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Abstract

The Internet is a large, complex, heterogeneous system
operating at very high speeds and consisting of a large num-
ber of users. Researchers use a suite of tools and tech-
niques in order to understand the performance of networks:
measurements, simulations, and deployments on small to
medium-scale testbeds. This work considers a novel addition
to this suite: a class of methods to scale down the topology
of the Internet that enables researchers to create and observe
a smaller replica, and extrapolate its performance to the ex-
pected performance of the larger Internet.

The key insight that we leverage in this work is that only
the congested links along the path of each flow introduce siz-
able queueing delays and dependencies among flows. Hence,
one might hope that the network properties can be captured
by a topology that consists of the congested links only. We
show that for a network that is shared by TCP flows it is pos-
sible to achieve this kind of performance scaling. We also
show that simulating a scaled topology can be up to two or-
ders of magnitude faster than simulating the original topol-

ogYy.

1. Introduction

Networking research has taken a multi-pronged approach
to understanding the performance of the Internet, and to pre-
dicting its behavior under new algorithms, protocols, archi-
tectures and load conditions. The community focuses on
techniques ranging from analytic modeling, to measurement-
based performance characterizations to simulation studies [3,
4, 5]. This is appropriate given the overwhelming size, com-
plexity, heterogeneity, and the speed of operation of the In-
ternet.

This multi-pronged approach has its limitations. First, the
heterogeneity and complexity of the Internet makes it very
difficult and time consuming to devise realistic traffic mod-
els, and models for the network. Second, for some of the
same reasons, as well as the increasingly large bandwidths in
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the Internet core, it is very hard to obtain accurate and repre-
sentative measurements. Even when such data are available,
it is very expensive to run realistic simulations at meaning-
ful scales since the memory and CPU requirements of such
simulations seem to be well beyond the reach of available
hardware. Of course, there are several approaches to allevi-
ate some of these problems. The volume of measurements
can be reduced by traffic sampling, and researchers attempt
to use “realistic” topology models. However, topology mod-
eling is still in its infancy—realistic models that include no-
tions of capacity and latency are some years away. Further,
from sampled traffic, it is hard to infer the performance of
the original system.

The focus of this work and of its predecessor [1, 2] is the
addition of a new prong—a class of performance-preserving
network downscaling techniques that lets a designer study
the behavior of new services or mechanisms in a large net-
work using a scaled-down version of the network, where the
downscaling is designed to preserve one or more aspects of
the original network.

But what does it mean to design a performance-preserving
network downscaling technique? Consider a large network
(such as that of a backbone ISP), consisting of several hun-
dred nodes and links, and traversed by hundreds of thousands
of flows. Psounis et al. [1, 2] have introduced a method
called SHRiNK ' that preserves some network properties
by creating a slower downscaled version of the original net-
work. Specifically, SHRiNK downscales link capacities (but
not network size) such that, when a sample of the original
set of flows is run on the downscaled network, a variety of
performance metrics, e.g. the packet delay distributions, are
preserved.

But is there more than one instance of a performance-
preserving downscaling technique? Yes. In this work, we
propose two methods to perform ftopological downscaling.
In particular, starting from a complex network, we create a
smaller version of it with fewer links and nodes, observe the
behavior of a sample of the original traffic on this network,
and extrapolate the observed performance back to the origi-

'SHRiNK: Small-scale Hi-fidelity Reproduction of Network Kinetics.
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nal network.

Topological downscaling has three benefits. First, by re-
lying only on a sample of the traffic, it reduces the amount
of data we need to work with. Second, by using samples
of actual traffic, it short-cuts the traffic characterization and
model-building process. Finally, by reducing the number of
links and nodes, it reduces the complexity of the network that
we work with. This, in turn, allows operators to manage ex-
isting networks more efficiently, and researchers to test new
architectures and algorithms in small experimental testbeds
while ensuring the relevance of the results.

This approach also presents challenges. At first sight, it
appears optimistic. For example, it is possible that a group of
flows share some links in the original network but not in the
replica. Hence, the replica may not capture some of the cor-
relations between these flows. However, a more careful look
at the network reveals that it is only the congested links (i.e.
the ones where drops occur) along the path of each flow that
introduce dependencies among flows and sizeable queueing
delays [6, 7, 8, 9, 10, 11]. Hence, one might hope that the
network properties can be captured by a topology that con-
sists of the congested links only. The very small number of
congested links along the path of a flow makes this approach
quite effective in reducing the size of the network that one
works with.

We have applied our approach in the topology of the
CENIC backbone [12] and have successfully predicted queue
and flow statistics of the original network from the small
replica with very high accuracy. The accuracy of the ap-
proach does not depend on the load conditions, the active
queue management schemes used, etc. The approach can be
automated, that is, given the original topology and traffic,
a tool can easily create the scaled network, run simulations,
and extrapolate the performance of the original network from
the simulation results. And simulating the scaled topology
can be up to two orders of magnitude faster than simulating
the original topology.

The rest of this paper is organized as follows: Section 2
briefly discusses prior work on scaling down networks. Sec-
tion 3 introduces the proposed methods and applies them to
simple topologies and to realistic topologies where multi-
ple congested links exist (CENIC backbone [12]). Extensive
simulation results are presented in Section 4. It is shown
that a variety of metrics, including packet queueing delays,
end-to-end flow delays, number of active flows, etc. can be
predicted from the replica. Finally, Section 5 presents the
savings - in terms of the time needed to run an experiment
- from the usage of these methods, and Section 6 concludes
the paper.

2. Prior work

Psounis et al [1, 2] introduced a method called SHRiINK
that creates a slower version of the original network. The
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main steps in the creation of the replica are to reduce link
capacities, increase propagation delays, and reduce the traffic
arrival rate by sampling incoming flows.

The main results of this work are the following [1, 2, 13]:
(i) For networks in which flows arrive at random times and
whose sizes are heavy-tailed, performance measures such as
the distribution of the number of active flows and of their
normalized transfer times are left virtually unchanged. (ii)
For networks which carry long-lived TCP-like flows arriving
in clusters, and which are controlled by a variety of active
queue management schemes, a slightly different scaling to
the previous one leaves the queueing delay and drop prob-
ability unchanged as a function of time. However, as men-
tioned before, this class of work has not considered down-
scaling the size of the topology.

There have been very few studies of the question of
whether one can reduce the topology of a network without
losing important network properties, e.g. [14]. These studies
have used graph properties as metrics to judge the quality of
the scaling. For example, they have used metrics like the av-
erage degree of a graph, the clustering coefficient [15], or the
degree exponent [16]. Our approach towards scaling down
the topology of a network is very different. The goal is to
be able to predict the performance of the original network
from the scaled network. Like Psounis et al. [1], we want to
be able to predict flow transfer times, packet delays, queue
sizes, and so on.

Another line of research that is relevant to our work at-
tempts to replace time consuming packet-level simulations
by modelling. Bohacek et al. [17] propose a hybrid mod-
elling framework that uses averaging of discrete variables
over short time intervals, and can accurately predict network
behavior faster than packet-level simulations. Liu et al. [18]
extend the fluid models introduced in [19] to be topology-
aware, take into account congested links only, and accurately
predict network dynamics by solving the fluid models. They
show that this takes less time than packet-level simulations,
especially when workloads and bandwidths are high. Our
work does not attempt to replace packet-level simulations
with faster methods, but rather to run them in smaller net-
works with fewer traffic, which results in faster execution
times. Further, the question of whether network topology
can be scaled while preserving performance is interesting in
its own right.

3. Scaling down network topology

In this section we present two methods for scaling down
the topology of a network while preserving its performance.
The methods operate on a given topology and need to know
the traffic matrix (i.e. source/destination pairs and corre-
sponding rates), the paths followed by network flows, and
the links that are congested. Under both methods, the down-
scaled versions consist only of congested links from the orig-
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Figure 1. Original network topology.

inal topology. The first method, called DSCALEd (down-
scale using delays), accounts for the missing uncongested
links by adding appropriate fixed delays to all packets. The
second method, called DSCALEs (downscale using sam-
pling), accounts for the missing links by sampling flows and
properly adjusting the capacities and propagation delays of
the replica network.

We argue that ignoring uncongested links does not result
in a loss of information about the original network. This is
based on the following two observations: (i) the packet ar-
rival process is almost the same before and after an uncon-
gested link, and (ii) queueing delays due to uncongested links
do not have a significant contribution to end-to-end packet
delays. These observations are used in [11], where a scheme
was proposed for computing the end-to-end queueing delay
through a backbone network, and are validated in detail in
[9]. These are also the observations made in [6], where a
method for modelling the backbone traffic at the flow level
was introduced. Similar results have been derived in [20] for
traffic which observes the Large Deviations Principle, and
were used in [21] to justify that the effective bandwidth of a
flow remains unchanged throughout a network.

We now describe a simple topology used to introduce the
methods. Consider two links in tandem, as shown in Figure
1. There are three routers R/, R2 and R3, and three groups
of flows, grpl, grp2, and grp3. A group of flows comprises
all the flows that follow the same path from the source to the
destination. 2 The link R/-R2 has a speed of C; = 20Mbps
and a propagation delay of P, = 100ms. The link R2-R3
has a speed of C> = 10Mbps and a propagation delay of
P> = 200ms. The buffers on the routers can hold 300 packets
and the AQM scheme is RED with parameters min., = 100,
mazxy, = 250 and averaging parameter w = 0.00005. (Note
that there is nothing special about choosing RED as the AQM
scheme or about choosing this particular set of parameters.
Simulations show that similar results hold if DropTail is used
instead.) Within each group, flows arrive with some rate A;,

2Notice that in accordance with the usual practice [22, 23, 10], packets
are said to belong to the same flow if they have the same source and desti-
nation IP address, and source and destination port number. A flow is “on”
if its packets arrive more frequently than a timeout of some seconds. This
timeout is usually set to something less than 60 seconds.
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Figure 2.
DSCALEd.

Scaled system when using

i = 1,2,3. We vary A\;’s so that the link R2-R3 becomes
congested whereas the link R/-R2 remains uncongested.

Given the network setup shown in Figure 1, we are in-
terested in creating a replica and predicting various perfor-
mance measures on link R2-R3, which is the bottleneck link.
This can be accomplished by using either of the following
two methods.

3.1. DSCALEd: Downscaling using delays

The first method is quite straightforward and can be sum-
marized as follows:

1. Ignore uncongested links and retain all congested links.

2. Groups of flows that traverse congested links in the orig-
inal network, will traverse the corresponding bottleneck
links in the scaled system.

3. Groups of flows that do not traverse bottleneck links are
ignored.

4. Assign to the links of the scaled system, speed and prop-
agation delay values equal to those they have in the orig-
inal network.

5. For every group of flows that had in their original paths
at least one link that is not included in the scaled sys-
tem, add a constant delay factor such that the end-to-end
propagation and transmission delays for each group of
flows is equal to that in the original system.

Let’s apply the method to the network in Figure 1. Since
link RI-R2 is highly uncongested and no drops occur, there
isn’t any interdependence between grpl and grp2 flows.
Moreover, the rate by which grpl packets enter the link R2-
R3 is not affected by the queueing on link R/-R2. Finally,
the only link that has an impact on the total queueing delay
of grp1 flows is the congested link R2-R3. Having the above
comments in mind, we remove link R/-R2 from the origi-
nal topology, and consequently, ignore grp2 flows. Hence,
the scaled system will consist of two groups of flows (grp1,
grp3) and one link, denoted by R2’-R3’, as shown in Figure
2.

To compensate for the absence of link R/-R2 from the
scaled system, a fixed delay d is introduced to each grpl/
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packet. In this example, the value of d equals the sum of
the propagation and transmission delay of link R/-R2. That
is,d = P, + L/C; = 100.416ms, where L = 1040bytes is
the packet size. Notice that a fixed delay like this can be very
easily added to the round trip time of a packet by a simulator.
Remarks: It is straightforward to study uncongested links
using this method. To do so, one only needs to add to the
scaled system the uncongested links of interest, together with
the groups of flows that traverse them.

It is easy to use this method in conjunction with SHRiNK
[1, 2] to produce a smaller and slower replica. After the
smaller replica is produced, one can employ SHRiNK inde-
pendently.

3.2. DSCALEs: Downscaling using sampling

The previous method adds a fixed delay to each packet.
While in Section 5 we argue that this can be done easily,
it is still interesting to investigate if it is possible to avoid
it. With this in mind, we propose a method that preserves
performance by sampling flows and carefully choosing the
capacities and propagation delays of the links of the replica
network. The method can be summarized as follows:

1. Ignore uncongested links and retain all congested links.

2. Groups of flows that traverse congested links in the orig-
inal network, will traverse the corresponding bottleneck
links in the scaled system.

3. Groups of flows that do not traverse bottleneck links are
ignored.

4. Sample each group of flows with different probabilities.
(details described below)

5. Compute the capacities and propagation delays of the
links of the scaled network such that (i) the round trip
times of each group of flows remain unchanged (except
by a constant multiplicative factor), and (ii) the traffic
intensities of the links in the original and scaled network
are equal.

Before describing the method in detail, we make the as-
sumption that the queueing (and tranmission) delay is neg-
ligible in comparison to the fotal end-to-end delay. This
assumption is not unrealistic for IP backbone networks [7].
For example, in [8] it is reported that the average measured
queueing delay on an operational OC-3 link for two data sets
was as low as 70us and 33us respectively. In [9, 10, 11],
it was observed that packets not only experience insignifi-
cant queueing inside a backbone, but also that the jitter is in-
significant and that the link utilizations can reach 80% —90%
before queueing delays begin to exceed several ms. In par-
ticular, in [11], it was shown that a minor excess bandwidth
is needed to support end-to-end queueing delay requirements
as low as 4ms.
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DSCALEs.

In Section 4 we present simulation results for DSCALEs
under the above assumption. However despite this assump-
tion, DSCALE:s can accurately predict metrics averaged over
all groups of flows even when queueing delays are large. This
is explained and demonstrated in [30].

Now, let’s describe the method in detail. In the original
topology (Figure 1), the link R2-R3 is traversed by two group
of flows: grpl and grp3. A packet of a flow that belongs to
grpl will experience a (one-way) average end-to-end latency,
equal to the sum of its queueing, transmission, and propaga-
tion delays. Thus, the total average latency from the source
to the destination of a grp/ packet equals
where ¢; and ¢» are the average queue sizes (measured in
number of packets, not counting the packet being transmit-
ted) for the queues R/-R2 and R2-R3 respectively, and L is
the packet size. Similarly, the end-to-end average latency of
a grp3 packet equals qéf + C% + P,. Assuming that the
queueing and transmission delays are negligible in compar-
ison to the propagation delays, the round-trip time for grpl/
flows is approximately equal to:

RTT, =2(P, + P»). 2)
Similarly, for grp3 flows we have:
RTT5; =2P,. 3)

For the same reasons as before, we remove link R/-R2
from the original topology, and consequently, ignore grp2
flows. The scaled system will consist of two groups of flows
(grpl, grp3) and one link, denoted by R2’-R3’. Let C’ be the
capacity and P’ be the propagation delay of this link.

On the scaled system (shown in Figure 3), the average
one-way end-to-end latency of a packet belonging to either
grpl or grp3 equals qcrl,'“ + % + P’, where ¢ is the average
queue size on the scaled system. Assuming that the queue-
ing and transmission delays are negligible (comparing to the
end-to-end delays) in the scaled system as well, the round-
trip time on this system is RT'T' = 2P'.

Notice that the round-trip time on the scaled system is the
same for both groups of flows. To capture the delay dynam-
ics of both groups, we introduce two constants, a; and as,
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and require that the following two equations hold simultane-
ously:
(PL+ P) =a P, 4)

P2 :(l3P,. (5)

In other words, the round-trip time of grp/ flows is scaled
by a factor of % and the round-trip time of grp3 of flows is
scaled by a factor of ais

This is reminiscent of the situation in [1, 2], where the
authors prove the following downscaling law: If network
flows are sampled with some factor o and fed into a network
replica whose link speeds are multiplied by « and propaga-
tion delays by 1/a, then performance extrapolation is possi-
ble. The main point of the law is to reduce the arrival rate
and hence increase interarrival times via sampling by some
amount, and slow down the network such that the round-trip
time for every flow is increased by the same amount.

The difference here is that the round-trip times are scaled
with different factors depending on the group of flows.
Hence, we sample flows that belong to grp/ with a factor
a1 and flows that belong to grp3 with a factor as, as shown
in Figure 3. Note that sampling only dictates whether a par-
ticular flow is present at the replica network or not. Once a
flow is sampled, its packets traverse the network according
to the TCP and network dynamics of the original or scaled
system.

Let a; + a3 = § for some constant ¢ that we choose such
that a; < 1 and as < 1. (The specific value of this constant
is not important.) Then, this equation together with Equa-
tions (4) and (5) can be solved to find a;, az and P'.

To find C" we require the traffic intensity in the congested
link under study to be the same in the original and the scaled
network. Traffic intensity is proportional to the ratio of the
flow arrival rate over the link capacity. The total arrival rate
of flows on link R2-R3 is A\; + A3. Due to sampling, the total
arrival rate of flows on the scaled system is a3 A} + azAs.
Hence, for traffic intensities to match,

A A
C' = s-Cy, where s = % 6)

Applying the method with 6 = 1 we get a; = 0.6, ag =
0.4, C' = 5Mbps (s = 0.5) and P’ = 500ms.
Remark: It is possible that the location of the congested
links changes over time, e.g. due to changes in load condi-
tions. It is easy to see that this will only result in changes to
the scaled topology and does not affect the applicability of
the methods.

3.3. Multiple bottlenecks

To demonstrate how our methods can be applied in cases
where multiple bottlenecks exist, we consider the topology
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of the CENIC backbone [12]. The part of the CENIC back-
bone that we are interested in, along with link and flow in-
formation, is shown in Figure 4. The traffic matrix is given
in Table 1. Note that for the ease of simulations we divided
all the actual capacities by a factor of 100 *. This does not
interfere with the study of topological scaling. We also mul-
tiplied all the real propagation delays by a the same factor in
order to maintain a same relation between transmission and
propagation delays as in the actual topology.

A

" Cy= 100Mbps

Py = 60ms

€, =25Mbps C3=25Mbps

X___ Py=300ms J

7 Cs=10Mbps
Teac— Pg=9ms iCo !
A drnl) ! >

gipl

v

Figure 4. Part of the CENIC Backbone.

| Group | Network Path |
grpl SDG(dcl)-LAX(dcl)-SAC(dcl)
grp2 SLO(dcl)-LAX(dcl)-SAC(dcl)-SAC(dc2)
grp3 SLO(dc1)-LAX(dc1)-SAC(dcl)-OAK(dc2)
grp4 | SOL(dcl)-SLO(dcl)-LAX(dcl)-SAC(dcl)-COR(dcl)
grps SLO(dcl)-LAX(dcl)-SDG(dcl)

Table 1. Traffic matrix for Figure 4.

The input traffic that we impose forces links SLO-LAX
and LAX-SAC to be congested. We are interested in studying
link LAX-SAC which is traversed by four groups of flows:
grpl, grp2, grp3, and grp4. Since some of the flows that
traverse the congested link of interest, link LAX-SAC, also
traverse the other congested link, link SLO-LAX, the scaled
replica should consist of both links. Otherwise, the scaled
topology will not capture the effect that the congested link
SLO-LAX has on the flows that go through it, and perfor-
mance prediction will be inaccurate. Flows within each
group have exactly the same characteristics as in the sim-
ple topology. The routers use RED, with buffers sizes and
parameters same as before.

Using DSCALEA, we can easily construct the scaled sys-
tem shown in Figure 5. In this Figure, d;, d-, ds, d4 and dj,

3By doing so, the total number of flows required to keep some links
congested throughout the experiment are around half a million. Due to the
static memory allocation that ns uses, the required RAM to run simulations
with more flows is prohibitively large.
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represent the fixed delay values that are added by the simu-
lator to the round-trip time of groups grpl, grp2, grp3, grp4
and grp5 respectively. According to the method, d; must be
equal to the sum of the propagation and transmission delays
of link SDG-LAX, d, must be equal to the sum of these de-
lays on link SAC(dci)-SAC(dc2), and so on. Their values
are d; = 100.3328ms, dy = 30.832ms, d3 = 60.0832ms,
ds = 171.1648ms and d5 = 100.3328ms.

As o
. C,’=25Mb Cy’=25Mb
)“ SLO* P*=160ms LAX'\ P,’=300ms SAC’ _
e >
(a,) \ \

Figure 5. Scaled system with link and flow in-
formation (DSCALEd).

Using DSCALEs, we can construct the scaled system
shown in Figure 6. Let C'1’ be the capacity of link SLO’-
LAX’, C'2' be the capacity of link LAX’-SAC’, and P’ be the
propagation delay of both links.

(15}\45 o 1;\.1

=

s e <~ o
as  SLO COP x| GL P g0

vy

(l4}u4

v v

Figure 6. Scaled system with link and flow in-
formation (DSCALESs).

Following the same methodology as before, we can write
the following set of equations:

Proceedings of the 38th Annual Simulation Symposium (ANSS’05)
1080-241X/05 $20.00 © 2005 IEEE

(P3+P4) = P, (7

(P2 + P3+ P5) = ay(P' + P'), (8)
(P2+ P3+ P7) = a3(P' + P'), C))
(P14 P2+ P3+ P6) = ay(P' + P'), (10)
(P24 P4) = a5 P/, an

5
> ai=5, (12)
i=1

QA2 + a3z + 0udg + a5 s

HRD W VT YIS W (13)
5y = a1 + as e + azds + ag)y (14)
AL+ X+ A3+ My ’
Cl=s-C2, (15)
Cl = sy-C3. (16)

Equations (7)...(11) correspond to groups of flows
grpl...grp5. Equations (13)...(16) ensure that the traffic in-
tensity on the two congested links is the same in the orig-
inal and scaled network. All the equations together com-
prise a system of ten equations and ten unknowns (a;...as,
C1l', C2', s1, s9, and P'). We solve the system using § = 3
and get: a; = 0.81, as = 0.49, a3 = 0.53, ay = 0.64,
as = 0.53, C] = 13.6875Mbps, C2' = 15.4375Mbps and
P' = 493.34ms.

In general, if we have N groups of flows that traverse K
bottleneck links in total, we can always write a set of N +
2K + 1 equations with N + 2K + 1 unknowns.

4. Simulation results

In this section we use ns-2 [24] to investigate whether our
methods can accurately predict the performance of IP net-
works from scaled-down replicas. We work with the simula-
tion setups shown in Figures 1 and 4.

A word on network traffic properties is in order. It has
been shown that the size distribution of flows on the Internet
is heavy-tailed [25]. Hence, Internet traffic consists of a large
fraction of short flows, and a small fraction of long flows that
carry most of the traffic. Also, it has been recently argued
that since network sessions arrive as a Poisson process [26,
27,2814, network flows are as if they were Poisson [29]. (In
particular, the equilibrium distribution of the number of flows
in progress is as if flows arrive as a Poisson process.) We
have taken these observations into account and considered
heavy-tail distributed, Poisson flows.

We use the ns-2 built-in routines to generate sessions con-
sisting of a single object each. This is what we call a flow

4That network sessions are Poisson is not surprising since a Poisson pro-
cess is known to result from the superposition of a large number of indepen-
dent user processes.
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in the simulations. Each flow consists of a Pareto-distributed
number of packets, with an average size of 12 packets and a
shape parameter equal to 1.2.
4.1 Simple topology experiments

We begin by using DSCALEd to show that a number of
performance measures of the original network depicted in
Figure 1 can be predicted by the scaled replica depicted in
Figure 2. (Recall that d = 100.416ms.) In particular, we
compare the distribution of the number of active flows, the
histogram of the flow transfer times (delays) and the distri-
bution of the queue length in front of link R2-R3 of the orig-
inal topology and link R2’-R3’ of the scaled topology. The
flow arrival rates are the same within each group and equal
50 flows/sec. The results do not depend on whether the rates
are equal or not, as we have verified by simulations.

0.016

riginal System —e—
scaled system -4
0.014
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0.01
0.008
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Probability of i Packets in Queue
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scaled system =
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Figure 7. Distribution of (i) the number of active
flows, and (ii) the queue length on the bottle-
neck link. (DSCALEd)

Figure 7(i) plots the distribution of active flows on links
R2-R3 and R2’-R3’. It is evident from the plot that the two
distributions match. Figure 7(ii) plots the distribution of the
queue lengths for the two links. Again, the two distributions
match. Note that the right-most point on the plot gives the
probability that there are more than 250 packets in the queue.
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Figure 8. Histogram of delays of (i) grp!, and
(ii) grp3 flows. (DSCALEd)

Figure 8(i) plots the histogram of the flow transfer times
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(delays) for the flows of grp/, and Figure 8(ii) does the same
for grp3. In both cases, we use delay chunks of 10ms each.
It is evident from the plots that the distribution of the delays
match. The peaks in the delay plot are due to the TCP slow-
start mechanism. The left-most peak corresponds to flows
which send only one packet and face no congestion, the por-
tion of the curve between the first and the second peaks cor-
responds to flows which send only one packet and face con-
gestion (but no drops), the next peak corresponds to flows
which send two packets and face no congestion, and so on.
The right-most point of Figure 8(i) represents the proportion
of flows that belong to grp/ and have a delay of more than
8sec. The right-most point of Figure 8(ii) represents the pro-
portion of flows that belong to grp3 and have a delay of more
than Ssec.

We now proceed to use DSCALESs. Recall that the scaled
replica is shown in Figure 3, where a; = 0.6, a3 = 0.4,
C' = 5Mbps and P’ = 500ms.

A comment on how we sample flows is in order. Be-
cause of the heavy-tailed nature of the traffic, there is a small
number of very large flows that has a large impact on con-
gestion. To guarantee that we sample the correct number of
these flows within each group, we separate flows into large
(elephants) and small (mice) and sample exactly a proportion
a;, t = 1,3, of them.
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Figure 9. Histogram of normalized delays of (i)
grpl, and (ii) grp3 flows. (DSCALES)

The plots of the distribution of active flows and the dis-
tribution of the queue lengths are identical between the two
methods so we don’t show them again. However, under the
second method, the histogram of flow transfer times requires
some normalization. Figure 9(i) plots the histogram of the
normalized flow transfer times (delays) for the flows of grp1,
and Figure 9(ii) does the same for grp3. In both cases, we use
delay chunks of 10ms each, and the normalization is done
as follows: (Normalized Flow Delay) = a; (Delay due to
Propagation Time) + s (Total Queueing Delay), where a;,
¢ = 1, 3, are the sampling ratios and s equals g—;, the ratio of
the capacities of the congested link in the original and scaled
network. While Equations (4) and (5) provide a justification
for the multiplication with the a;’s, there is no rigorous justi-
fication for the use of s. The intuition behind this decision is
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that if average queue sizes are the same in the two systems,
queueing delay is inversely proportional to the link capacity.
Simulations show that this decision yields accurate results.
(Note that from a practical point of view, it is quite easy to
separate in simulations the queueing delay from the rest of
the delay. Hence, it is easy to perform the required normal-
ization.) Returning to the figures, it is evident from the plots
that the distribution of the normalized delays match.

4.2 CENIC backbone experiments

We now present simulation results for the topology shown
in Figure 4, when using either of the proposed methods (the
corresponding scaled systems are shown in Figures 5 and 6).
The flow arrival rates are the same within each group and
equal 70 flows/sec. Because of limitations in space we do not
present results for all the groups of flows. We only present
the flow delay histogram and the distribution of active flows
for grp5. We also present the packet delay histograms for
both links. Similar results hold for the rest of the groups of
flows and for the queue length distributions.

We begin by using DSCALEd. The scaled system is
shown in Figure 5. The fixed delay factors d1...d5 were com-
puted in Section 3.

Figures (10) and (11) represent the simulation results
when using DSCALEd. From the plots we can conclude that
the scaled system produced by DSCALEd can predict the
various performance measures of interest with a high accu-
racy.
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Figure 11. (i) histogram of packet delays on
links SLO-LAX and link SLO’-LAX’, and (ii) his-
togram of packet delays on links LAX-SAC and
link LAX’-SAC’. (DSCALEd)

of a packet over a 25Mbps link). The plots are similar as be-
fore and their explanation is the same. Also, the normaliza-
tion of the flow delays is done in the same manner as before.
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Figure 10. (i) Distribution of number of active
grp5 flows, and (ii) Histogram of delays of grp5
flows. (DSCALEd)

We now move to the second method for which the scaled
system is shown in Figure 6. The values of a4 ...a5, C], C}
and P’ were computed in Section 3. The results are shown
in Figures (12) and (13). The normalization of the packet
queueing delays is done as follows: (Normalized Queueing
Delay) = s; (Queueing Delay), where s;, ¢ = 1, 2, the ratio
of the capacities of the congested links in the original and
scaled network. For the packet delay histograms we use de-
lay chunks of 0.3328ms each (equal to the transmission time
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grp5 flows, and (ii) Histogram of normalized
delays of grp5 flows. (DSCALES)
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and (ii) histogram of normalized packet de-
lays on links LAX-SAC and link LAX’-SAC’.

(DSCALES)

It is obvious from the plots that the scaled system pro-
duced by DSCALEs can accurately predict the various per-
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formance measures of interest.

Due to limitations of space, we do not provide here theo-
retical arguments explaining why our methods work so accu-
rately. For such a discussion, the interested reader is referred
to [30].

5. Performance savings

In this section, we present results which illustrate the ef-
fectiveness of the proposed methods in reducing the compu-
tational requirements of simulations. The metric of interest
is the time needed to run an experiment. (This time should
not be confused with the simulator’s “virtual” time.) For our
experiments we used a 2GHz processor with 3GB memory

(RAM).

| Method | Time(min) |
Original 47
DSCALEs (0 = 1) 15
DSCALEd (a = 1) 42
DSCALEd (a = 0.5) 14
DSCALEd (a = 0.1) 4

Table 2. Simulation time for the simple topol-
ogy.

Table 2 shows how effective our methods are when ap-
plied to the simple tandem topology shown in Figure 1. Sim-
ulating the simple tandem topology with a total of 240000
flows takes 47min, whereas using DSCALEs with § = 1, 5
takes only 15min. For this simple topology, the gain we get
by using DSCALEd is not terribly exciting. To obtain more
impressive savings, we can, of course, scale the system in
time by a factor of & < 1 [1, 2]. When we use an « of 0.1,
the simulation time is only 4 min.

Table 3 shows the effectiveness of our methods when ap-
plied in a somewhat more complex topology like the one
shown in Figure 4. The total number of flows used in this
case was 450000. The corresponding scaled systems are
shown in Figures 5 and 6.

Once again, the gain we get by using either of the methods
is notable. In addition, it is worth noting the computational
savings from DSCALEd even when sampling does not occur
(a=1).

Remarks: It is important to clarify the following about the
nature of the performance savings due to sampling. The met-
rics of interest are distributions. For the observed histograms
to converge to the corresponding distributions, enough events

5According to the method, different values of ¢ will result in different
values of the sampling factors (a;) and hence in a different total number
of flows that are required to simulate the scaled system. This, in turn, will
affect the time needed for the experiment.
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| Method | Time(min) |
Original 815
DSCALEs (0 = 3) 87
DSCALEd (a = 1) 192
DSCALEd (a = 0.5) 81
DSCALEd (o = 0.1) 12

Table 3. Simulation time for the CENIC topol-
ogy.

(e.g. packet arrivals) should occur. Hence, for example, in-
stead of using DSCALEd with a total of N flows and sam-
pling probability c, one might use a total of a/NV flows and
no sampling. Similarly, choosing a smaller value for § un-
der DSCALESs might require a larger initial number of flows
(before sampling) for convergence to occur. The true com-
putational gains of the two methods come from the reduction
of the number of links and nodes. These gains are expected
to increase dramatically as the size of the network increases.
One question about DSCALEd remains unanswered:
What is the complexity of adding a fixed delay to each
packet? The reported simulation times imply that it is in-
significant, but one might argue that as the size of the net-
work increases this might be an issue. In particular, while it
is very easy for a simulator to add a fixed delay to the round
trip time of each packet, classifying each packet in order to
add the proper delay might be computationally expensive if
a very large number of source/destination pairs exist. How-
ever, hashing techniques can be used very efficiently for this
purpose. In a network of n hosts there are at most O(n?)
pairs, and for any meaningful values of n the associated com-
plexity is trivial. For example, from an IP backbone point
of view, the hosts mentioned above correspond to Points of
Presence (POPs), and n is quite small. Indeed, according to
the geographic maps found in [31] n is never more than 70.

6. Conclusion and Future Work

We propose two methods, DSCALEd and DSCALEs, to
scale down an arbitrary network topology that is shared by
TCP-like flows and controlled by various AQM schemes.

Both methods preserve the performance of the original
system. Hence, they can be used to study large networks
via small replicas. We show this via extensive simulations.
For simple theoretical arguments the reader is referred to
[30]. We also show that simulating a replica can be up to
two orders of magnitude faster than simulating the original
network. The computational gains might be even more pro-
nounced for larger topologies than the ones that we study.

For future research we plan to perform experiments with
real network topologies. In addition, we aim to investigate
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optimal ways to achieve topological downscaling, and to
study the applicability of these methods in wireless/ad-hoc
networks. Finally, we plan to create a software tool that takes
as input the original topology and traffic and produces a user-
configurable downscaled network configuration.
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