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Abstract
In this position paper, we argue that an important piece of

the system administration puzzle has largely been left un-
touched by researchers. This piece involves mechanisms
and policies to identify as well as collectmissinginstru-
mentation data; the missing data is essential to generate the
knowledge required to address certain administrative tasks
satisfactorily and efficiently. We introduce the paradigm
of experiment-driven managementwhich encapsulates such
mechanisms and policies for a given administrative task.
We outline the benefits that automated experiment-driven
management brings to several long-standing problems in
databases as well as other systems, and identify research
challenges as well as initial solutions.

1 Introduction
The task of administering a large system continues to re-
main notoriously hard. There have been a number of efforts
in recent years to simplify system administration. These
efforts include system-level mechanisms like virtualiza-
tion, computational frameworks like map-reduce, and tools
that leverage statistical machine-learning techniques toan-
alyze instrumentation data collected from systems. In spite
of these efforts, current solutions for administrative tasks
like benchmarking, tuning, troubleshooting, and capacity-
planning remain far from satisfactory.

Let us begin with an example scenario. Figure 1 shows
the typical installation of an enterprise database system that
consists of the production database, one or more standby
databases for high availability, a test database used by
database administrators (DBAs) and developers, and possi-
bly a staging database for staged updates as they are moved
from development to production. Suppose the DBA no-
tices a slowdown of the production database due to some
unknown cause. The DBA may collect some monitoring
data on the production database in an attempt to diagnose
the problem. However, data collection can increase the load
on an already under-performing database; forcing the DBA
to shift to the test database. The DBA’s usual course of ac-
tion would be:
1. Create a replica of the production environment on the

test database.
2. Get more insight into system behavior by performing

runs of the production workload on the test database,
and collecting instrumentation data. Multiple runs may
be required because of system variability.

3. Form hypotheses regarding potential causes of the per-
formance problem. Do further runs under different sys-
tem configurations to refine or confirm these hypothe-
ses. For example, new indexes, statistics about the data,

or resources may be added; hints may be given to the
database query optimizer to force it to choose specific
query execution plans; database configuration parame-
ter settings may be changed; and so on.

4. When a fix is found, possibly after much trial and error,
a careful validation is done to ensure that the fix will
work on the production system. Validation may require
multiple runs to test correctness and stability.

Note that the above process required the DBA to do a num-
ber ofexperiments. Each experiment involved setting up the
system in a desired configuration, running a specific work-
load, and collecting instrumentation data for analysis. Ex-
periments were used (i) to better understand the problem,
(ii) during the search process for finding the fix, and (iii)
for validating that an accurate and stable fix has been found.
We call the overall process an instance ofexperiment-driven
management.

Are experiments really needed in the above scenario?
Quoting researchers from Oracle [9]: “it is almost impos-
sible to predict the impact of such changes on query perfor-
mance before actually trying them.” Here, “such changes”
refer to changes to the database schema (e.g., adding or
dropping indexes), updating the statistics (about the data)
used by the query optimizer to pick plans, changes to
database configuration parameters (e.g., buffer pool sizes),
upgrades to the database software or hardware, and others.

Techniques like performance modeling and machine
learning [3] applied to system instrumentation data can re-
duce the need for experiments. However, experiment-driven
management is and will remain part and parcel of an admin-
istrator’s job in the foreseeable future. There are two pre-
dominant ways in which instrumentation data is generated
from systems today:

• Preproduction testing:Instrumentation data can be col-
lected from runs of the system before it goes into pro-
duction use, e.g., when load/stress tests are done.

• Production-time monitoring:Once the system is in pro-
duction, a variety of products (e.g., HP OpenView, IBM
Tivoli) are available for monitoring performance.

Instrumentation data collected by these methods may not be
representative of the full space of system behavior. We only
get to observe the performance of query plans, query mixes,
and database configurations that were actually used. System
performance is a complex function of a number of factors.
The collected data may quickly become unrepresentative of
system behavior if workload or configuration changes (e.g.,
the mere addition of an index can change the patterns of I/O
that a database issues to the storage system).



Figure 1: Production Database Sys-
tem (DBMS) in an enterprise

Figure 2: Workbench for experiments
Figure 3: Adaptive sampling for
experiment-driven management

1.1 Contributions of this Position Paper
• We observe that experiment-driven management is an

essential part of system administration. The process is
labor-intensive, and hence, expensive in terms of total
cost of system ownership. This domain has largely been
overlooked by researchers, and holds great promise.

• Solutions that partially or fully automate experiment-
driven management has the potential to solve long-
standing problems in system management. We provide
examples from our own work and the work of others.

• We envision experiments being supported as first-class
citizens in database and general systems. We also envi-
sion an ecosystem of tools and a well-founded method-
ology (ideally, a science) that guides how experiments
are designed and conducted. Towards this end, we iden-
tify research challenges and design principles that ad-
dress: how experiments are set up, where/when are ex-
periments run, and which experiments are done.

• We give a case study where automated experiment-
driven management is applied to tune the large number
of configuration parameters in a database system.

2 Role of Experiments in System Management
We begin with a series of examples showing the critical role
of experiments in many aspects of system administration.

Benchmarking: Researchers, developers, and practitioners
devote a lot of time and resources to running experiments
as part of benchmarking, e.g., to get insight into the im-
pact of design choices or workloads, and to evaluate com-
peting products and configurations in the marketplace. An
important benchmarking activity isresponse surface map-
ping (RSM)which involves plotting system performance
over a large space of workloads and/or system configura-
tions. RSM is a powerful tool to evaluate design and cost
tradeoffs, explore the interactions of workloads and sys-
tem choices, and identify interesting points such as optima,
crossover points, break-even points, or the bounds of the
effective operating range for particular design choices.

Figure 4 shows a response surface generated by running a

TPC-H benchmark query in a PostgreSQL database for dif-
ferent settings of theeffectivecachesizeandsharedbuffers
parameters. The value ofeffectivecachesizeis used to de-
termine the chances of a logical I/O hitting in the OS file
cache; so its recommended setting is the size of the OS file
cache.sharedbuffersis PostgreSQL’s buffer cache size. In
reality, this response surface is stochastic since each point
on the surface represents a distribution rather than a deter-
ministic value.

Generating each point in Figure 4 can involve a number
of experiments; so many hours to days of effort can go into
generating such surfaces. In [6], we show that RSM is “low-
hanging fruit” for automated experiment-driven manage-
ment. We developed an automated feedback-driven work-
bench controller that designs and conducts a series of exper-
iments to obtain performance values for a set of test points;
and in particular, for test points selected to approximate a
response surface efficiently and with statistical rigor.

Tuning configuration parameters: Database, application,
and storage servers ship with a large number of config-
uration parameters like buffer pool sizes, number of I/O
daemons, and parameters input to the database query op-
timizer’s cost model. Finding good settings for these pa-
rameters is a challenging task because of the complex ways
in which parameter settings can affect performance, e.g.,
by changing query execution plans or resource usage, or
causing query interactions oragingbehavior like fragmen-
tation. One technique used by administrators to tune con-
figuration parameters is to conduct a series of experiments
where the value of one parameter is varied at a time. Such
“one-parameter-at-a-time” techniques can have undesirable
consequences when significant cross-parameter interactions
exist. We will revisit this problem in Section 4.

Interaction-aware scheduling: The typical workload in a
database system is aquery mixconsisting of queries of dif-
ferent types running concurrently. A queryQ1 that runs
concurrently with another queryQ2 could impactQ2’s per-
formance negatively or positively. The resource demands of
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Figure 4: 2D projection of a response surface for TPC-H
Query 18; Database size = 4GB, Memory = 1GB

Q1 andQ2 could interfere at physical resources like CPU,
L1 or L2 cache, and I/O bandwidth, or at internal resources
like latches, locks, and buffer pools. In such cases, the pres-
ence of more concurrent instances ofQ1 will degradeQ2’s
performance. On the other hand,Q1 may benefitQ2 by
reading data useful forQ2 into the buffer pool. As shown
in [1], a smart query scheduler can exploit knowledge of
inter-query interactions. However, database query optimiz-
ers do not model such interactions due to the complexity
involved. Experiment-driven modeling is more promising:
selected mixes can be scheduled, and the collected data used
to train statistical models. Similar approaches can apply to
scheduling map-reduce and scientific jobs [5].

Troubleshooting: Experiments arise naturally in problem
diagnosis. For example, automated help-desks ask ques-
tions (e.g., did you try rebooting? is the light blinking?)
to customers calling about service problems. These ques-
tions are generated dynamically based on current informa-
tion, and the answers may lead to more questions; until
there is enough information to diagnose the root cause. In
a HotOS 2005 position paper, Goldszmidt et al. advocated
an approach where a machine-learning-based diagnosis tool
intelligently queries a human administrator for extra infor-
mation that can improve diagnosis accuracy. We have had
preliminary success in this direction [2].

Towards the elusive self-tuning database system: The
database community has been working on self-tuning
database systems for almost two decades, and yet no cur-
rent database system can claim to be truly self-tuning.
One possible reason is that when a performance problem
arises, there is a large arsenal of potentialfixesto choose
amongst—reallocating resources like CPU and memory,
changing settings of configuration parameters like buffer
pool sizes, changing the physical design like indexes, or
running tasks like defragmentation and statistics gather-
ing. It is nontrivial to pick the best fix, especially if
the fix is some combination of the above fixes. To
solve this problem, [8] argues that we need advanced
mathematical or statistical models that can map the joint

space of〈workload parameters, state from applying fixes〉
to database performance metrics. More importantly, we
need representative data to train and validate these mod-
els, and to maintain the models in the face of workload,
resource, and configuration changes. Such data can only
come from experiments!

3 Dissecting Experiment-driven Management
Having shown the critical role of experiments in system ad-
ministration, we now attempt to break experiment-driven
management down to its component tasks; which helps in
identifying challenges and initial solutions. For ease of pre-
sentation and concreteness, we will focus on experiments
in database systems. However, the challenges and ideas are
more generally applicable.

3.1 Setting Up an Experiment
Consider the scenario from Section 1 where a DBA needs to
conduct one or more experiments. Setting up these experi-
ments is currently labor-intensive. Automating the tasks in-
volved will be very useful, but it poses research challenges.
For example:
• Ensuring representative workloads:How do we find a

representative workload to use in an experiment? For
example, experiments for troubleshooting a deadlock
may need a workload that preserves the fine-grained in-
terleaving of transactions in the production workload.
However, such a workload may be invalid for experi-
ments in configuration parameter tuning because chang-
ing parameter settings may change the interleaving.

• Ensuring representative data:Should experiments be
run on a full copy of the production data, or would
(faster) experiments on a sample suffice (and if so, can
the sample be picked automatically)?

3.2 Where and When to Run Experiments?
Before the database goes into production use, experiments
can be done on the production platform itself (Figure 1). If
the database is already in production use and serving real
users and applications, then experiments could be done on
an offline test platform. These solutions are practical, but
not sufficient because workloads may change and necessi-
tate new experiments, or a test database platform may not
exist. We have prototyped a comprehensive solution to ad-
dress such concerns. The guiding principle behind our so-
lution is: exploit underutilized resources in the production
environment for experiments, but never harm the produc-
tion workload. The two salient features of our solution are:
• Workbench: Users designate which resources can be

used for running experiments. All resources in Figure 1
are candidates; the production database is the default.

• Policies: A policy is specified with each resource that
dictates when the resource can be used for experiments.
A default policy associated with each resource in Figure
1 could be: “if the CPU, memory, and disk utilization of
the resource for itshome useis below 10% for the past
10 minutes, then the resource can be used for experi-
ments.” Home use denotes the regular (i.e., nonexperi-
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mental) use of the resource.
The design of the workbench is based on splitting the func-
tionality of each resource into two: (i)home use, where
the resource is used directly or indirectly to support the
production workload, and (ii)garage use, where the re-
source is used to run experiments. We will describe this de-
sign for standby databases, and then generalize to other re-
sources. All commercial databases support one or more hot
standby databases whose home use is to keep up to date with
the (primary) production database by applying redo logs
shipped from the primary. If the primary fails, a standby
will quickly take over as the new primary. Hence, standby
databases run the same hardware and software as the pro-
duction database. Standby databases usually have very low
utilization since they only have to apply redo records.

Thus, the standby databases are a valuable and under-
utilized asset that can be used for on-demand experiments
without impacting user-facing queries. However, their
home use should not be affected, i.e., the recovery time on
failure should not have any noticeable increase. We achieve
this property using tworesource containers: the home con-
tainer for home use, and the garage container for running
experiments. Our current implementation of resource con-
tainers using thezonesfeature in Solaris [7] which allows
resources to be allocated dynamically to a zone, with isola-
tion between different zones. Alternately, resource contain-
ers can be implemented using virtual machine technology.

The home container is always responsible for applying
the redo log records. When the standby machine is not
running experiments, the home container runs on it using
all available resources; the garage lies idle. The garage is
booted—similar to a machine booting, but much faster—
only when the policy kicks in and allows experiments to be
scheduled on the standby machine. During an experiment,
both the home and the garage containers will be active,
with a partitioning of resources as determined by the ex-
periment scheduler. Figure 2 provides an illustration. Both
the home and the garage containers run a full and exactly
the same copy of the database software. However, on boot-
ing, the garage is given a snapshot of the current data in the
database. The garage’s snapshot is logically separate from
the home container’s snapshot, but it is physically the same
except for copy-on-write semantics. Our current implemen-
tation of snapshots and copy-on-write semantics leverages
theZettabyte File System[7], and is very efficient.

When experiments are done or if the primary fails or there
is a policy violation, the garage is halted immediately. All
resources are then released to the home container which will
continue functioning as a pure standby or take over as the
primary as needed. Booting the garage (including snapshots
and resource allocation) takes less than a minute, and halt-
ing takes even less time. The whole process is so efficient
that recovery time is not increased by more than a few sec-
onds. While the above description focused on the standby
resource, the same home/garage design applies to all other
resources used by the workbench (including the production

database). Furthermore, a full-fledged workbench will sup-
port experiments for a large class of systems–e.g., using
mechanisms like the live-migration capability of modern
virtual machines [10]—and on cloud computing platforms.

3.3 Which Experiments to Run?
Given the infrastructure for conducting experiments before
or during production use, let us now consider the question
of which experiments to run. Sometimes the answer is easy,
e.g., when we want to find the impact of a specific change
like the addition of an index. However, the space of po-
tential experiments for various management tasks is often
large. Finding the best subset of experiments to do within a
limited cost or time budget is nontrivial. While some gen-
eral guiding principles exist, our experience suggests that
good algorithms for experiment selection can differ on a
case-by-case basis. Section 4 goes into the details of exper-
iment selection for our case study.
4 Case Study: Advisor for Tuning Database

Configuration Parameters
Our case study focuses on the problem of tuning the large
number of configuration parameters like buffer pool sizes,
number of I/O daemons, and parameters input to the query
optimizer’s cost model in database systems. Many database
users face issues with the default settings, and resort to trail-
and-error tuning or rules-of-thumb specified by database ex-
perts. Unfortunately, the behavior of modern database sys-
tems is too complex to be captured by static rules. The fol-
lowing observations can be made from Figure 4:
• This surface is complex and contains nonmonotonic

and unexpected behavior (performance drops sharply as
sharedbuffers goes above 15% of available memory).

• Rules-of-thumb settings forsharedbuffers and effec-
tive cachesizeare respectively 25% and 50% of avail-
able memory. Following these rules gives around 100%
worse performance compared to a well-tuned setting.

• The performance impact of changingeffec-
tive cachesize depends on whatsharedbuffers is
set to; indicating an interaction between the two.

Given such complex behavior, experiments (which led to
Figure 4) are a must for proper database tuning. Knowing
the true response surface gives a lot of useful information:
Q1: Which parameters impact performance the most?
Q2: Which parameters display strong interactions that can

make “tune-one-parameter-at-a-time” efforts ineffec-
tive?

Q3: What is a high-performance setting of the parameters?
Q4: What arerobustregions in the response surface where

performance is both satisfactory and stable?

But, how can a tuning advisor generate such surfaces ef-
ficiently? Naively conducting experiments for all possible
combinations of the parameters will not scale. For example,
conducting all experiments for a 5-parameter space with 6
distinct settings per parameter and average run-time of 10
minutes per experiment takes 60 days! The tuning advisor
should aim to produce reasonably-accurate results forQ1-
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Figure 5: Sensitivity analysis plot for Figure 4
Q4 while running as few experiments as possible. We out-
line a technique, calledAdaptive Sampling, to achieve this
goal. Adaptive Sampling, illustrated in Figure 3 consists of
two phases:bootstrappingandsequential sampling.

Bootstrapping phase:This phase gets Adaptive Sampling
started by running an initial set of experiments. A simple
technique is to pick the initial experiments randomly from
the space of possible experiments. More efficient variants
include, e.g.,Latin Hypercube Sampling[4].

Sequential sampling phase: The sequential sampling
phase runs in a loop analyzing the data collected from ex-
periments done so far (and other available data), and plan-
ning the experiments to do next. Ideally, the next exper-
iment conducted should be the one that brings in the in-
strumentation data that improves the accuracy of answers
to Q1-Q4 the most. Therefore, we need techniques to es-
timate the potential improvement in accuracy that results
from conducting a candidate experiment. These techniques
vary depending on which ofQ1-Q4 we are interested in.

Space constraints preclude us from giving details, so we
limit the discussion to some insights. For example, to ad-
dressQ1, we need experiments that check whether chang-
ing a parameter can cause significant changes in perfor-
mance. However, to addressQ3, we need experiments that
quickly hit high-performance regions. The promising ex-
periments forQ3 are from two types of regions: (i) regions
around high-performing settings known so far, (exploita-
tion), and (ii) regions with high uncertainty (exploration).
For (ii), we need to capture the uncertainty (or confidence
intervals) around predicted performance values in different
regions. Various criteria—e.g., based on time, cost of exper-
iments, or expected improvement—can be used to decide
when to stop sequential sampling. The sequential sampling
phase can also plan batches of experiments that are done in
parallel (e.g., in a cloud computing platform).

We have done an extensive empirical evaluation of Adap-
tive Sampling using PostgreSQL and the TPC-H, TPC-W,
and RUBiS benchmarks. We give a glimpse of the effective-
ness of Adaptive Sampling by presenting its results on tun-
ing PostgreSQL’s performance for TPC-H Query 18. (Re-
sults for more complex workloads are omitted.) The full
response surface for this query (Figure 4) was generated us-

ing 99 experiments. In the bootstrapping phase of Adaptive
Sampling, we ran 10 experiments and estimated the individ-
ual impact (sensitivity) of each parameter on performance
(by averaging out the effects of other parameters). Figure 5
shows the sensitivity analysis result for five (among 30) im-
portant parameters in PostgreSQL.sharedbuffers(with an
impact score of 44.8) andeffectivecachesizeare identified
as the most important parameters. Note that with only 10
experiments, Figure 5 is able to capture the non-monotonic
impact ofsharedbuffersandeffectivecachesizeon perfor-
mance; which is consistent with what we observe in Figure
4. The sequential sampling phase of Adaptive Sampling fo-
cused on the two important parameters identified, and con-
ducted 10 more experiments. The third experiment done in
this phase hit the optimal setting. This sample result shows
how a principled approach like Adaptive Sampling can save
considerable time and effort in parameter tuning.

5 Concluding Remarks
The availability of a powerful workbench for automated,
online experiments enables us to rethink the implemen-
tation of several system administration tasks. Emerging
mechanisms like virtualization and cloud computing pro-
vide the foundations for such a workbench. In general,
our Adaptive Sampling algorithm—starting with a small
bootstrap set of experiments, and then doing experiments
based on estimated benefits (and costs)—applies to many
tasks. However, we expect the details to differ, sometimes
markedly, posing challenging research problems. In clos-
ing, we note that experiments will not fully replace current
model-based management practices; rather, there is inter-
esting synergy between them that needs to be explored.
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