
An Efficient Algorithm for Resource Sharing in
Peer-to-Peer Networks

Wei-Cherng Liao, Fragkiskos Papadopoulos, and Konstantinos Psounis

University of Southern California, Los Angeles, CA 90089
{weicherl, fpapadop, kpsounis}@usc.edu

Abstract. The performance of peer-to-peer systems depends on the
level of cooperation of the system’s participants. While most existing
peer-to-peer architectures have assumed that users are generally coop-
erative, there is great evidence from widely deployed systems suggesting
the opposite. To date, many schemes have been proposed to alleviate this
problem. However, the majority of these schemes are either too complex
to use in practice, or do not provide strong enough incentives for coop-
eration.

In this work we propose a scheme based on the general idea that
offering uploads brings revenue to a node, and performing downloads
has a cost. We also introduce a theoretical model that predicts the
performance of the system and computes the values of the scheme’s
parameters that achieve a desired performance. Our scheme is quite
simple and very easy to implement. At the same time, it provides very
strong incentives for cooperation and improves the performance of P2P
networks significantly. In particular, theory and realistic simulations
show that it reduces the query response times and file download delays
by one order of magnitude, and doubles the system’s throughput.

Keywords: P2P networks, user cooperation, theoretical analysis, real-
istic simulations.

1 Introduction

Peer-to-peer (P2P) systems provide a powerful infrastructure for large-scale dis-
tributed applications, such as file sharing. While cooperation among the sys-
tem’s participants is a key element to achieve good performance, there has been
growing evidence from widely deployed systems that peers are usually not co-
operative. For example, a well known study of the Gnutella file sharing system
in 2000 reveals that almost 70% of all peers only consume resources (download
files), without providing any files to the system at all [1]. This phenomenon is
called “free-riding”.

Despite the fact that this phenomenon was identified several years ago, re-
cent studies of P2P systems show that the percentage of free-riders has signifi-
cantly increased [2]. This is not because industry and academia have ignored the
problem. There is a large body of work on incentive mechanisms for P2P net-
works, varying from centralized and decentralized credit-based mechanisms, e.g.

F. Boavida et al. (Eds.): NETWORKING 2006, LNCS 3976, pp. 592–605, 2006.
c© IFIP International Federation for Information Processing 2006

An Efficient Algorithm for Resource Sharing in Peer-to-Peer Networks 593

[3, 4, 5, 6], to game-theoretic approaches and utility-based schemes, e.g. [7, 8], to
schemes that attempt to identify and/or penalize free-riders, e.g. [9, 10, 11], the
last two being proposed by the popular KaZaA and eMule systems. The prob-
lem of free-riders is hard to tackle because the solution has to satisfy conflicting
requirements: minimal overhead, ease of use, and at the same time good amount
of fairness and resilience to hacking.

In this paper we propose and study the performance of an efficient algorithm
that is very easy to use, it enforces users to be fair, and it can be implemented
in a number of ways that tradeoff overhead and resilience to malicious users.
According to the algorithm, users use tokens as a means to trade bytes within
the system. A user earns Kup tokens for each byte he/she uploads to the system
and spends Kdown tokens for each byte he/she downloads from the system. The
user also gains Kon tokens for each second his/her machine is on the system (i.e.
it is online). A user can initiate a download only if the number of tokens that
he/she has is large enough to download the complete file.

The proposed algorithm relies on the general idea that users should be
awarded for offering uploads and staying online, and pay for performing down-
loads. While others have proposed solutions that use the same general idea in
the past, e.g. [6, 8], there are a number of questions that either have not been ad-
dressed at all or have been studied via simulations only: (i) How should one tune
the parameters that dictate the gain from uploads and the cost of downloads?
Specifically to our scheme, what is the right value for the parameters Kon, Kup,
Kdown? (ii) What is the exact effect of such an algorithm on overall system
performance over a wide range of conditions? (iii) Would a small number of ma-
licious users, that manage to subvert the scheme, degrade overall performance
noticeably? (iv) Is it possible to trade off one performance metric for another by
varying the parameters of the algorithm, e.g. trade off download delay for total
system capacity? Our theoretical analysis of the performance of the resulting
system, coupled with extensive realistic simulations, gives concrete answers to
all these questions. Interestingly enough, it shows that the query response times
and file download delays can be reduced by one order of magnitude while being
able to sustain higher user download demands.

An important aspect of any solution to the free-riding problem is if the infor-
mation about the users’ behavior is determined and maintained locally and with-
out any interaction with the other peers of the system (localized solutions), or it
is determined and maintained by either a centralized authority (non-localized
centralized solutions), or by the continuous exchange of information among
the system’s participants (non-localized distributed solutions). Localized solu-
tions are simple and impose very little overhead but they are easy to subvert.
Non-localized solutions are hard to subvert but are complex to use in practice.
(KaZaA, eMule, and BitTorrent all use localized approaches.) In any case, our
proposed scheme can be easily implemented in any way, and we describe later
in the paper how to implement it efficiently with each one of the approaches.

The rest of the paper is organized as follows: In Section 2 we briefly discuss
prior work on providing incentives for P2P systems. In Section 3 we provide a

594 W.-C. Liao, F. Papadopoulos, and K. Psounis

detailed description of the proposed scheme. In Section 4 we provide a mathe-
matical model that predicts the performance of the system and gives guidelines
on how to set the scheme’s parameters. In Section 5 we present realistic experi-
ments of P2P systems on top of TCP networks. In Section 6 we briefly discuss
some implementation thoughts and finally conclude in Section 7.

2 Related Work

There has been a large body of work on incentive mechanisms for P2P networks.
Three of the most popular localized schemes are the ones implemented by the
eMule [11], the KaZaA [12], and the BitTorrent [13] systems. eMule rewards
users that provide files to the system by reducing their waiting time when they
upload files using a scoring function (called QueueRank). Similarly, in KaZaA,
each peer computes locally its Participation Level as a function of download and
upload volumes, and peers with high participation levels have higher priority
[10]. A disadvantage of both of these schemes is that they provide relatively
weak incentives for cooperation since peers that have not contributed to the
system at all can still benefit from it, if they are patient enough to wait in the
upload queues. Other problems include that they favor users with high access
bandwidth, which may result in frustration or a feeling of unfairness [14], and
that they are vulnerable to the creation and distribution of hacked daemons
that do not conform to the desired behavior [15]. BitTorrent uses a different
scheme that is specific to its architecture. Each peer periodically stops offering
uploads to its neighbors that haven’t been offering uploads to him/her recently.
This scheme is hard to subvert. However, it suffers from some unfairness issues
and it only works with “BitTorrent-style” systems, that is, in systems where
files are broken into pieces, and downloading a file involves being connected to
almost all of ones neighbors in order to collect and reassemble all the pieces of
the file.

Non-localized proposals are primarily concerned with creating systems that
cannot be subverted. Some of them make use of credit/cash-based systems. They
achieve protection from hackers by either using central trusted servers to issue
payments (centralized approach), e.g. [3, 4], or by distributing the responsibility
of transactions to a large number of peers (distributed approach), e.g. [6]. Other
distributed approaches use lighter-weight exchanged-based mechanisms, e.g. [16],
or reputation management schemes, e.g. [5]. These mechanisms are indeed hard
to subvert but they are also quite complex to use in practice [16].

In this paper we decouple the issue of how to design an algorithm to prevent
free-riding from the issue of how to implement this algorithm in a P2P system.
We first propose an efficient scheme that provides very strong incentives for
cooperation. We show this via both theory and simulations. Then, we show that
the scheme is generally applicable to any P2P system and comment on how
to implement it using either a localized, or a non-localized approach. Another
important contribution is the theoretical analysis of the performance of a P2P
system with and without the proposed scheme. The analysis yields a set of

An Efficient Algorithm for Resource Sharing in Peer-to-Peer Networks 595

equations that are used to predict the system’s performance under a wide range
of conditions, and to tune the parameters of the scheme.

3 A Simple and Effective Algorithm

As mentioned earlier, the algorithm uses tokens as a means to trade bytes within
the system. Each user is given an initial number of tokens M when he/she first
joins the network. This allows new users to start downloading a small number
of files as soon as they join the system. When a user rejoins the system he/she
uses the amount of tokens he/she previously had.

Users spend Kdown tokens for each byte they download from the system and
earn Kup tokens for each byte they upload to the system. This forces users to
offer files for upload proportionally to the number of files they want to download.
Further, users gain Kon tokens/sec while being online. This mechanism of accu-
mulating tokens serves two purposes. First, it allows users who are not contacted
frequently for uploads to gain tokens by just being online, which is more fair to-
wards users with low access bandwidth [14]. Second, it provides an incentive for
users to keep their machines on the system even when they are not downloading
a file, which helps to prevent the so-called problem of “low availability” [17].
Note that the value of Kon should be relatively small, in order to prevent users
from gaining many tokens by just keeping their machines on without providing
any uploads. Finally, a user can initiate a download only if the number of tokens
he/she currently possesses is greater or equal to the number of tokens required
to download the requested file.

This scheme provides strong incentives for cooperation. Free-riders are
“forced” to provide some uploads to the system in order to gain tokens fast
enough to sustain their desirable download demands. Some free-riders may de-
cide to share their files as soon as they are out of tokens. Others may adopt a
more dynamic behavior and decide to adjust the number of uploads they pro-
vide to the system as a function of the number of tokens they currently have. In
any case, the change in the free-rider’s behavior increases the amount of avail-
able system resources tremendously, which, in turn, significantly improves the
system’s performance, as we shall see in Section 5.

4 A Mathematical Model for the Proposed Scheme

In this section we derive a mathematical model that predicts the system’s per-
formance and can be used to tune the parameters of the scheme. Predicting
the performance of the system from the model is beneficial because the alter-
native is P2P simulations/experiments, and those either involve a significantly
smaller number of peers than in reality, or are prohibitively expensive. Tuning
the parameters of the scheme is important because an arbitrary setting of their
parameters may lead to several undesired situations. For example, giving a large
value to Kon may provide tokens to the free-riders fast enough, so that there

596 W.-C. Liao, F. Papadopoulos, and K. Psounis

won’t be any reason for them to start sharing their files with the system. As an-
other example, giving relatively small values to both Kon and Kup may reduce
the token accumulation rate of cooperative users so much such that they can’t
sustain their download demands.

4.1 System Dynamics

We assume a system that implements the proposed scheme which we call “system
with the tokens”. Recall that Kdown and Kup are expressed in tokens/byte and
Kon in tokens/sec. Now, let Cdown and Cup denote the file download and upload
speeds of a user (access line bandwidth), both expressed in bytes/sec. The user
spends KdownCdowndt tokens if he/she is downloading files from other peers
during time (t, t+dt). Also, he/she earns Kondt tokens if he/she is online during
time (t, t + dt) and KupCupdt tokens if other users are uploading files from the
user under study during time (t, t+dt). Let T (t) denote the number of the user’s
tokens at time t, with T (0) ≥ 0. We can then write the following differential
equation:

dT (t)
dt

= KonIon(t) + KupCupIup(t) − KdownCdownIdown(t), (1)

where

Ion(t) =

{
1 if the user is online in (t, t+dt)
0 otherwise

,

Iup(t) =

{
1 if the user provides uploads in (t, t+dt)
0 otherwise

,

Idown(t) =

{
1 if the user performs downloads in (t, t+dt)
0 otherwise

.

Taking expectations on both sides of Equation (1), and interchanging the expec-
tation with the derivative on the left hand side1, we get:

dE[T (t)]
dt

= KonPon(t) + KupCupPup(t) − KdownCdownPdown(t), (2)

where Pon(t) is the probability the user is online at time t, Pup(t) is the prob-
ability that the user provides uploads to the system at time t, and Pdown(t) is
the probability that the user performs downloads from the system at time t.
Note that Equation (2) can be regarded as a fluid model describing the token
dynamics.

Pon(t), Pup(t), and Pdown(t) depend on how the user behaves given the num-
ber of tokens that he/she has at some point in time, and on his/her download

1 Taking into account that T (t) is bounded in practice, we can use the bounded con-
vergence theorem [18] to justify the interchange.

An Efficient Algorithm for Resource Sharing in Peer-to-Peer Networks 597

demands. Along these lines, one can define user profiles and solve the differential
equation. Due to limitations of space we will not proceed with this task here.
(The interested reader is referred to [19]). Instead, we will only study the steady
state by setting dE[T (t)]

dt = 0, and dropping the time dependence from the prob-
abilities in Equation (2). Note that the existence of a steady state can be easily
justified for a free-rider, by taking into consideration that in the long-run he/she
will spend as many tokens as he/she gains. 2

Without loss of generality assume Pon = 1. 3 Let Rup be the long-run average
rate of file upload requests per second that the user handles, which we refer to
as the upload rate. Also, let Rdown be the long-run average rate of file download
requests per second that the user initiates, which we refer to as the download
rate. Last, let S denote the average file size in the system in bytes. Then, it is
easy to see that Pup = RupS

Cup
and Pdown = RdownS

Cdown
. 4 Equation (2) in steady state

yields:
Kon + KupRupS − KdownRdownS = 0.

Taking the average over all free-riders yields:

Kup = Kdown

(
E[Rdown|FR]
E[Rup|FR]

)
− Kon

E[Rup|FR]S
. (3)

Equation (3) relates the parameters of the scheme, Kon, Kup, and Kdown, with
the average download and upload activity of free-riders. We will later use it to
select the parameter values that yield a target performance. But first, we need
to compute the average download and upload rates, which is the next topic.

4.2 User Download Rate (Rdown)

Let N be the number of peers in the system and let a proportion α of them be
free-riders. Assume that free-riders are uniformly distributed over the system.
Also, assume that both cooperative users and free-riders have the same download
demands. In particular, they have the same query request rate, denoted by Rq

queries/sec, and the same preference over files, that is, each query is for file i
with some probability Qf (i) irrespectively of the query issuer. Finally, assume
that free-riders respond to a query only if the amount of tokens they currently
have is less than the amount required to download the file they currently desire.
(Recall that cooperative users always respond to query requests.)

Let Pans(i) be the probability that a query request for file i is successfully
answered. Now, recall that in the system with the tokens a user can initiate a
download only if the amount of tokens he/she has is larger than the amount

2 Considering the existence of a steady state for a non-freerider is a bit more involved.
As we will shortly see he/she may or may not have a steady state. Nevertheless, this
will not be important for the system dynamics.

3 A similar analysis holds for Pon < 1.
4 Assuming a stable system, the exact values of Cup and Cdown are not important for

our analysis.

598 W.-C. Liao, F. Papadopoulos, and K. Psounis

required to download the file. Let PFR
tkn and PNF

tkn denote respectively the prob-
ability that a free-rider and a non-freerider have enough tokens to initiate a
download. Then, we can express the average download rate of free-riders and
non-freeriders as follows:

E[Rdown|FR] =
∑

i

Rq · Qf(i) · Pans(i) · PFR
tkn , (4)

E[Rdown|NF] =
∑

i

Rq · Qf (i) · Pans(i) · PNF
tkn , (5)

where the summation is taken over all files i. Clearly, the average download rate
over all users in the system is:

E[Rdown] = E[Rdown|FR] · α + E[Rdown|NF] · (1 − α). (6)

To complete the calculation of the download rates, note that Rq, Qf(i), and
α are given quantities. (There exist a large body of work in measurement studies
of P2P systems, e.g. [20, 21], from which one can deduce typical values for these
quantities.) Hence, what remains is to compute Pans, PFR

tkn , and PNF
tkn . We start

by deriving a relation between PFR
tkn and PNF

tkn . First, note that in steady state
the token earning rate equals the token spending rate for each free-rider. A free-
rider responds to a query request only when he/she doesn’t have enough tokens,
i.e. with probability 1 − PFR

tkn . Since a non-freerider always responds to a query
request, it is easy to see that the token earning rate of free-riders over that of
non-freeriders equals 1 − PFR

tkn . Now, the token spending rate is proportional to
the download rate, and Equations (4) and (5) imply that the token spending
rate of free-riders over that of non-freeriders equals P F R

tkn

P NF
tkn

. Assuming that non-
freeriders are also in steady state (in which case Equation (3) also holds if the
average is taken with respect to non-freeriders only), we can equate the two
ratios and write PNF

tkn = P F R
tkn

1−P F R
tkn

. Clearly, this equality is valid for PFR
tkn ≤ 0.5. In

particular when PFR
tkn = 0.5, PNF

tkn = 1, which implies that non-freeriders always
have enough tokens to initiate downloads. For PFR

tkn > 0.5, the last equality no
longer holds. In this case the token earning rate of non-freeriders will be larger
than their token spending rate, which implies that their amount of tokens will
continuously increase. However, this still suggests that PNF

tkn = 1. We can now
write:

PNF
tkn = min

(
1,

PFR
tkn

1 − PFR
tkn

)
. (7)

Now, lets find a relation for Pans(i). First, assume that due to congestion at
the overlay layer [22], each message (either a query request or a query response)
has a probability p of being dropped at some peer. 5 Then, if L is the average

5 This assumption is introduced to make the model more general. A well designed
system usually has p ≈ 0, which is accomplished by setting the buffer size of the
TCP socket sufficiently large.

An Efficient Algorithm for Resource Sharing in Peer-to-Peer Networks 599

number of overlay hops until a query is answered, Pdrop = 1 − (1 − p)L is the
probability that the query response is lost. Next, observe that if K ≤ N is the
average number of peers that a query request can reach, then the request can
be answered by an average of K · ((1 − PFR

tkn) · α + 1 · (1 − α)) peers. Finally, let
Pf (i) be the probability that a peer has file i. We can then write:

Pans(i) = 1 − (1 − Pf (i) · (1 − Pdrop))K·((1−P F R
tkn)·α+1−α). (8)

4.3 User Upload Rate (Rup)

The total number of downloads equals the total number of uploads, and thus
the expected download and upload rates over all nodes are also equal. This does
not mean that all peers provide uploads. For example, in a system that does not
implement the proposed scheme E[Rdown] = E[Rup] but we know that only non-
freeriders provide uploads, i.e. E[Rup|FR] = 0, and hence E[Rup|NF] = E[Rdown]

(1−α) .
On the other hand, in the system with the tokens each free-rider answers to a
query request with probability 1 − PFR

tkn . As a result, this system behaves as if
there are N · ((1 − α) + α · (1 − PFR

tkn)) non-freeriders. It is easy to see that the
expected upload rate of each non-freerider is now given by:

E[Rup|NF] =
E[Rdown]

(1 − α) + α · (1 − PFR
tkn)

. (9)

And, since E[Rup] = E[Rdown], the expected upload rate of each free-rider
equals:

E[Rup|FR] =
(1 − PFR

tkn) · E[Rdown]
(1 − α) + α · (1 − PFR

tkn)
. (10)

4.4 Choosing the Right Values for Kon, Kup, and Kdown

We use PFR
tkn as the design parameter of our system since it dictates how often

free-riders offer uploads, which, in turn, specifies the average amount of available
resources in the system. We are given the query- and file-popularity probability
functions Qf (i), Pf (i), the query request rate Rq, and information about the
overlay network. (For example, information about the overlay network includes
the percentile of free-riders α, the socket buffer sizes that dictate the drop prob-
ability p, and the structure of the overlay graph as well as the search algorithm
that dictate the number of peers that a query reaches K and the average path
length between a query issuer and a query responder L.) We want to find a set
of values for Kon, Kup and Kdown that will satisfy a target PFR

tkn , and, in turn, a
target performance.

First, observe from Equation (3) that it is the relative values of Kon, Kup,
and Kdown that are important for the proper operation of the system. Re-
call also that Kon should be sufficiently smaller than the token spending
rate of free-riders. This is to prevent them from accumulating enough tokens

600 W.-C. Liao, F. Papadopoulos, and K. Psounis

by just staying online without offering any uploads. Thus, we should have
Kon � KdownE[Rdown|FR]S.

With the above observations in mind we proceed as follows in order to satisfy
the target PFR

tkn :

(i) Fix Kdown to some arbitrary value,
(ii) use Equation (7) to compute PNF

tkn , (To guarantee that cooperative users will
not be penalized, PNF

tkn should be close to 1.)
(iii) use Equations (4) and (8) to compute the value of E[Rdown|FR], and Equa-

tions (10), (6) and (5) to compute E[Rup|FR],
(iv) assign a value to Kon which is one order of magnitude smaller than

KdownE[Rdown|FR]S, (The specific value turns out not to affect the per-
formance sizeably.) and

(v) use Equation (3) to find the right value for Kup.

Conversely, if we are given the values of Kon, Kup, and Kdown we can use our
equations to predict quantities like E[Rdown|FR], E[Rdown|NF], E[Rup|FR] and
so on. 6

In the next Section we verify the accuracy of our analysis via experiments on
top of TCP networks, and show the impact of the proposed scheme on system’s
performance.

5 Experiments

5.1 Simulation Setup

For our experiments we use GnutellaSim [23], a packet-level peer-to-peer simu-
lator build on top of ns-2 [24], which runs as a Gnutella system. We implement
the file downloading operation using the HTTP utilities of ns-2.

We use a 100-node transit-stub network topology as the backbone, generated
with GT-ITM [25]. We attach a leaf node to each stub node. Each leaf node rep-
resents a peer. The propagation delays assigned to the links of the topology are
proportional to their length and are in the order of ms. We assign capacities to
the network such that the congestion levels are moderate. The capacity assigned
to a peer’s access link is 1.5Mbps.

In order to test the algorithm on a general gnutella-like unstructured P2P
network we use Gnutella v0.4, which uses pure flooding as the search algorithm
and does not distinguish between peers. The TTL for a query request message
is set to 7 (the default value used in Gnutella).

All peers join the system initially and never go offline. For simulation purposes
we implement the following user behavior: each user initiates query requests at
the constant rate of 1 query every 20sec. Once a timeout for a query request
occurs, the corresponding query is retransmitted. The maximum number of re-
transmissions is set to 5, and the timeout to 60sec.
6 Note that we can also use Equations (4)...(10) to compute upload/download rates

in a system that does not implement the scheme, by setting P F R
tkn = 1.

An Efficient Algorithm for Resource Sharing in Peer-to-Peer Networks 601

There are 1000 distinct files in the system, i = 1...1000. A query request is
for file i with probability proportional to 1

i (Zipf distribution). The number of
replicas of a certain file is also described by a Zipf distribution with a scaling
parameter equal to 1, and the replicas of a certain file are uniformly distributed
among all peers. These settings are in accordance with measurement studies
from real P2P networks [20, 21]. We distinguish two systems: (i) the original
system which does not implement the proposed algorithm, and (ii) the system
with the tokens. In both systems, 85% of peers are free-riders in accordance to
the percentage reported in [2]. Finally, the file size is set to 1MB.

5.2 Simulation Results

Download and Upload Rates. For various values of the design parameter
PFR

tkn we compute the corresponding values of Kon, Kup and Kdown according
to the procedure described in the previous Section. We then assign these values
to all users of the system and compare the theoretical download and upload
rates with the experimental results. Figures 1(i) and 1(ii) show respectively the
expected download and upload rate over all non-freeriders, over all free-riders,
and over all users of the system, as a function of PFR

tkn . The horizontal line in
Figure 1(i) represents the expected download rate of a user in the original system.
(Clearly, in the original system E[Rdown] = E[Rdown|FR] = E[Rdown|NF].)
The horizontal line in Figure 1(ii) represents the expected upload rate of a non-
freerider in the original system. (Recall that in this system E[Rup|FR] = 0.)

It is clear from the plots that analytical and simulation results match. Fur-
ther, we can make several interesting observations. First, notice that as PFR

tkn

increases, the download rate for both classes of users first increases and then
starts decreasing until it reaches the value of the original system. Second, ob-
serve that while the upload rate of free-riders behaves in a similar manner, the
upload rate of non-freeriders continuously increases until it reaches its original
value. Based on these observations we divide the plots into three regions. The

0 20 40 60 80 100
0

5

10

15

20

25

30

35

40

45

50

P
tkn
FR (%)

D
ow

nl
oa

d
R

at
e

(D
ow

nl
oa

ds
 /

10
00

 s
ec

)

E[R
down

|NF] (Theoretical)

E[R
down

|NF] (Simulation)

E[R
down

|FR (Theoretical)

E[R
down

|FR] (Simulation)

E[R
down

] (System with Tokens-Theoretical)

E[R
down

] (System with Tokens-Simulation)

E[R
down

] (Original System)

P
tkn
FR=0.55P

tkn
FR=0.32

P
tkn
FR=0.45

0 20 40 60 80 100
0

50

100

150

P
tkn
FR (%)

U
pl

oa
d

R
at

e
(U

pl
oa

ds
 /

10
00

 s
ec

)

E[R
up

|NF] (Theoretical)

E[R
up

|NF] (Simulation)

E[R
up

|FR (Theoretical)

E[R
up

|FR] (Simulation)

E[R
up

] (System with tokens-Theoretical)

E[R
up

] (System with Tokens-Simulation)

E[R
up

] (Original System)

P
tkn
FR=0.32

P
tkn
FR=0.55

(i) (ii)

Fig. 1. (i) User’s expected download rate, and (ii) user’s expected upload rate

602 W.-C. Liao, F. Papadopoulos, and K. Psounis

first region corresponds to PFR
tkn < 0.32. In this region, both classes of peers are

constrained to a lower download rate compared to the original system, since the
probability of having tokens to initiate a new download after a successful query
is pretty low. Notice that for PFR

tkn = 0.32, and hence for PNF
tkn = 0.47 < 1,

cooperative users can at least sustain the same download rate they had in the
original system. The second region corresponds to 0.32 ≤ PFR

tkn ≤ 0.55. In this
region, users accumulate tokens at a higher rate than before. Since there are
more responses than in the original network, users can use the extra tokens to
initiate more downloads. Notice that cooperative users earn tokens faster than
free-riders since they always respond to query requests. At PFR

tkn = 0.55, non-
freeriders achieve their maximum download rate, which is approximately twice
the one they had in the original system. Finally, the third region corresponds
to 0.55 < PFR

tkn ≤ 1. In this region free-riders accumulate tokens faster than
before and reduce their query response rate since they do not need to provide
as many uploads as before. This causes cooperative users to handle more up-
loads. Futher, since the query response rate regulates the download rate, the
latter also decreases. At PFR

tkn = 1, the two systems have approximately the
same performance, as expected.

Impact on Delays. Figures 2(i) and 2(ii) show respectively the average query
response time (that includes retransmissions) and the average download delay as
a function of PFR

tkn . The plots can be divided in the same three regions as before.
For PFR

tkn < 0.32, the low user download rate imposes a low load into the network.
This yields the low delays. For 0.32 ≤ PFR

tkn ≤ 0.55, as the user download rate
increases, the load in the network and hence the delays also increase. Note that
the query and download delays are still significantly smaller than in the original
system, despite that the download rate, and hence the load, is higher. This is
because a significant portion of the load is now handled by the free-riders. For
0.55 < PFR

tkn ≤ 1 the delays continue to increase even though the download rate
decreases. This is because free-riders provide fewer and fewer uploads. As PFR

tkn

0 20 40 60 80 100
0

50

100

150

P
tkn
FR (%)

A
ve

ra
ge

 Q
ue

ry
 R

es
po

ns
e

T
im

e
(S

ec
on

ds
)

System with Tokens
Original System

P
tkn
FR=0.32

P
tkn
FR=0.55

0 20 40 60 80 100
0

50

100

150

200

250

P
tkn
FR (%)

A
ve

ra
ge

d
F

ile
 D

ow
nl

oa
d

D
el

ay
 (

S
ec

on
ds

)

System with Tokens
Original System

P
tkn
FR=0.32

P
tkn
FR=0.55

(i) (ii)

Fig. 2. (i) Average query response time, and (ii) average file download delay

An Efficient Algorithm for Resource Sharing in Peer-to-Peer Networks 603

approaches 1, the performance of the two systems is approximately the same. To
fairly compare the delays between the two systems, we should consider the case
where the load is the same, i.e. where E[Rdown] = 22 downloads/1000sec. This
value corresponds to PFR

tkn = 0.45, and as we can see from the plots this corre-
sponds to approximately one order of magnitude lower query and file download
delays. This is a gigantic amount of improvement on the system’s performance.

As a final note, the best operating region is the second, where 0.32 ≤ PFR
tkn ≤

0.55. In this region, we can either choose to operate the system at PFR
tkn =

0.32, where cooperative users can sustain the same download demands as in
the original system, or sacrifice a bit from the performance improvement with
respect to reduced delays to support higher user demands.

6 Implementing the Scheme

As mentioned before, this scheme can be implemented either locally or non-
locally. Implementing this scheme locally is quite simple. The local P2P client
takes care of bookkeeping by increasing the user’s tokens for each acknowledged
byte he/she uploads and for being online, and by decreasing the tokens for each
byte the user downloads. However as we have already mentioned, this approach
is quite vulnerable to hacked clients.

There are several directions for making the hacking of localized solutions
hard. One can utilize encryption techniques e.g. [26] that make unauthorized
modifications to data (such as the scheme’s parameters) hard. In addition, one
can also use technologies like DRM (Digital Rights Management) in order to
protect the entire client’s code from being altered e.g. [27], and re-distribute
new clients frequently in order to minimize the number of hacked clients that
can be connected to the network. Further, one could also employ techniques such
as tamper-proofing and self-checking in order to verify the client’s code integrity
during the join process and/or on every download request e.g. [28, 29, 30, 31]. Of
course, the only way to guarantee that all P2P clients are original is to have
a trusted platform where both the hardware and the operating system can be
trusted [32]. This is clearly not an option in practice. However, interestingly
enough, both theory and simulations dictate that our scheme is quite resilient
to a small number of hacked clients. In particular, the system performance is
virtually unchanged when the hackers comprise less than 10% [19]. Hence, all
one needs to do is to make it hard for users to use hacked clients.

The scheme can be also implemented in a secure non-localized centralized
manner, where peers exchange messages with a centralized trusted authority that
updates and maintains their amount of tokens. Peers would communicate with
the centralized authority once they finish downloading to report the source node
and the file size, periodically while being online, and to get permission to initiate
a new download. This is similar to the main idea that many centralized “cash-
based” systems, e.g [3, 4], follow. Finally, the scheme can be also implemented
in a secure non-localized decentralized manner, e.g. by utilizing the framework
suggested in [6].

604 W.-C. Liao, F. Papadopoulos, and K. Psounis

7 Conclusion

In this paper we studied a simple algorithm that provides strong incentives for
cooperation in file sharing P2P networks. We derived a mathematical model that
describes the system’s dynamics and which can be used for parameter tuning
and performance prediction. We demonstrated the effectiveness of the algorithm
via experiments with TCP networks. Future work consists of performing larger
scale experiments, implementing the scheme in an operational P2P network, and
extending our analytical methodology to compute other important performance
metrics, e.g. the improvement on the expected download delays and response
times.

References

1. E. Adar and B. Huberman, “Free riding on gnutella,” http://www.
firstmonday.dk/issues/issue5 10/adar, October 2000 (accessed Aug. 2005).

2. D. Hughes, G. Coulson, and J. Walkerdine, “Free riding on gnutella revisited: the
Bell Tolls?,” IEEE Distributed Systems Online Journal, vol. 6, no. 6, June 2005.

3. “Mojonnation,” http://www.mojonation.net/Mojonation.html (accessed Aug.
2005).

4. J. Ioannidis, S. Ioannidis, A. Keromytis, and V. Prevelakis, “Fileteller. paying and
getting paid for file storage,” in Proc. of 6th International Conference on Financial
Cryptography, March 2002.

5. S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “EigenRep: Reputation
management in P2P networks,” in Proc. of 12th International World Wide Web
Conference (WWW 2003), May 2003.

6. V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer, “KARMA: A secure eco-
nomic framework for P2P resource sharing,” in 1st Workshop on Economics of
Peer-to-Peer Systems, June 2003.

7. C. Buragohain, D. Agrawal, and S. Suri, “A game-theoretic framework for in-
centives in P2P systems,” in Proc. of International Conference on Peer-to-Peer
Computing, Sep 2003.

8. L. Ramaswanmy and L. Liu, “Free-riding: A new challenge to peer-to-peer file
sharing systems,” in Proc. of the 36th Hawaii international conference on system
sciences, 2003.

9. M. Feldman, C. Papadimitriou, I. Stoica, and J. Chuang., “Free-riding and white-
washing in Peer-toPeer systems,” in SIGCOMM Workshop, 2004.

10. “KaZaA participation level,” http://www.kazaa.com/us/help/glossary/
participation ratio.htm (accessed Aug. 2005).

11. “The emule project,” http://www.emule-project.net/ (accessed Aug. 2005).
12. “KaZaA media desktop,” http://www.kazaa.com/ (accessed Aug. 2005).
13. “Bittorrent,” http://www.bittorrent.com/protocol.html (accessed Aug. 2005).
14. H. Bretzke and J. Vassileva, “Motivating cooperation in peer to peer networks,”

in Proc. of User Modeling UM03, June 2003.
15. “Hack KaZaA participation level,” http://www.davesplanet.net/kazaa/ (ac-

cessed Aug. 2005).
16. K. Anagnostakis and M. Greenwald, “Exchanged-based incentive mechanisms for

peer-to-peer file sharing,” in Proc. of 24th International Conference on Distributed
Computing Systems, 2004.

http://www.firstmonday.dk/issues/issue5_10/adar
http://www.firstmonday.dk/issues/issue5_10/adar
http://www.mojonation.net/Mojonation.html
http://www.kazaa.com/us/help/glossary/participation_ratio.htm
http://www.kazaa.com/us/help/glossary/participation_ratio.htm
http://www.emule-project.net/
http://www.kazaa.com/
http://www.bittorrent.com/protocol.html
http://www.davesplanet.net/kazaa/

An Efficient Algorithm for Resource Sharing in Peer-to-Peer Networks 605

17. R. Bhagwan, S. Savage, and G. M. Voelker, “Understanding availability,” in Proc.
of 2nd IPTPS, 2003.

18. R. Durrett, Probability: Theory and Examples, Duxbury Press, 2nd edition, 1996.
19. W.-C. Liao, F. Papadopoulos, and K. Psounis, “An efficient algorithm for re-

source sharing in peer-to-peer networks,” Tech. Rep. CENG-2005-15, University
of Southern California, 2005.

20. S. Saroiu, K. P. Gummadi, R. J. Dunn, S.D. Gribble, and H. M. Levy, “An analysis
of internet content delivery systems,” in Proc. of the Fifth Symposium on Operating
System Design and Implementation (OSDI), December 2002.

21. J. Chu, K. Labonte, and B. N. Levine, “Availability and locality measurements of
peer-to-peer file sharing systems,” in Proc. of SPIEITCom: Scalability and Traffic
Control in IP Networks, July 2002.

22. Mostafa Amar Qi He, “Congestion control and massage loss in gnutella networks,”
in Proc. of Multimedia Computing and Networking, 2004.

23. “Packet-level Peer-to-Peer Simulation Framework and GnutellaSim,”
http://www.cc.gatech.edu/computing/compass/gnutella/ (accessed Oct.
2005).

24. “Network simulator,” http://www.isi.edu/nsnam/ns (accessed Sep. 2005).
25. K. Calvert, M. Doar, and E. W. Zegura, “Modeling internet topology,” IEEE

Communications Magazine, 1997.
26. “Data encryption standard,” http://www.itl.nist.gov/fipspubs/fip46-2.htm

(accessed Oct. 2005).
27. T. Sander, Security and Privacy in Digital Rights Management, Springer, 1st

Edition, 2002.
28. D. Aucsmith, “Tamper resistant software: An implementation,” in Proc. 1st In-

ternational Information Hiding Workshop, May 1996.
29. H. Chang and M. Atallah, “Protecting software code by guards,” in Proc. of 1st

ACM Workshop on Digital Rights Management, May 2002.
30. Y. Chen, R. Venkatesan, M. Cary, R. Pang, S. Sinha, and M. Jakubowski, “Obliv-

ious hashing: A stealthy software integrity verification primitive,” in Proc. of 5th
International Information Hiding Workshop, October 2002.

31. C.S. Collberg and C. Thomborson, “Watermarking, tamper-proofing, and obfusca-
tion - tools for software protection,” IEEE Transactions on Software Engineering,
vol. 28, no. 6, June 2002.

32. S. W. Smith, Trusted Computing Platforms: Design and Applications, Springer,
1st Edition, 2004.

http://www.cc.gatech.edu/computing/compass/gnutella/
http://www.isi.edu/nsnam/ns
http://www.itl.nist.gov/fipspubs/fip46-2.htm

	Introduction
	Related Work
	A Simple and Effective Algorithm
	A Mathematical Model for the Proposed Scheme
	System Dynamics
	User Download Rate (R_{down})
	User Upload Rate (R_{up})
	Choosing the Right Values for K_{on}, K_{up}, and K_{down}

	Experiments
	Simulation Setup
	Simulation Results

	Implementing the Scheme
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

