the free-rider’s tokens
reaches threshold Tth1 = 106 (which occurs at time
t0 = 84), the token accumulation rate starts decreasing,
since the free-rider now provides uploads to the system
with a lower probability. Finally, the user adapts to an
equilibrium point, where the token spending rate equals
the token earning rate, and the expected amount of tokens
settles to a steady state value, which we refer to as Tss. 3

0 200 400 600 800 1000
0

1

2

3

4

5

6
x 10

6

Time (sec)

E
xp

ec
te

d
A

m
ou

nt
 o

f T
ok

en
s

Figure 2. Expected amount of tokens for a free-rider vs. time.

Notice that Tss can be obtained directly by either letting
t →∞ in Equation (5), or by setting Equation (4) equal
to zero, i.e. without the need of solving the differential
equation first. It is given by:

Tss =
(Kon + C2 − C3)(Tth2 − Tth1)

C1C2
+ Tth1. (6)

Now, substituting Equation (6) into Equation (3), one
can also get an expression of the steady state upload
probability. This probability, denoted by Pupss, is given
by:

Pupss =
KdownPdownCdown −Kon

KupCup
. (7)

Equations (6) and (7), which are much simpler than
Equations (5) and (3), can be used for “back-of-the-
envelope” calculations, and for gaining a better intuition
on the long-run system behavior.

We now proceed to study the impact of different values
of Kup and Kon on token dynamics. First, lets keep Kon,
and the rest of the parameters fixed, and vary Kup. The
results are shown in Figure 3. From the plots, we observe
that as Kup increases, Tss increases and Pupss decreases.
This can be easily justified by looking at Equations (6)
and (7). Intuitively, as Kup increases, free-riders are

3Similar results hold for other values of the model parameters.

JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 7, NOVEMBER/DECEMBER 2006 27

© 2006 ACADEMY PUBLISHER

0 500 1000
0

1

2

3

4

5

6

7

8

9

10
x 10

6

Time (sec)

E
xp

ec
te

d
A

m
ou

nt
 o

f T
ok

en
s

K
up

=0.5

K
up

=1

K
up

=2

0 500 1000
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sec)

U
pl

oa
d

P
ro

ba
bi

lit
y

K
up

=0.5

K
up

=1

K
up

=2

Figure 3. The effect of different values of Kup.

accumulating tokens faster and are able to settle to a
larger Tss. At the same time, they need to provide fewer
uploads in order to gain the tokens they need to sustain
their download demands, which yields a smaller Pupss.

Now, lets study the impact of the proposed scheme
when we vary Kon, keeping the rest of the parameters
fixed. The results are shown in Figure 4. First, from the

0 500 1000
0

2

4

6

8

10

12
x 10

6

Time (sec)

E
xp

ec
te

d
A

m
ou

nt
 o

f T
ok

en
s

K
on

=1

K
on

=1000

K
on

=50000

0 500 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (sec)

U
pl

oa
d

P
ro

ba
bi

lit
y

K
on

=1

K
on

=1000

K
on

=50000

Figure 4. The effect of different values of Kon.

plots we observe that the effect of choosing different
values of Kon is subtle when Kon is much smaller
than the corresponding (long-run) token earning rate from
uploads, which is KupCupPupss. This is expected, as
small Kon values do not have a great influence on the
mechanism by which free-riders can accumulate tokens,
and thus Tss and Pupss, remain almost unaltered. On the
other hand, a comparatively large value of Kon can have
a great impact on the token accumulation mechanism, and
thus on Tss and Pupss. In particular, as we can see from
the plots, it can significantly increase Tss and decrease
Pupss. As before, this can be easily justified by looking

at Equations (6) and (7). Intuitively, with larger values of
Kon, free-riders can accumulate tokens faster and are able
to settle to a larger Tss. And this can be accomplished by
just staying online, without the need of providing many
uploads to the system, which yields a smaller Pupss.

C. Steady State Performance Analysis

So far, we have seen how one can use Equation (2) in
order to study the token dynamics for a specific class of
users (both transient and steady state behavior), and we
have demonstrated the effect of using different values of
the scheme’s parameters on the token accumulation and
the upload probability. We are now interested in using
Equation (2) to derive a mathematical model that can
be used for predicting steady state performance metrics
(such as user download/upload rates, which we will define
shortly), and for tuning the scheme’s parameters in order
to achieve a target performance.

To study the steady state we set dE[T (t)]
dt = 0 and drop

the time dependence from the probabilities in Equation
(2). Note that the existence of a steady state can be easily
justified for a free-rider independently of his/her exact
profile, by taking into consideration that in the long run
he/she will spend as many tokens as he/she gains. 4

Now, let Rup be the long-run average rate of file upload
requests per second that the user handles, which we refer
to as the upload rate. Also, let Rdown be the long-run
average rate of file download requests per second that the
user initiates, which we refer to as the download rate.
Last, let S denote the average file size in the system
in bytes. Then, it is easy to see that Pup = RupS

Cup
and

Pdown = RdownS
Cdown

. Equation (2) in steady state yields:

KonPon + KupRupS −KdownRdownS = 0.

Taking the average over all free-riders yields:

Kup = Kdown

(
E[Rdown|FR]
E[Rup|FR]

)
− KonPFR

on

E[Rup|FR]S
, (8)

where PFR
on is the long-run probability that a free-rider is

online. 5

Equation (8) relates the parameters of the scheme,
Kon,Kup, and Kdown, with the average download and
upload activity of free-riders. We will later use it to select
the parameter values that yield a target performance. But
first, we need to compute the average download and
upload rates.

1) User Download Rate (Rdown): Let N be the num-
ber of peers in the system and let a proportion α of
them be free-riders. Assume that free-riders are uniformly
distributed over the system. Also, assume that both non-
freeriders and free-riders have the same download de-
mands. In particular, they have the same query request

4Considering the existence of a steady state for a non-freerider is a bit
of more involved. As we will shortly see he/she may or may not have
a steady state. Nevertheless, this will not be important for the system
dynamics.

5Similarly, we denote the long-run probability that a non-freerider is
online by P NF

on .

28 JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 7, NOVEMBER/DECEMBER 2006

© 2006 ACADEMY PUBLISHER

rate, denoted by Rq queries/sec, and the same preference
over files, that is, each query is for file i with some
probability Qf (i) irrespectively of the query issuer.

Now, in order to proceed, we have to define an upload
profile for free-riders, which determines how they respond
to query requests given the number of tokens they have
(i.e. when do they initiate an upload?). To make the
analysis tractable, we assume the following simple upload
profile: Free-riders respond to a query request only if
the amount of tokens they currently have is less than
the amount required to download the file they currently
desire. (Recall that non-freeriders always respond to query
requests.)

Let Pans(i) be the probability that a query request for
file i is successfully answered. Now, recall that in the
system with the tokens a user can initiate a download
only if the amount of tokens he/she has is larger than the
amount required to download the file. Let PFR

tkn and PNF
tkn

denote respectively the probability that a free-rider and a
non-freerider have enough tokens to initiate a download.
Then, we can express the average download rate of free-
riders and non-freeriders as follows:

E[Rdown|FR] =
∑

i

Rq ·Qf (i)·Pans(i)·PFR
tkn ·PFR

on , (9)

E[Rdown|NF] =
∑

i

Rq ·Qf (i) · Pans(i) · PNF
tkn · PNF

on ,

(10)
where the summation is taken over all files i. Clearly, the
average download rate over all users in the system is:

E[Rdown] = E[Rdown|FR] · α + E[Rdown|NF] · (1− α).
(11)

To complete the calculation of the download rates, note
that Rq , Qf (i), PFR

on , PNF
on , and α are given quantities.

(There exist a large body of work in measurement studies
of P2P systems, e.g. [19], [20], from which one can
deduce typical values for these quantities.) Hence, what
remains is to compute Pans, PFR

tkn , and PNF
tkn . We start by

deriving a relation between PFR
tkn and PNF

tkn . First, recall
that in steady state the token earning rate equals the token
spending rate for each free-rider. A free-rider responds to
a query request only when he/she doesn’t have enough
tokens and certainly when he/she is online, i.e. with
probability (1−PFR

tkn)PFR
on . Since a non-freerider always

responds to a query request when he/she is online, it is
easy to see that the token earning rate of free-riders over
that of non-freeriders equals (1−P F R

tkn)P F R
on

P NF
on

. Now, the token
spending rate is proportional to the download rate, and
Equations (9) and (10) imply that the token spending rate
of free-riders over that of non-freeriders equals P F R

on P F R
tkn

P NF
on P NF

tkn

.
Assuming that non-freeriders are also in steady state (in
which case Equation (8) also holds if the average is
taken with respect to non-freeriders only), we can equate
these two ratios and write PNF

tkn = P F R
tkn

(1−P F R
tkn)

. Clearly,
this equality is valid for PFR

tkn ≤ 0.5. In particular when
PFR

tkn = 0.5, PNF
tkn = 1, which implies that non-freeriders

always have enough tokens to initiate downloads. For

PFR
tkn > 0.5, the last equality no longer holds. In this case

the token earning rate of non-freeriders will be larger than
their token spending rate, which implies that their amount
of tokens will continuously increase. However, this still
suggests that PNF

tkn = 1. We can now write:

PNF
tkn = min

(
1,

PFR
tkn

1− PFR
tkn

)
. (12)

Now lets find a relation for Pans(i). First, assume
that due to congestion at the overlay layer [21], each
message (either a query request or a query response) has
a probability p of being dropped at some peer. 6 Then, if
L is the average number of overlay hops until a query is
answered, Pdrop = 1− (1−p)L is the probability that the
query response is lost. Next, observe that if K ≤ N is the
average number of peers that a query request can reach if
all users were online, the request can be answered by an
average of K ·(PFR

on ·(1−PFR
tkn)·α+PNF

on ·(1−α)) peers,
which we call Keff . Finally, let Pf (i) be the probability
that a peer has file i. We can then write:

Pans(i) = 1− (1− Pf (i) · (1− Pdrop))
Keff . (13)

2) User Upload Rate (Rup): The total number of
downloads equals the total number of uploads in any
system and thus the expected download and upload rates
over all nodes are also equal. This does not mean that
all peers provide uploads. For example, in a system that
does not implement the proposed scheme, E[Rdown] =
E[Rup], but we know that only non-freeriders provide
uploads, i.e. E[Rup|FR] = 0, and hence E[Rup|NF] =
E[Rdown]

(1−α) . On the other hand, in the system with the tokens
each free-rider answers to a query request with probability
PFR

on (1 − PFR
tkn). As a result, this system behaves as if

there are N · (PNF
on · (1− α) + PFR

on α · (1− PFR
tkn)) non-

freeriders. It is easy to see that the expected upload rate
of each non-freerider is now given by:

E[Rup|NF] =
PNF

on · E[Rdown]
PNF

on · (1− α) + PFR
on · α · (1− PFR

tkn)
.

(14)
And, since E[Rup] = E[Rdown], the expected upload

rate of each free-rider equals:

E[Rup|FR] =
PFR

on · (1− PFR
tkn) · E[Rdown]

PNF
on (1− α) + PFR

on α · (1− PFR
tkn)

.

(15)

D. Choosing the right values for Kon, Kup, and Kdown

We use PFR
tkn as the design parameter of our system

since it dictates how often free-riders offer uploads,
which, in turn, specifies the average amount of available
resources in the system. We are given the query- and
file-popularity probability functions Qf (i), Pf (i), the
query request rate Rq , the user statistics PFR

on , PNF
on ,

and information about the overlay network. (For example,

6This assumption is introduced to make the model more general. A
well designed system usually has p ≈ 0, which is accomplished by
setting the buffer size of the TCP socket sufficiently large.

JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 7, NOVEMBER/DECEMBER 2006 29

© 2006 ACADEMY PUBLISHER

information about the overlay network includes the per-
centile of free-riders α, the socket buffer sizes that dictate
the drop probability p, and the structure of the overlay
graph as well as the search algorithm that dictate the
number of peers that a query reaches K and the average
path length between a query issuer and a query responder
L.) We want to find a set of values for Kon,Kup and
Kdown that will satisfy a target PFR

tkn , and, in turn, a target
system performance.

First, observe from Equation (8) that it is the relative
values of Kon,Kup, and Kdown that are important for
the proper operation of the system. Recall also that Kon

should be sufficiently smaller than the token spending
rate of free-riders. This is to prevent them from accu-
mulating enough tokens by just staying online without
offering any upload. Thus, we should have Kon ¿
KdownE[Rdown|FR]S.

With the above observations in mind we proceed as
follows in order to satisfy the target PFR

tkn :
(i) Fix Kdown to some arbitrary value,

(ii) use Equation (12) to compute PNF
tkn , (To guarantee

that cooperative users will not be penalized, PNF
tkn

should be close to 1.)
(iii) use Equations (9) and (13) to compute the value of

E[Rdown|FR], and Equations (15), (11) and (10) to
compute E[Rup|FR],

(iv) assign a value to Kon which is one order of magni-
tude smaller than KdownE[Rdown|FR]S, (The spe-
cific value turns out not to affect the performance
sizeably.) and

(v) use Equation (8) to find the right value for Kup.
Conversely, if we are given the values of Kon,Kup, and

Kdown we can use our equations to predict quantities like
E[Rdown|FR], E[Rdown|NF], E[Rup|FR] and so on. 7

In the next Section we verify the accuracy of our
analysis via experiments on top of TCP networks, and
show the impact of the proposed scheme on system’s
performance.

V. EXPERIMENTS

A. Simulation Setup

For our experiments we use GnutellaSim [22], a packet-
level peer-to-peer simulator build on top of ns-2 [23],
which runs as a Gnutella system. We implement the file
downloading operation using the HTTP utilities of ns-2.

We use a 100-node transit-stub network topology as
the backbone, generated with GT-ITM [24]. We attach a
leaf node to each stub node. Each leaf node represents a
peer. The propagation delays assigned to the links of the
topology are proportional to their length and are in the
order of ms. We assign capacities to the network such that
the congestion levels are moderate. The capacity assigned
to a peer’s access link is 1.5Mbps.

In order to test the algorithm on a general gnutella-like
unstructured P2P network we use Gnutella v0.4, which

7Note that we can also use Equations (9)...(15) to compute up-
load/download rates in a system that does not implement the scheme,
by setting P FR

tkn = 1.

uses pure flooding as the search algorithm and does not
distinguish between peers. The TTL for a query request
message is set to 7 (the default value used in Gnutella).

For simulation purposes we implement the following
user behavior: each user initiates query requests at the
constant rate of 1 query every 20sec. Once a timeout
for a query request occurs, the corresponding query is
retransmitted. The maximum number of retransmissions
is set to 5, 8 and the timeout to 60sec.

There are 1000 distinct files in the system, i = 1...1000.
A query request is for file i with probability proportional
to 1

i (Zipf distribution). The number of replicas of a
certain file is also described by a Zipf distribution with a
scaling parameter equal to 1, and the replicas of a certain
file are uniformly distributed among all peers. These
settings are in accordance with measurement studies from
real P2P networks [19], [20]. We distinguish two systems:
(i) the original system which does not implement the
proposed algorithm, and (ii) the system with the tokens. In
both systems, 85% of peers are free-riders in accordance
to the percentage reported in [2]. Finally, the file size is
set to 1MB.

We first perform simulations for the following two
scenarios: (i) when Pon = 1, i.e. when all peers initially
join the system and never go offline, and (ii) when
Pon < 1, i.e. when peers dynamically join and leave the
system according to Pon. Then, we study what the impact
on system’s performance is, when some malicious users
subvert the proposed scheme.

B. Simulation Results for Pon = 1
1) Download and Upload Rates: For various values

of the design parameter PFR
tkn we compute the corre-

sponding values of Kon,Kup and Kdown according to
the procedure described in the previous Section. We then
assign these values to all users of the system and com-
pare the theoretical download and upload rates with the
experimental results. Figures 5 and 6 show respectively
the expected download and upload rate over all non-
freeriders, over all free-riders, and over all users of the
system, as a function of PFR

tkn .
The horizontal line in Figure 5 represents the expected

download rate of a user in the original system. (Clearly,
in the original system E[Rdown] = E[Rdown|FR] =
E[Rdown|NF].) The horizontal line in Figure 6 represents
the expected upload rate of a non-freerider in the original
system. (Recall that in this system E[Rup|FR] = 0.)

It is clear from the plots that analytical and simulation
results match. Further, we can make several interesting
observations. First, notice that as PFR

tkn increases, the
download rate for both classes of users first increases
and then starts decreasing until it reaches the value
of the original system. Second, observe that while the
upload rate of free-riders behaves in a similar manner, the
upload rate of non-freeriders continuously increases until

8This corresponds to the situation where a user quits searching for a
certain file, after reattempting an unsuccessful search, e.g. by using a
different keyword, for 5 consecutive times.

30 JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 7, NOVEMBER/DECEMBER 2006

© 2006 ACADEMY PUBLISHER

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

50

P
tkn
FR (%)

D
ow

nl
oa

d
R

at
e

(D
ow

nl
oa

ds
 /

10
00

 s
ec

)

E[R
down

|NF] (Theoretical)

E[R
down

|NF] (Simulation)

E[R
down

|FR (Theoretical)

E[R
down

|FR] (Simulation)

E[R
down

] (System with Tokens-Theoretical)

E[R
down

] (System with Tokens-Simulation)

E[R
down

] (Original System)

P
tkn
FR=0.55P

tkn
FR=0.32

P
tkn
FR=0.45

Figure 5. User’s expected download rate.

0 20 40 60 80 100
0

50

100

150

P
tkn
FR (%)

U
pl

oa
d

R
at

e
(U

pl
oa

ds
 /

10
00

 s
ec

)

E[R
up

|NF] (Theoretical)

E[R
up

|NF] (Simulation)

E[R
up

|FR (Theoretical)

E[R
up

|FR] (Simulation)

E[R
up

] (System with tokens-Theoretical)

E[R
up

] (System with Tokens-Simulation)

E[R
up

] (Original System)

P
tkn
FR=0.32

P
tkn
FR=0.55

Figure 6. User’s expected upload rate.

it reaches its original value. Based on these observations
we divide the plots into three regions. The first region
corresponds to PFR

tkn < 0.32. In this region, both classes of
peers are constrained to a lower download rate compared
to the original system, since the probability of having
tokens to initiate a new download after a successful query
is pretty low. Notice that for PFR

tkn = 0.32, and hence for
PNF

tkn = 0.47 < 1, cooperative users can at least sustain
the same download rate they had in the original system.
The second region corresponds to 0.32 ≤ PFR

tkn ≤ 0.55. In
this region, users accumulate tokens at a higher rate than
before. Since there are more responses than in the original
network, users can use the extra tokens to initiate more
downloads. Notice that cooperative users earn tokens
faster than free-riders since they always respond to query
requests. At PFR

tkn = 0.55, non-freeriders achieve their
maximum download rate, which is approximately twice
the one they had in the original system. Finally, the
third region corresponds to 0.55 < PFR

tkn ≤ 1. In this
region free-riders accumulate tokens faster than before

and reduce their query response rate since they do not
need to provide as many uploads as before. This causes
cooperative users to handle more uploads. Further, since
the query response rate regulates the download rate, the
latter also decreases. At PFR

tkn = 1, the two systems have
approximately the same performance, as expected.

2) Impact On Delays: Figures 7 and 8 show respec-
tively the average query response time (that includes
retransmissions) and the average download delay as a
function of PFR

tkn . The plots can be divided in the same
three regions as before. For PFR

tkn < 0.32, the low user
download rate imposes a low load into the network. This
yields the low delays. For 0.32 ≤ PFR

tkn ≤ 0.55, as the
user download rate increases, the load in the network
and hence the delays also increase. Note that the query
and download delays are still significantly smaller than in
the original system, despite that the download rate, and
hence the load, is higher. This is because a significant
portion of the load is now handled by the free-riders.
For 0.55 < PFR

tkn ≤ 1 the delays continue to increase
even though the download rate decreases. This is because
free-riders provide fewer and fewer uploads. As PFR

tkn

approaches 1, the performance of the two systems is
approximately the same.

0 20 40 60 80 100
0

50

100

150

P
tkn
FR (%)

A
ve

ra
ge

 Q
ue

ry
 R

es
po

ns
e

T
im

e
(S

ec
on

ds
)

System with Tokens
Original System

P
tkn
FR=0.32

P
tkn
FR=0.55

Figure 7. Average query response time.

To fairly compare the delays between the two systems,
we should consider the case where the load is the same,
i.e. where E[Rdown] = 22 downloads/1000sec. This value
corresponds to PFR

tkn = 0.45, and as we can see from
the plots this corresponds to approximately one order of
magnitude lower query and file download delays. This
is a gigantic amount of improvement on the system’s
performance.

As a final note, the best operating region is the second,
where 0.32 ≤ PFR

tkn ≤ 0.55. In this region, we can either
choose to operate the system at PFR

tkn = 0.32, where
cooperative users can sustain the same download demands
as in the original system, or sacrifice a bit from the
performance improvement with respect to reduced delays
to support higher user demands.

JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 7, NOVEMBER/DECEMBER 2006 31

© 2006 ACADEMY PUBLISHER

0 20 40 60 80 100
0

50

100

150

200

250

P
tkn
FR (%)

A
ve

ra
ge

d
F

ile
 D

ow
nl

oa
d

D
el

ay
 (

S
ec

on
ds

)

System with Tokens
Original System

P
tkn
FR=0.32

P
tkn
FR=0.55

Figure 8. Average file download delay.

C. Simulation Results for Pon < 1
We now study the impact of the proposed scheme in

the more realistic scenario where Pon < 1. In particular,
we now set PNF

on = PFR
on = 0.5. 9 As before, we first

compare the theoretical and simulation results for the
expected download and upload rates, and then show the
impact of the scheme on system delays.

1) Download and Upload Rates: Figures 9 and 10
show respectively the expected download and upload rate
over all non-freeriders, over all free-riders, and over all
users of the system, as a function of PFR

tkn .

0 10 20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

P
tkn
FR (%)

D
ow

nl
oa

d
R

at
e

(D
ow

nl
oa

ds
 /

10
00

 s
ec

)

E[R
down

|NF] (Theoretical)

E[R
down

|NF] (Simulation)

E[R
down

|FR (Theoretical)

E[R
down

|FR] (Simulation)

E[R
down

] (System with Tokens−Theoretical)

E[R
down

] (System with Tokens−Simulation)

E[R
down

] (Original System)

P
tkn
FR=0.33

P
tkn
FR=0.5

Figure 9. User’s expected download rate.

As before, the horizontal line in Figure 9 represents
the expected download rate of a user in the original
system. And, the horizontal line in Figure 10 represents
the expected upload rate of a non-freerider in the original
system. We again see from the plots that analytical and
simulation results match. Further, we can divide the plots

9P FR
on and P NF

on do not have to be equal. Similar results hold for
other values of these parameters.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

P
tkn
FR (%)

U
pl

oa
d

R
at

e
(U

pl
oa

ds
 /

10
00

 s
ec

)

E[R
up

|NF] (Theoretical)

E[R
up

|NF] (Simulation)

E[R
up

|FR (Theoretical)

E[R
up

|FR] (Simulation)

E[R
up

] (Theoretical)

E[R
up

] (Simulation)

E[R
up

|NF] (Original System)

P
tkn
FR=0.33

P
tkn
FR=0.50

Figure 10. User’s expected upload rate.

into regions and justify the behavior in each region, just
like we did before.

2) Impact On Delays: Figures 11 and 12 show respec-
tively the average query response time and the average
download delay as a function of PFR

tkn . We again observe
a similar behavior as with the case where Pon = 1.

0 20 40 60 80 100
0

10

20

30

40

50

60

P
tkn
FR (%)

A
ve

ra
ge

 Q
ue

ry
 R

es
po

ns
e

T
im

e
(S

ec
on

ds
)

System with Tokens
Original System

P
tkn
FR=0.33

P
tkn
FR=0.50

Figure 11. Average query response time.

As we can see from Figures 9, 10, 11, and 12, the
performance improvement from utilizing the proposed
scheme can still be quite significant, even if users dy-
namically join and leave the system. In particular, under
the appropriate parameter tuning, one can again reduce
the delays by one order of magnitude, while being able
to sustain higher user download demands.

D. The Impact of Malicious Users on System’s Perfor-
mance

So far we have seen that system’s performance can
be tremendously improved when adopting the proposed

32 JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 7, NOVEMBER/DECEMBER 2006

© 2006 ACADEMY PUBLISHER

0 20 40 60 80 100
0

50

100

150

200

P
tkn
FR (%)

A
ve

ra
ge

 F
ile

 D
ow

nl
oa

d
T

im
e

(S
ec

on
ds

)

System with Tokens
Original System

P
tkn
FR=0.33

P
tkn
FR=0.50

Figure 12. Average file download delay.

scheme. However, this was for the case where all users
were well-behaved. We are now interested in studying
how much performance degeneration is observed if a
small percentage of users are malicious. In particular, lets
assume that 10% of free-riders have managed to circum-
vent the proposed scheme, so that they can download files
as long as they receive query responses from the system,
independently from the amount of tokens they currently
have.

Figures 13 and 14 show respectively the user expected
download rate and the average file download delay in
a system with and without malicious users. From the
plots we observe that performance degeneration due to the
presence of malicious users is almost negligible. Notice
however that, in general, the user download rate in the
system with malicious users is smaller than the rate in
a system without malicious users, and that the average
file download delay in the system with malicious users
is larger. These observations can be easily justified. First,
malicious users do not respond to query requests, which
means a lower user download rate. And, since fewer users
provide uploads, the file download delay increases.

VI. IMPLEMENTING THE SCHEME

As mentioned before, this scheme can be implemented
either locally or non-locally. Implementing this scheme
locally is quite simple. The local P2P client takes care
of bookkeeping by increasing the user’s tokens for each
acknowledged byte he/she uploads and for being online,
and by decreasing the tokens for each byte the user
downloads. However as we have already mentioned, this
approach is quite vulnerable to hacked clients.

There are several directions for making the hacking
of localized solutions hard. One can utilize encryption
techniques e.g. [25] that make unauthorized modifications
to data (such as the scheme’s parameters) hard. In addi-
tion, one can also use technologies like DRM (Digital
Rights Management) in order to protect the entire client’s
code from being altered e.g. [26], and re-distribute new

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

P
tkn
FR (%)

D
ow

nl
oa

d
R

at
e

(D
ow

nl
oa

ds
 /

10
00

 s
ec

)

E[R
down

|NF] (No Malicious Users)

E[R
down

|NF] (10% Malicious Users)

E[R
down

|FR] (No Malicious Users)

E[R
down

|FR] (10% Malicious Users)

Figure 13. User’s expected download rate.

0 20 40 60 80 100
0

50

100

150

200

250

P
tkn
FR (%)

A
ve

ra
ge

d
F

ile
 D

ow
nl

oa
d

D
el

ay
 (

S
ec

on
ds

)

No Malicious Users

10% Malicious Users

Figure 14. Average file download delay.

clients frequently in order to minimize the number of
hacked clients that can be connected to the network.
Further, one could also employ techniques such as tamper-
proofing and self-checking in order to verify the client’s
code integrity during the join process and/or on every
download request e.g. [27], [28], [29], [30]. Of course,
the only way to guarantee that all P2P clients are original
is to have a trusted platform where both the hardware
and the operating system can be trusted [31]. This is
clearly not an option in practice. However, interestingly
enough, both theory and simulations dictate that our
scheme is quite resilient to a small number of hacked
clients. In particular, as we have seen earlier, the system
performance is virtually unchanged when the hackers
comprise less than 10%. Hence, all one needs to do is
to make it hard for users to use hacked clients. The
scheme can be also implemented in a secure non-localized
centralized manner, where peers exchange messages with
a centralized trusted authority that updates and maintains

JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 7, NOVEMBER/DECEMBER 2006 33

© 2006 ACADEMY PUBLISHER

their amount of tokens. Peers would communicate with
the centralized authority once they finish downloading
to report the source node and the file size, periodically
while being online, and to get permission to initiate a
new download. This is similar to the main idea that many
centralized “cash-based” systems, e.g [3], [4], follow.
Finally, the scheme can be also implemented in a secure
non-localized decentralized manner, e.g. by utilizing the
framework suggested in [6].

VII. CONCLUSION

In this paper we studied a simple algorithm that pro-
vides strong incentives for cooperation in file sharing
P2P networks. We derived a mathematical model that
describes the system’s dynamics and which can be used
for parameter tuning and performance prediction. We
demonstrated the effectiveness of the algorithm via ex-
periments with TCP networks.

We have several future work directions. First, we plan
to perform larger scale experiments, and to implement the
scheme in an operational P2P network. Further, we plan
to extend our analytical methodology to compute other
important performance metrics, e.g. the improvement on
the expected download delays and response times. And
finally, we would like to extend our study to include other
kinds of P2P networks, e.g. such as “BitTorrent-style”
systems.

REFERENCES

[1] E. Adar and B. Huberman, “Free riding on gnutella,” http:
//www.firstmonday.dk/issues/issue5 10/adar, October 2000
(accessed Aug. 2005).

[2] D. Hughes, G. Coulson, and J. Walkerdine, “Free riding
on gnutella revisited: the Bell Tolls?” IEEE Distributed
Systems Online Journal, vol. 6, no. 6, June 2005.

[3] “Mojonnation,” http://www.mojonation.net/Mojonation.
html (accessed Aug. 2005).

[4] J. Ioannidis, S. Ioannidis, A. Keromytis, and V. Prevelakis,
“Fileteller. paying and getting paid for file storage,” in
Proc. of 6th International Conference on Financial Cryp-
tography, March 2002.

[5] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina,
“EigenRep: Reputation management in P2P networks,” in
Proc. of 12th International World Wide Web Conference
(WWW 2003), May 2003.

[6] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer,
“KARMA: A secure economic framework for P2P re-
source sharing,” in 1st Workshop on Economics of Peer-
to-Peer Systems, June 2003.

[7] C. Buragohain, D. Agrawal, and S. Suri, “A game-theoretic
framework for incentives in P2P systems,” in Proc. of
International Conference on Peer-to-Peer Computing, Sep
2003.

[8] L. Ramaswanmy and L. Liu, “Free-riding: A new chal-
lenge to peer-to-peer file sharing systems,” in Proc. of the
36th Hawaii international conference on system sciences,
2003.

[9] M. Feldman, C. Papadimitriou, I. Stoica, and J. Chuang.,
“Free-riding and whitewashing in Peer-toPeer systems,” in
SIGCOMM Workshop, 2004.

[10] “KaZaA participation level,” http://www.kazaa.com/
us/help/glossary/participation ratio.htm (accessed Aug.
2005).

[11] “The emule project,” http://www.emule-project.net/ (ac-
cessed Aug. 2005).

[12] “KaZaA media desktop,” http://www.kazaa.com/ (accessed
Aug. 2005).

[13] “Bittorrent,” http://www.bittorrent.com/protocol.html (ac-
cessed Aug. 2005).

[14] H. Bretzke and J. Vassileva, “Motivating cooperation in
peer to peer networks,” in Proc. of User Modeling UM03,
June 2003.

[15] “Hack KaZaA participation level,” http://www.davesplanet.
net/kazaa/ (accessed Aug. 2005).

[16] K. Anagnostakis and M. Greenwald, “Exchanged-based
incentive mechanisms for peer-to-peer file sharing,” in
Proc. of 24th International Conference on Distributed
Computing Systems, 2004.

[17] R. Bhagwan, S. Savage, and G. M. Voelker, “Understand-
ing availability,” in Proc. of 2nd IPTPS, 2003.

[18] R. Durrett, Probability: Theory and Examples. Duxbury
Press, 2nd edition, 1996.

[19] S. Saroiu, K. P. Gummadi, R. J. Dunn, S. Gribble, and
H. M. Levy, “An analysis of internet content delivery
systems,” in Proc. of the Fifth Symposium on Operating
System Design and Implementation (OSDI), December
2002.

[20] J. Chu, K. Labonte, and B. N. Levine, “Availability and lo-
cality measurements of peer-to-peer file sharing systems,”
in Proc. of SPIEITCom: Scalability and Traffic Control in
IP Networks, July 2002.

[21] M. A. Qi He, “Congestion control and massage loss in
gnutella networks,” in Proc. of Multimedia Computing and
Networking, 2004.

[22] “Packet-level Peer-to-Peer Simulation Framework and
GnutellaSim,” http://www.cc.gatech.edu/computing/
compass/gnutella/ (accessed Oct. 2005).

[23] “Network simulator,” http://www.isi.edu/nsnam/ns (ac-
cessed Sep. 2005).

[24] K. Calvert, M. Doar, and E. W. Zegura, “Modeling internet
topology,” IEEE Communications Magazine, 1997.

[25] “Data encryption standard,” http://www.itl.nist.gov/
fipspubs/fip46-2.htm (accessed Oct. 2005).

[26] T. Sander, Security and Privacy in Digital Rights Manage-
ment. Springer, 1st Edition, 2002.

[27] D. Aucsmith, “Tamper resistant software: An implementa-
tion,” in Proc. 1st International Information Hiding Work-
shop, May 1996.

[28] H. Chang and M. Atallah, “Protecting software code by
guards,” in Proc. of 1st ACM Workshop on Digital Rights
Management, May 2002.

[29] Y. Chen, R. Venkatesan, M. Cary, R. Pang, S. Sinha, and
M. Jakubowski, “Oblivious hashing: A stealthy software
integrity verification primitive,” in Proc. of 5th Interna-
tional Information Hiding Workshop, October 2002.

[30] C. Collberg and C. Thomborson, “Watermarking, tamper-
proofing, and obfuscation - tools for software protection,”
IEEE Transactions on Software Engineering, vol. 28, no. 6,
June 2002.

[31] S. W. Smith, Trusted Computing Platforms: Design and
Applications. Springer, 1st Edition, 2004.

[32] W.-C. Liao, F. Papadopoulos, and K. Psounis, “An efficient
algorithm for resource sharing in peer-to-peer networks,”
University of Southern California, Tech. Rep. CENG-
2005-15, 2005.

34 JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 7, NOVEMBER/DECEMBER 2006

© 2006 ACADEMY PUBLISHER

Wei-Cherng Liao is a Ph.D. student in Elec-
trical Engineering at the University of South-
ern California. He received his first degree
and the M. Sc. degree from the department
of Electrical and Computer Engineering of
National Taiwan University, Taiwan, in June
1998 and June 2000 respectively. His research
interests include modeling, and performance
prediction/analysis of computer networks and
the incentive scheme of P2P system.

Fragkiskos Papadopoulos is a Ph.D. student
in Electrical Engineering at the University
of Southern California. He received his first
degree from the department of Electrical and
Computer Engineering of National Technical
University of Athens, Greece, in June 2002 and
the M. Sc. degree in Electrical Engineering,
specializing in computer networks, from Uni-
versity of Southern California in May 2004.
His research interests include modeling, simu-
lation, and performance prediction/analysis of

computer networks and P2P systems. He is a recipient of the Fulbright
Scholarship.

Konstantinos Psounis is an assistant professor
of Electrical Engineering and Computer Sci-
ence at the University of Southern California.
He received his first degree from the depart-
ment of Electrical and Computer Engineering
of National Technical University of Athens,
Greece, in June 1997, the M.S. degree in Elec-
trical Engineering from Stanford University,
California, in January 1999, and the Ph.D.
degree in Electrical Engineering from Stanford
University in December 2002.

Konstantinos models and analyzes the performance of computer
networks, sensor and mobile systems, and the web. He also designs
methods and algorithms to solve problems related to such systems. He is
the author of more than 30 research papers on these topics. Konstantinos
has received faculty awards from NSF and the Zumberge foundation,
has been a Stanford graduate fellow throughout his graduate studies, and
has received the best-student National Technical University of Athens
award for graduating first in his class

JOURNAL OF COMMUNICATIONS, VOL. 1, NO. 7, NOVEMBER/DECEMBER 2006 35

© 2006 ACADEMY PUBLISHER

