
Automated SQL Tuning through Trial and (Sometimes)
Error

Herodotos Herodotou
Duke University

hero@cs.duke.edu

Shivnath Babu
Duke University

shivnath@cs.duke.edu

ABSTRACT
SQL tuning—the attempt to improve a poorly-performing
execution plan produced by the database query optimizer—
is a critical aspect of database performance tuning. Ironi-
cally, as commercial databases strive to improve on the man-
ageability front, SQL tuning is becoming more of a black art.
It requires a high level of expertise in areas like (i) query
optimization, run-time execution of query plan operators,
configuration parameter settings, and other database inter-
nals; (ii) identification of missing indexes and other access
structures; (iii) statistics maintained about the data; and
(iv) characteristics of the underlying storage system. Since
database systems, their workloads, and the data that they
manage are not getting any simpler, database users and ad-
ministrators often rely on trial and error for SQL tuning.

In this paper, we take the position that the trial-and-error
(or, experiment-driven) process of SQL tuning can be auto-
mated by the database system in an efficient manner; freeing
the user or administrator from this burden in most cases. A
number of current approaches to SQL tuning indeed take
an experiment-driven approach. We are prototyping a tool,
called zTuned, that automates experiment-driven SQL tun-
ing. This paper describes the design choices in zTuned to
address three nontrivial issues: (i) how is the SQL tuning
logic integrated with the regular query optimizer, (ii) how to
plan the experiments to conduct so that a satisfactory (new)
plan can be found quickly, and (iii) how to conduct exper-
iments with minimal impact on the user-facing production
workload. We conclude with a preliminary empirical eval-
uation and outline promising new directions in automated
SQL tuning.

1. INTRODUCTION
SQL tuning—the attempt to improve a poorly-performing

execution plan produced by the database query optimizer—
is a critical aspect of database performance tuning. The
rapid evolution of processors, storage systems, and data
access patterns are causing estimates from traditional cost

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DBTest’09, June 29, 2009, Providence, Rhode Island, USA.
Copyright 2009 ACM 978-1-60558-706-6/09/06 ...$5.00.

Figure 1: Execution Plans (a) Current (b) Final

models to be increasingly inaccurate, leading to the selection
of suboptimal execution plans by the optimizer. Even when
the database system is well tuned, workloads and business
needs change over time and the system has to be kept in step.
New optimizer statistics, configuration parameter changes,
software upgrades, and hardware changes are among a num-
ber of factors that can cause a query optimizer to change ex-
ecution plans, perhaps with much worse performance than
before [13].

The success of SQL tuning usually depends on the exper-
tise of skilled database administrators (DBAs) or laborious
trial-and-error steps. When called to tune a query, a DBA
may use her experience, intuition, knowledge of the data
being queried, tips from tuning manuals, or even guesses
to complete the task. Initially, the DBA may collect some
monitoring data on the production database in an attempt
to diagnose the problem. However, data collection can in-
crease the load on an already under-performing database,
forcing the DBA to shift to a test database. The DBA’s
usual course of action would be:

1. Create a replica of the production environment on the
test database to ensure that the query optimizer will
select the same execution plan for the offending query.

2. Collect monitoring data to diagnose the problem. This
step includes getting more insight into which plan was
selected by the optimizer and why. The DBA will
probably need to execute the query to collect data
like the estimated and actual input cardinality values
for operators in the plan. For example, suppose the
current execution plan selected by the optimizer for
a poorly-performing query is the one shown in Fig-
ure 1(a). The estimated and actual input cardinality
values are shown for each operator. Based on this data,
the DBA can see that the optimizer underestimated

1

the number of tuples the index nested loop join has to
process—caused, perhaps, by a wrong assumption of
independence between the filters σ1 and σ2.

3. Based on the observations, form hypotheses regarding
potential fixes to the problem. In our example, one
such hypothesis is that replacing the index nested loop
join in Figure 1(a) with a hash join will fix the problem.

4. Do further runs of specific plans or subplans to refine
or confirm the hypotheses. In our example, the DBA
may give hints to the optimizer in order to force it to
select and run a plan with no index nested loop join.

5. Finding a satisfactory fix may require much trial and
error on the DBA’s part. In our example, replacing
the index nested loop join with a hash join may not
solve the full problem. It may be necessary to use
the plan shown in Figure 1(b) which has a different
join order. Once a promising fix is found, a careful
validation has to be done to ensure that the fix will
work on the production system.

1.1 Automated SQL Tuning as an Experiment-
Driven Workflow

Despite advances in individual steps, the above trial-and-
error (or experiment-driven) process is very common, labor
intensive, and requires an extensive knowledge of database
internals. There is a lot to be gained from automating this
process. The entire process can be represented by the work-
flow shown in Figure 2.

Intuitively, an experiment is an action that involves some
cost but brings in useful information (in this case for SQL
tuning). An experiment could be the execution of a par-
ticular query, execution of an alternative plan or a subplan
for the query, costing of a plan using newly observed cardi-
nality values, random sampling from a base table or a join,
and so on. Section 2 gives more examples from commercial
databases of the types of experiments used in SQL tuning.

Query optimizers select plans based on models of query
execution. Even the best models leave parts of reality un-
covered [1]. Thus, conducting experiments to probe reality
is unavoidable in SQL tuning. Quoting researchers from Or-
acle [13]: “it is almost impossible to predict the impact of
such changes on query performance before actually trying
them”. Here, “such changes” refer to actions like updating
the statistics about the data, providing hints to the query
optimizer, changes to the database software or hardware,
and others.

The first and most critical step in the SQL-tuning work-
flow involves generating an experiment design, i.e., a se-
quence of experiments that will lead to a satisfactory execu-
tion plan. The total space of experiments is extremely large
to cover in full. Thus, our goal is to choose a smart ordering
of experiments to conduct in order to reach a satisfactory
plan as fast as possible. This problem is very challenging.
We will discuss how tools from three leading database ven-
dors as well as zTuned address this problem.

Experiments may be run before or after the database
goes into production use. Once the database is in produc-
tion use, experiments can be run on: (i) the production
database running the user-facing workload, (ii) the standby
databases backing up the production database, or (iii) the
test database used by DBAs and developers. Running ex-
periments on the user-facing production database is a risky

Figure 2: Experiment-driven Workflow that ab-
stracts SQL Tuning

proposition unless the impact of experiments can be bounded
or they do not make excessive use of database resources.
Most DBAs will remain fearful of running experiments on
the user-facing database. We have developed a comprehen-
sive new framework (described in detail in [6, 2]) for running
online experiments, by exploiting underutilized resources in
the primary or standby database.

Finally, the output from conducted experiments is pro-
cessed to decide the next step. Analysis of the output could
lead either to a new and satisfactory query execution plan
(thereby completing the tuning task) or to the design of the
next set of experiments.

1.2 Contributions
We make the following contributions in this short paper:
• We formulate the problem of automating SQL tuning us-

ing an experiment-driven approach. Section 2 shows how
current approaches for SQL tuning fit this framework.

• We introduce Explain Plan, a new command in Post-
greSQL that enables physical execution plans for queries
to be costed and executed (if needed). Explain Plan is
discussed in Section 3.

• We develop automated algorithms for planning exper-
iments aimed at improving a poorly-performing query
plan. Section 4 discusses the planning process.

• Section 5 describes zTuned, a system that formalizes and
automates SQL tuning using an experiment-driven ap-
proach. A preliminary empirical evaluation of zTuned is
provided in Section 6.

2. CURRENT APPROACHES
Query execution feedback is a technique used in [4, 5,

12] to improve the quality of plans by correcting cardinality
estimation mistakes made by the query optimizer. LEO’s
approach [12] consists of recording the number of rows pro-
duced by each operator during the execution of a partic-
ular query, and then relaying the new information back
to the query optimizer. The pay-as-you-go framework [4]
proposed more proactive monitoring mechanisms and plan-
modification techniques for gathering additional cardinality
information from a given execution plan. This information
might then lead to the selection of better execution plans
for future queries.

Experiments in [4] and [12] comprise: (i) the recording
of cardinalities for various expressions while query plans are
running, and (ii) running the new plans picked by the opti-
mizer for queries once the recorded cardinalities are incor-
porated into query optimization. All experiments are con-
ducted on the production database system; a limitation of

2

these approaches because of the need to maintain low over-
head on the production system.

A major source of concern for DBAs when using approa-
ches like [4] and [12] is the possible performance regression
of plans for user-facing queries. As shown in [9], incorporat-
ing some actual cardinalities alongside estimated cardinali-
ties can bias conventional query optimizers towards picking
plans whose performance is highly unpredictable. This phe-
nomenon is called “fleeing from knowledge to ignorance” in
[9]. Furthermore, the cardinality of expressions that do not
correspond to a subplan of the current (or slightly modified)
plan cannot be easily obtained through monitoring. In con-
trast, well-designed experiments in zTuned can target the
collection of any desired statistics, and thus explore differ-
ent parts of the execution plan space.

Reference [7] describes some new tuning tools introduced
with Oracle Database 11g. These tools enable the database
to monitor and diagnose itself on an ongoing basis, and alert
the DBA when it finds any problems. The Automatic Tuning
Optimizer is a new mode of the optimizer that is specifically
used during designated maintenance sessions. When run in
this mode, the optimizer generates additional information
through sampling (which forms the experiments in this case)
that can be used during plan selection in the future. Like
zTuned [6, 2], Oracle 11g provides some novel mechanisms to
limit the impact of experiments on the user-facing workload.

The tuning optimizer’s experiment planning process tar-
gets statistics that are considered critical to the selection
of good plans. First, random samples are collected from
the base tables to validate the cardinalities of filter pred-
icates; since cardinality errors early in the execution tree
might propagate up in a very negative way. Given more
time, the tuning optimizer performs random sampling to
validate join cardinalities, starting with two-way joins and
proceeding step-by-step to n-way joins. In addition, Oracle
acknowledges the need to verify the effect of the new infor-
mation collected, and performs experimental validations of
plan performance. zTuned’s overall goals are similar, but
the approach used to explore the space of plans based on
experiments is very different (see Section 4).

3. INTERFACING WITH THE QUERY OP-
TIMIZER

In an attempt to correct the mistakes of the query opti-
mizer, DBAs often need to manually experiment with dif-
ferent execution plans. First, DBAs need to find out the
plan selected by the optimizer along with the cardinality es-
timates that led to the selection. For example, PostgreSQL
has a very useful command, called Explain, that can be used
to display the selected execution plan. The output includes
all operators present in the plan along with other useful in-
formation per operator like: (a) the estimated startup time1

before the first row can be returned, (b) the estimated total
time to return all rows, and (c) the estimated number of
rows returned. The Explain command offers an additional
option, called analyze, that causes the statement to be ex-
ecuted, not only planned. The output then also contains
the actual running times and cardinalities alongside the es-
timated ones—like in Figure 1—which makes it easy to spot
estimation errors.

Query hinting is a mechanism used in most database sys-

1Time is measured in terms of disk page fetches

tems to enable DBAs to influence the choice of query execu-
tion plans. However, this support comes in different forms.
PostgreSQL has a coarse hinting mechanism [11] that lim-
its experienced DBAs from fine-tuning a poorly-performing
query. All hints are in terms of enabling or disabling par-
ticular operators. For example, setting the parameter en-
able hashjoin to false would disable the use of hash joins in
a particular query. Hence, for a plan with two hash joins,
there is no way to force one join to be a merge join and the
other join to remain a hash join.

The hinting mechanism in SQL Server is more flexible
since it includes support for specifying an access path for
a table (e.g., to force an index scan on the table) and also
the ability to force a join order for all tables that appear
in the query [10]. However, it has the same problem with
join specification as PostgreSQL. It is worth noting some
very recent work on query hinting, called Power Hints [3],
that targets a generic hinting framework. Oracle hints [7]
can specify the first join to be used in the execution plan as
well as the join operator to be used for a particular pair of
tables. Even though Oracle hints can constrain particular
joins, they do not support any finer scopes over an arbitrary
set of tables. IBM DB2 offers a different approach to query
hinting through the creation of a particular table called
PLAN TABLE [8]. Hints are given to the query optimizer in
the form of SQL queries over the PLAN TABLE, and can be
used at the scope of a subquery. Hints in Sybase Adaptive
Server Enterprise [1] are specified through Abstract Plans
that implement a physical-level relational algebra.

The Explain command and query hints allow DBAs to
reason at the level of queries. However, SQL tuning also
requires DBAs to reason at the level of plans. Based on the
insight they acquire, DBAs need the ability to execute alter-
native plans in an easy way. The current hinting mechanism
in PostgreSQL is inadequate for this purpose. In order to
alleviate this problem, we developed a new command called
Explain Plan. This command is similar to the Explain com-
mand, but the input also includes a string representation of
a query execution plan. The command can be used for:

• Costing any valid plan for a particular query using the
database cost models and estimated cardinality values.

• Costing a plan while providing some or all cardinal-
ity values as input. For example, if the DBA knows
based on execution history that a join will produce 42
tuples, then she can specify it in the input. This data
will be used instead of the optimizer’s estimates during
costing.

• Executing a plan to compare estimated and actual run-
ning times and cardinalities for each plan operator.

This command is extremely useful in many situations and
is discussed further in Section 7. In addition, it is used by
our automated SQL tuning tool for conducting experiments
as described in Section 5.

4. PLAN SPACE EXPLORATION
The Explain Plan command can be used to fully specify

an execution plan for a particular query, and then cost it
or execute it. The next step is to find a way to generate
alternative plans in a structured and systematic way. Our
goals here are twofold. First, when we generate plans that

3

Figure 3: Execution Plans (a) Original (b) Same Neighborhood (c) Different Neighborhood

are similar to each other and cost them, we want to maxi-
mize the use of all available information. Second, we want
the ability to generate plans that are very different from the
current plan, in order to explore different parts of the plan
space.

Consider the plan shown in Figure 3(a). The numbers
above each operator are the number of tuples produced by
the operator, i.e., the cardinality for that operator. Having
these values allows us to use the database cost models to
accurately estimate the cost of each operator. For example,
in order to calculate the cost of a hash join, we would use
the cardinalities of the two child operators. If the hash join
is changed to a merge join to generate a new plan, then we
can cost this new plan accurately as well since we know all
the cardinalities required.

We call the set of cardinality values that are needed for
costing a particular plan the Cardinality Set of that plan.
We then define the Plan Neighborhood as the set of all plans
that are associated with the same cardinality set. In more
practical terms, two plans belong in the same neighborhood
if when we know the cardinalities for all operators in the
first plan, we can induce the cardinalities for all operators
in the second plan. This allows us to maximize the use of
the cardinality values we have obtained from running a single
plan P , as we can use these cardinalities to cost all plans in
P ’s neighborhood.

Consider the plans shown in Figure 3 and assume they
are all valid for the same query. The first two plans belong
to the same neighborhood since if we had the cardinalities
from the plan in Figure 3(a), we would know exactly what
the cardinalities are for the plan in Figure 3(b). Even though
the plans use different operators to join tables T1 and T2,
the number of output tuples produced will be the same.

Comparing the two plans from Figures 3(a) and 3(c), we
see that the only change is in the join order of tables T2 and
T3. However, this change causes the plan in Figure 3(c) to
belong to a different neighborhood. Given the cardinality
estimates from the plan in Figure 3(a), we can induce the
cardinalities for all the scans and the upper join, but we
cannot draw any conclusions about the cardinality of the
join over tables T1 and T3.

Given a particular execution plan P , we need a mecha-
nism to generate a set of different plans that belong to the
same neighborhood as P . For this purpose, we created a set
of transformation rules which we call intra-transformations.
These are operator transformations that can be applied to
a single node in the operator tree, in order to generate a
different execution plan within the same neighborhood.

Three general categories of intra-transformations have been

identified: (a) the Scan Operator Transformations are used
to transform a particular scan operator to a different one
(e.g., transform a sequential scan into an index scan); (b)
the Join Operator Transformations are used to transform a
particular join operator to a different one (e.g., transform a
hash join into a merge join); and, (c) the Single Join Or-
der Transformations swap the order of the outer and inner
subplans of a particular join (e.g., transform A ./ B into
B ./ A, where A and B represent subplans).

Intra-transformations are used to generate plans within
a particular neighborhood. However, in order to explore
the full plan space, we also need to generate plans that be-
long to different neighborhoods. For this purpose, we de-
fined a new set of transformation rules which we call inter-
transformations. These are transformations that can be ap-
plied across multiple operators, and produce execution plans
that belong to different neighborhoods.

Inter-transformations affect the structure of the execution
plan and thus can produce logically-equivalent plans that
are very different from the original plan. In particular, we
consider join order changes across multiple joins. For ex-
ample, a join sequence ((A ./ B) ./ C) can be transformed
into (A ./ (B ./ C)) to produce a new execution plan that
belongs to a different neighborhood.

5. ZTUNED: AUTOMATED SQL TUNING
zTuned is a system that formalizes and automates the pro-

cess of SQL tuning using an experiment-driven approach. It
has the ability to generate different yet equivalent execution
plans using a combination of intra- and inter-transformations,
and then find a better execution plan through a smart ex-
ploration of the plan space.

Initially, zTuned collects the necessary statistics from the
execution history that affect the poorly-performing query we
are asked to tune. These statistics include past execution
times as well as actual cardinalities for each operator. If
this information is not available, zTuned will first execute
the offending query.

After obtaining the execution plan selected by the query
optimizer, zTuned will explore the plan’s neighborhood. As
described in Section 4, all plans in the same neighborhood
can utilize the same cardinality estimates for all their opera-
tors. Hence, zTuned uses the costing engine of the database
(through the Explain Plan command from Section 3) to es-
timate the execution cost of each plan it generates, and com-
pares them in order to select the best execution plan in the
neighborhood.

Even though a plan neighborhood consists of plans with
similar structure, its size could be very large. Hence, it is

4

Query Run Time Run Time Run Time Percent Tuning Number of
of Optimal of Optimizer of zTuned Improvement Time Plans
Plan (sec) Plan (sec) Plan (sec) over Optimizer (sec) Explored

7 0.90 6.65 0.90 86.51 67.03 630
8 - 31.59 30.24 4.28 329.88 4000
9 - 224.88 95.28 57.63 884.92 7800
10 37.61 42.86 38.23 10.81 131.73 190
11 2.28 3.69 2.30 37.71 13.10 48
21 32.14 43.36 34.38 20.71 81.25 188

Table 1: Tuning Results for TPC-H Queries

also important to explore the plans in a single neighborhood
in a systematic way. We order the operators in the current
plan P in decreasing order based on the difference between
the estimated and actual cost of each operator. A ranked
list of plans within the same neighborhood as P is then
generated by applying intra-transformations subject to this
operator order. Operators with higher difference in cost are
more likely to be the cause of the problem since they are an
indication that the query optimizer has made a significant
costing mistake. Thus, higher ranked plans in the list are
more likely to be better than P than lower ranked plans.

If the above approach does not lead to a better execution
plan, then zTuned will use inter-transformations to generate
plans that belong to different neighborhoods. Again, we
must prioritize the exploration of the other neighborhoods.
We order the neighborhoods based on the estimated cost of
the plans that were generated from the optimizer’s plan.

However, we are no longer able to induce all the cardinal-
ities for the new plans, since they belong in different neigh-
borhoods. Hence, zTuned must execute one or more of these
further-away plans in order to collect the additional cardi-
nalities needed. zTuned executes the “best” plan from each
neighborhood and uses the actual running times to compare
them. Currently, “best” is defined as lowest estimated cost
based on all the cardinality information available so far, but
we are exploring other possibilities.

The plan generation occurs independently from the query
optimizer allowing for a larger and different exploration of
the plan space. In addition, since zTuned works outside the
optimizer, it can potentially be used with any database that
uses a cost-based optimizer and supports the specification of
full execution plans. It is important to note that this process
is similar to what a DBA would perform in order to diagnose
and fix the issue manually. We automated this process in a
way that provides confidence to the DBA that she can trust
the system to perform SQL tuning automatically.

6. EMPIRICAL EVALUATION
The purpose of our preliminary empirical evaluation of

zTuned is twofold. First, we evaluate the effectiveness of
zTuned in finding better execution plans for queries that
perform poorly. Second, we provide an interesting study of
the effects of skewed data on the performance of both the
regular query optimizer and zTuned.

Our experiments were run on a VMware Virtual Machine
running Ubuntu Linux 8.10, with an Intel Core Duo 2.53GHz
CPU and 1GB of RAM memory. The database server used
was PostgreSQL 8.3.4. We used the TPC-H Benchmark2

with a scale factor of 1. We used an index advisor to produce

2TPC-H is a decision support benchmark composed of
queries that simulate business-intelligence workloads

indexes for the TPC-H workload and used default values for
all PostgreSQL configuration parameters. We ensured that
statistics about the data were up to date.

The Explain Plan command was implemented as an in-
ternal command in PostgreSQL and was written in C. As
a result, some core PostgreSQL code was modified. zTuned
is currently implemented as a stand-alone Java application
separate from the database.

6.1 Evaluation of Effectiveness
The first set of experiments targets the ability and effi-

ciency of zTuned to find better execution plans for poorly-
performing queries. For this purpose, we selected some
TPC-H queries and executed all possible execution plans
for these queries in PostgreSQL. The true optimal plan is
the one that executes in the least amount of time. The re-
sults are shown in Table 1. We note that in all cases, zTuned
was able to find a plan that was either the true optimal plan
(which was found through exhaustive search) or was much
closer to the true optimal plan compared to the plan picked
originally by the query optimizer.

Furthermore, we generated a large set of TPC-H queries
and tuned them using zTuned. All queries were run three
times and we report average times. Table 1 provides de-
tailed results for 6 queries. The percentage improvement
that zTuned can offer varies greatly depending on the query.
In general, larger queries see more improvement than smaller
queries since there is a higher chance that the query opti-
mizer makes mistakes. On average, zTuned is able to gen-
erate a plan with a 30% performance improvement over the
plan selected by the query optimizer, and in some cases even
up to 86% improvement.

The total number of plans explored in each tuning session
also varies greatly. It is directly related to the number of
tables accessed by the query. For instance, TPC-H queries
8 and 9 involve joins over 6 tables, and we see that zTuned
explores 4000 and 7800 plans respectively. On the other
hand, TPC-H query 12 consists of a single join over two
tables, and the number of possible plans is just 12. Tuning
time is also directly related to the number of plans explored,
as well as to the running time of the plans (experiments).

6.2 Case Study with Skewed Data
By default, the TPC-H benchmark populates the tables

with uniform data. However, real-life datasets routinely
contain data skew. Therefore, we used a popular TPC-H
data generation tool that produces skewed data following a
Zipfian distribution. We created two databases: one with
uniform data and one with skewed data, and explored the
impact of data skew.

Most databases keep track of single table statistics with
the use of histograms, which are usually relatively coarse.

5

Figure 4: Tuning Improvement over Uniform and
Skewed Data

Hence, when the query optimizer needs to calculate cardi-
nality estimates over predicates, it usually resorts to unifor-
mity assumptions. With uniform data, those assumptions
are correct and thus, the query optimizer makes right deci-
sions.

The results from our case study can be seen in Figure 4.
The percentage improvement for queries over skewed data
was larger than that over uniform data; which is to be ex-
pected. Over uniform data, the cardinality estimates of the
query optimizer were relatively close to the actual cardi-
nalities, and hence it made better plan choices. In some
cases, zTuned was in agreement with the query optimizer
as to which plan is better, and in other cases the plan it
found was marginally better. However, over skewed data,
the query optimizer was making more mistakes on cardinal-
ity estimations, which led to many suboptimal plans. In
these cases, zTuned was able to find much better plans.

7. DISCUSSION
The experiment-driven approach and the mechanisms de-

scribed in this paper can be generalized and used in other
contexts. Specifically, the ability of Explain Plan to specify
the expected number of tuples produced from each operator
is useful in many situations and allows for a much deeper
analysis of database internals during SQL tuning. For in-
stance, suppose the DBA has several plans in mind to exper-
iment with. Without the cardinality feature, she would have
to use the analyze option (Section 3) to run each plan, which
might be very time consuming for large queries. Instead, she
can now use Explain Plan to compare their estimated costs
based on actual cardinalities per operator. She can quickly
prune the space of plans she was considering initially, and
use the analyze option to run only the most promising plan.

With the cardinality feature, we can additionally test a
query optimizer. We can now ask questions like: if the
query optimizer had perfect information about the flow of
tuples in a logical plan, would it still select the same phys-
ical plan? Such questions would allow us to validate the
accuracy of the cost models used by the database. Cur-
rently, most approaches to SQL tuning assume that the cost
models are accurate and that the main source of mistakes
is inaccurate cardinality estimation. However, the intelli-
gence of new storage systems are causing cost models to be
increasingly inaccurate and not representative of the under-
lying hardware. Hence, it is crucial to devise new techniques
for testing cost models over different storage systems.

The use of experiments for SQL tuning (or any other tun-
ing task) pose a tradeoff between cost and benefit. In order
to get more benefit, we would perhaps need to execute more
experiments. Emerging mechanisms, like cloud computing,
enable the use of experiments on a larger scale. For example,
Amazon’s Elastic Compute Cloud (EC2) provides cheap re-
sources that can be leveraged for experiments. At the same
time, it creates challenging research questions, like how to
get the data into the cloud, and how to leverage parallelism
in this context.

The problem of SQL tuning can now be formulated in a
different way: given a budget (say U.S. $100), how many
queries and how quickly can they be tuned? From Table 1,
we see that tuning 6 queries took about 25 minutes. As-
suming the data is stored on Amazon’s Elastic Block Store
(EBS), the total cost for acquiring an EC2 machine, as well
as transferring and storing data in EBS would be less than
U.S. $1, given current prices. With just a dollar in cost,
zTuned offers an average of 30% improvement for those
queries! In the future, we plan to investigate the promis-
ing potential of cloud computing in SQL tuning, as well as
new ways to perform database tuning in a truly automated
way.

8. REFERENCES
[1] M. Andrei and P. Valduriez. User-Optimizer

Communication using Abstract Plans in Sybase ASE. In
Proc. of the 27th Intl. Conf. on Very Large Data Bases.
ACM, 2001.

[2] S. Babu, N. Borisov, S. Duan, H. Herodotou, and
V. Thummala. Automated Experiment Driven
Management of (Database) Systems. In 12th Workshop on
Hot Topics in Operating Systems (HotOS-XII), Monte
Verita, Switzerland, 2009.

[3] N. Bruno, S. Chaudhuri, and R. Ramamurthy. Power Hints
for Query Optimization. In 25th International Conference
on Data Engineering, Shanghai, China, 2009.

[4] S. Chaudhuri, V. Narasayya, and R. Ramamurthy. A
Pay-As-You-Go Framework for Query Execution Feedback.
In Proc. of the 34th Intl. Conf. on Very Large Data Bases,
pages 1141–1152. VLDB Endowment, 2008.

[5] C. M. Chen and N. Roussopoulos. Adaptive Selectivity
Estimation using Query Feedback. SIGMOD Record,
23(2):161–172, 1994.

[6] S. Duan, V. Thummala, and S. Babu. Tuning Database
Configuration Parameters with iTuned. In Proc. of the 35th
Intl. Conf. on Very Large Data Bases, Lyon, France, 2009.

[7] R. G. Freeman and A. Nanda. Oracle Database 11g New
Features. McGraw-Hill Osborne Media, 2007.

[8] IBM DB2. Giving optimization hints to DB2, 2003.
http://publib.boulder.ibm.com/infocenter/dzichelp/
v2r2/index.jsp?topic=/com.ibm.db2.admin/ p91i375.htm.

[9] V. Markl, P. J. Haas, M. Kutsch, N. Megiddo,
U. Srivastava, and T. M. Tran. Consistent Selectivity
Estimation via Maximum Entropy. VLDB Journal,
16(1):55–76, 2007.

[10] Microsoft Corporation. SQLServer Books Online: Query
hint (transact-sql), 2007. http://technet.microsoft.com
/en-us/library/ms181714.apsx.

[11] PostgreSQL. Tuning Your PostgreSQL Server. http://wiki.
postgresql.org/wiki/Tuning Your PostgreSQL Server.

[12] M. Stillger, G. M. Lohman, V. Markl, and M. Kandil. LEO
- DB2’s Learning Optimizer. In Proc. of the 27th Intl. Conf.
on Very Large Data Bases, pages 19–28, San Francisco,
CA, USA, 2001. Morgan Kaufmann Publishers Inc.

[13] K. Yagoub, P. Belknap, B. Dageville, K. Dias, S. Joshi, and
H. Yu. Oracle’s SQL Performance Analyzer. DEB, 31(1),
2008.

6

