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Abstract

SQL tuning—the attempt to improve a poorly-performing execution plan produced

by the database query optimizer—is a critical aspect of database performance tuning.

Ironically, as commercial databases strive to improve on the manageability front,

SQL tuning is becoming more of a black art. It requires a high level of expertise

in areas like (i) query optimization, run-time execution of query plan operators,

configuration parameter settings, and other database internals; (ii) identification of

missing indexes and other access structures; (iii) statistics maintained about the data;

and (iv) characteristics of the underlying storage system. Since database systems,

their workloads, and the data that they manage are not getting any simpler, database

users and administrators often rely on intuition and trial and error for SQL tuning.

This work takes the position that the trial and error (or, experiment-driven) pro-

cess of SQL tuning can be automated by the database system itself in an efficient

manner; freeing the user or administrator from this burden in most cases. We formal-

ize the problem of tuning a poorly-performing execution plan. We then describe the

design of a prototype system that automates SQL tuning using an experiment-driven

approach. Experiments are conducted with almost zero impact on the user-facing

production database. The nontrivial challenge we addressed was to plan the best set

of experiments to conduct, so that a satisfactory (new) plan can be found quickly.
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1

Introduction

Databases are important building blocks in modern enterprises and part of a very

elaborate framework that surrounds the production environment. As a result, the

performance of Database Management System (DBMSs) has become critical to the

success of the business applications that use them. One of the biggest factors in the

performance of a DBMS is the speed of the SQL statements it runs. The Query

Optimizer is responsible for ensuring the fast execution of queries in the system. For

each query, the optimizer will (a) consider a number of different execution plans,

(b) use a cost model to predict the execution time of each plan based on some data

statistics and configuration parameters, and (c) use the plan with the minimum

predicted execution time to run the query to completion.

1.1 Optimizer Cost Models

Optimizer cost models are usually very complex, and depend on cardinality estima-

tions for complex expressions, database configuration parameters, specialized cost

formulas for each operator in the physical query execution plan, and plan properties

derived from the structure of the plan itself. There are several factors that cause
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currently used cost models to be inaccurate [14]:

• Cardinality estimations rely on data statistics that might be incorrect, stale or

very coarse, usually in the form of histograms.

• Cardinalities for complex expressions are calculated based on statistical prop-

erties of the data with several simplifying (and usually invalid) assumptions

like uniformity or independence assumptions.

• The cost formulas for each operator rely on specified constants, like the cost

of a single disk I/O or the cost of processing a filter condition on a particular

tuple. Such formulas might not be accurate or representative of the underlying

hardware, especially with some of the new intelligent storage systems.

• The need to produce a unified cost number has lead to the creation of relation-

ships among the costing parameters. For example, in the default settings of

PostgreSQL database, the cost of CPU processing is set to be 0.01 times the

cost of a single disk I/O. Again, such relationships might not be accurate or

representative of the underlying hardware.

• Database configuration parameters affect the execution costs of query plans.

For instance, the amount of buffer pool memory might affect the cost of a

particular join since the number of tuples already cached in memory is unpre-

dictable.

• The costing of a particular plan is done in isolation, without taking into con-

sideration other queries executing in the database. Issues like lock contention,

caching, and hotspots caused by concurrent query execution are not taken into

consideration for costing purposes.
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Figure 1.1: Production Database in an Enterprise

Inaccurate and incorrect costing may cause the query optimizer to select a subop-

timal plan that, in many cases, can lead to a very poor performance for a particular

query.

1.2 SQL Tuning

We saw that the rapid evolution of storage systems and complicated data patterns

are causing estimates from traditional cost models to be increasingly inaccurate,

leading to poorly performing execution plans [8]. Even when the system is well

tuned, workloads and business needs change over time and the production database

has to be kept in step. New optimizer statistics, configuration parameter changes,

software upgrades and hardware changes are among a large number of factors that

may cause a query optimizer to select different execution plans, perhaps with much

worse performance than before. Hence, it is essential to perform SQL tuning, that is,

to find better execution plans in order to make the offending queries execute faster.
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SQL tuning has become a critical aspect of database administration and its

success usually depends on the expertise of highly-skilled database administrators

(DBAs) or time consuming trial-and-error steps. The typical database production

framework can be seen in Figure 1.1. It consists of the production database, one

or more standby databases for high availability, a test database used by DBAs and

developers, and possibly a staging database for staging updates while they are moved

from development to production. When called to tune a query, DBAs will use their

experience, intuition, knowledge of the data being queried, several tips and tricks, or

even guessing to complete the task. Initially, the DBA may collect some monitoring

data on the production database in an attempt to diagnose the problem. However,

data collection can increase the load on an already under-performing database, forc-

ing the DBA to shift to the test database. The DBA’s usual course of action would

be:

1. Create a replica of the production environment on the test database. Mecha-

nisms like workload capture and replay help here [17].

2. Get more insight into system behavior by performing experimental runs and

collecting monitoring data on the test database. Multiple runs may be required

because of system variability.

3. Form hypotheses regarding potential causes, and do further experiments to

refine or confirm these hypotheses. For example, new indexes, statistics, or re-

sources may be added, hints may be given to the query optimizer, configuration

parameter settings may be changed, and so on.

4. When a fix is found, possibly after much trial and error, a careful validation is

done to ensure that the fix will work on the production system. Finally, the

fix is staged to the production system.
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There are several tools available for a DBA to use in order to perform SQL tun-

ing. Index advisors might recommend the creation of new indexes and configuration

parameter tuning tools may find better parameter settings. However, in many cases,

the DBA needs to manually experiment with different execution plans in an attempt

to correct the mistakes of the query optimizer. A common mechanism found in most

commercial databases used for this purpose is called query hinting. The DBA can use

query hints to affect the choice of the execution plan from the optimizer. However,

most query hinting mechanisms are very coarse and thus not useful with complex

queries (more details on existing query hints can be found in Chapter 2).

We will illustrate the use and weaknesses of hints with the following example.

Consider the query shown in Figure 1.2.

SELECT a, b, c
FROM R, S, T
WHERE R.a = S.a AND R.b = T.b AND R.c > 5 AND T.d <= 20

Figure 1.2: A Sample Query used to Generate Alternative Execution Plans

Suppose the current execution plan selected by the query optimizer is the one

shown in Figure 1.3a. Furthermore, suppose that the cardinality of σ{R.c>5} was

severely overestimated and that the size of table S is large. Perhaps a better plan

would involve an index nested loop join between tables R and S using an index on

S.a, because of the small number of join tuples from R. In this case we would need

to specify the use of a nested loop join over R and S.

However, most hinting mechanisms are very coarse and are hard to use in such

cases. In particular, PostgreSQL allows a DBA to enable or disable the use of a

join type. Here, we could disable the use of hash joins for this particular query.
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(a) Initial Plan Selected by Optimizer (b) Plan Resulting from Hints

(c) Better Plan (d) Best Plan

Figure 1.3: Alternative Plans for the Same Query

The query optimizer could then choose the different plan seen in Figure 1.3b. The

plan contains the nested loop join over R and S, but it also changed the upper

hash join to a merge join, since the use of hash joins was disabled. The use of a

merge join has an additional overhead from sorting the tuples from T that could

overshadow the potential benefits from the nested loop join. In this case, the plan
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shown in Figure 1.3c would be a better choice, but it is almost impossible to force the

optimizer to select it using hints. For this purpose, we introduced a new command

in PostgreSQL, called Explain Plan that would allow the DBA to fully specify this

particular plan.

Despite advances in the particular tools and mechanisms that are available to

the DBA, the overall trial-and-error process is very labor intensive, expensive, and

requires an extensive knowledge of the database internals. In fact, DBA surveys

estimate that this process consumes more than 50% of a DBA’s day-to-day work

time [16]. Clearly, there is a lot to be gained from automating the generation of

alternative execution plans and performing SQL tuning in general.

1.3 Contributions

Our main contributions are the following:

1. We introduced a new command in PostgreSQL, called Explain Plan. The Ex-

plain Plan command allows for the full specification of a query execution plan

to be costed and executed for a particular query. This command is a strong

complement to the hinting mechanism of PostgreSQL and we believe that all

commercial databases should provide this functionality.

2. We formulated the problem of SQL tuning using an experiment-driven ap-

proach for exploring the space of execution plans.

3. We developed an automated algorithm for planning experiments aimed at im-

proving a poorly-running plan that is currently being used for a particular

query. Each experiment in this context includes generating an alternative ex-

ecution plan and either costing it or running it. The experiments collect car-

dinality statistics and execution costs in order to effectively search the large

space of execution plans and reach to a good plan.
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4. We developed and evaluated zTuned, a system that formalizes and automates

the process of SQL tuning using the proposed experiment-driven approach.

Continuing the example introduced above, consider the case where the predicates

for σ{R.c>5} and σ{T.d<=20} are negatively correlated, thereby resulting in a much

smaller cardinality for R ./ T than estimated by the optimizer. Some well-designed

experiments can find this correlation and propose the plan shown in Figure 1.3d.

This plan can be much better since the small cardinality for R ./ T allows efficient

index nested loop join with table S.

zTuned has the ability to generate different yet equivalent execution plans using

a set of transformations. This plan generation occurs independently from the query

optimizer allowing for a larger and perhaps different exploration of the plan space.

In addition, since zTuned works outside the optimizer, it can potentially be used

with any database that uses a cost-based optimizer and supports the specification of

full execution plans.

zTuned can also be used in two different modes, “online” and “offline”. Online

means that it can be used directly on the production system with small overhead. In

the online mode, zTuned explores a smaller part of the plan space around the plan

provided by the optimizer, in an incremental fashion. In the offline mode, zTuned

has the ability to explore a much larger space using some experimental runs. Even

though it might take more time to find a better plan, it will take considerably less

time compared to the manual experimentation used today by DBAs.

The use of experiments is necessary in order to create a more holistic approach

towards SQL tuning. When a performance problem arises, there is a large arsenal

of potential fixes to choose amongst—updating statistics and cost models, changing

current operator implementation, changing the entire plan shape, changing the phys-

ical design like indexes, or changing settings of configuration parameters. It is very
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challenging to select the right set of experiments to conduct that will lead to the

best fix, especially if the fix is some combination of the above fixes. Our goal is to

minimize the total cost of experiments that it takes to go from a current poor plan

to a good plan. The experiments will take place on a new workbench, which takes

advantage of underutilized resources like the standby system that most production

environments have. Our approach imposes no overhead on the production system

when run in offline mode and it guarantees that the recovery time for the standby

system (in case the primary system fails) will not be affected.

Chapter 2 discusses related work on self-tuning database systems and explores

the state of the art tools used today by DBAs to tune the performance of a database.

Chapter 3 describes the mechanisms used to obtain the current execution plan from

the query optimizer as well as to execute alternative plans. Chapter 4 introduces

some new definitions and mechanisms that are essential in the efficient exploration of

the plan space, and Chapter 5 provides an overview of how they can be utilized in or-

der to select which experiments to conduct. It also introduces the new workbench for

conducting the experiments when zTuned is used in the offline mode. All mechanisms

and algorithms are used by our new automated SQL tuning tool, which is described

in detail in Chapter 6. We evaluate the performance of zTuned in Chapter 7 and we

conclude with Chapter 8.
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2

Related Work

There has been an extensive work on providing DBAs the tools to correctly and effi-

ciently tune a database system. Tuning database systems is a wide area of research

that involves problems such as query hinting mechanisms, performance monitor-

ing and diagnostics infrastructures, statistics management, and automating physical

database design.

2.1 Query Hinting Mechanisms

Query hinting is a common mechanism found in many database systems that allow a

DBA to influence the choice of a query execution plan from the optimizer. However,

this support comes in varying degrees and is often scoped globally. PostgreSQL has

a very coarse hinting mechanism [26] that effectively prevents an experienced DBA

from fine-tuning a poorly performing query. All hints are in terms of enabling or

disabling particular operators. For example, setting the parameter enable indexscan

to false, would completely disable index scans being used in any query plans for the

current connection. The same can be done for all join operators. Hence, there is no

way to force one join to be a hash join without at the same time forcing all other
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joins to be hash joins as well. The introduction of the Explain Plan command solves

this problem since a DBA can fully specify the execution plan for a given query.

Even though this approach can be tedious for large queries, we note that a simple

user interface (which is part of future work) would allow a DBA to simply modify

any operator in a given execution plan.

The hinting mechanism in Microsoft SQL Server is more flexible since it includes

support for specifying an access path for a table (i.e., force an index scan on a

table) and also the ability to force a join order for all tables that appear in the

query [22]. However, it has the same problem with join specification as PostgreSQL.

These hints are again globally scoped and thus cannot constrain execution sub-

plans. Moreover, SQL Server supports the ability to specify a full execution plan

similar to Explain Plan, but uses an XML interface [22]. Another unique feature of

Explain Plan that differentiates it from SQL Server’s counterpart is the ability to

specify the cardinality of a particular operator used for costing.

Oracle hints [24] can specify the first join to be used in the execution plan as well

as the join operator to be used for a particular pair of tables. Even though Oracle

hints can constraint particular joins, they do not support any finer scopes over an

arbitrary set of tables. However, Oracle does support the injection of cardinality

estimates in their hinting mechanism. IBM DB2 offer a different approach to query

hinting through the creation of a particular table called PLAN TABLE [19]. Hints

are given to the query optimizer in the form of SQL queries over the PLAN TABLE

and can be used at the scope of a sub-query. Optimization hints however cannot

force or undo query transformations, such as sub-query transformation to join or

materialization or merge of a view or table expression.

Finally, it is worth noting some very recent work on query hinting called Power

Hints (PHints) [23]. PHints provide a generic framework that supports hints with

fine granularity and represent constraints over the plan search space. For example, it
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is possible to specify the use of two particular joins and a particular join order over

three tables. With enough power hints a DBA could specify a plan completely, even

though it is uncertain how intuitive or easy it would be to do so. This is the main

advantage of Explain Plan over Power Hints. Another difference from our work is

that PHints are constrained to the search space of the query optimizer (assuming

the database supports the interface of exporting the space of plans), whereas zTuned

explores the space of plans on its own.

2.2 Performance Monitoring and Diagnostics Infrastructures

The support for database monitoring and diagnostics has increased over the last

years. Several tools like HP OpenView [27] and IBM Tivoli [21] provide performance

monitoring, whereas tools like DB2 SQL Performance Analyzer [18] and SQL Server

Performance Tuning [2] provide extensive analysis of SQL queries without executing

them. In [11] the authors proposed the “SQL Continuous Monitoring” infrastructure

that builds on the server-side with the goal of supporting monitoring queries.

References [15] and [16] describe the new automated tools introduced with Oracle

Database 10g and 11g. These tools enable the database to monitor and diagnose

itself on an ongoing basis, and alert the DBA when it finds any problems. The

Automatic Tuning Optimizer is a new mode of the optimizer that is specifically

used during designated maintenance sessions. When run in this mode, the optimizer

generates additional information that can be used at run-time to speed performance.

In particular, the tuning mode subsumes the behavior of the normal mode and has

extended functionality, but comes with an additional overhead on the production

system. The database creates SQL profiles for some queries that are identified as

performing poorly. SQL profiles are metadata objects with configuration checks and

better cardinality estimates produced using data samples. Based on predefined rules,

performance tuning is invoked by the Automatic Diagnostic Monitor, which is able

12



to analyze information in its performance data-warehouse.

The above mentioned tools are designed to facilitate the DBA in tuning and

improving the performance of a database system. Our goal is the same but our

approach is unique in the sense that we use an experiment-driven approach that will

quantify and provide guarantees for the performance improvements. Moreover, their

techniques impose an overhead on the production system, unlike our approach that

does not affect it.

2.3 Statistics Management and Execution Feedback

Query execution feedback is a technique used in [1, 13] to improve the quality of

plans by correcting cardinality estimation errors made by the query optimizer. Query

feedback mainly consists of recording the number of rows produced by each operator

during the execution of a particular query, and then relaying the new information

back to the query optimizer. LEO’s approach [29] extended and generalized this

work to provide a general mechanism for repairing incorrect statistics and cardinal-

ity estimates of a query execution plan. The Pay-as-you-go framework [12] proposed

more proactive monitoring mechanisms and plan modification techniques for gath-

ering the necessary additional cardinality information from a given query execution

plan. The central idea is to use some simple mechanisms to gather additional cardi-

nality information that might be useful to the query optimizer in selecting a better

execution plan in the future.

However, all of the above mentioned approaches are limited by the need to main-

tain a very low overhead on the production system. Furthermore, the cardinality

of any relevant expression for the query that does not correspond to an operator in

the current (or slightly modified) plan cannot be obtained through the above mecha-

nisms. Our approach does not suffer from these limitations since all the experiments

responsible for improving and correcting statistics will occur on the proposed work-
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bench (on the backup system). Moreover, well-designed experiments can target the

collection of any desired statistics, and thus explore very different parts of the exe-

cution plan space.

Another related research direction focuses on dynamic adjustments of query plans

during their execution. Based on statistics collected during the query execution, a

new operator introduced in [20] decides whether to continue or stop the execution

and re-optimize the remaining plan. RIO [8] proposes proactive re-optimization

techniques. RIO uses intervals of uncertainty to pick execution plans that are robust

to deviations of the estimated values or to defer the choice of execution plan until

the uncertainty in estimates can be resolved. The common feature of the above

approaches is the possibility for a change in the execution plan while it is executing.

On the contrary, our system will suggest a change in the execution plan that will

affect future similar queries.

2.4 Automated Physical Database Design

References [4, 9, 10] explore several solutions to the problem of automating physical

database design, primarily focusing on identifying the right set of indexes for a partic-

ular workload. References [3,5,25] tackled the related issues of view materialization,

data partitioning, and table layouts for relational databases. Furthermore, several

commercial tools were created to aid the database administrators in database tuning

like Microsoft’s Database Engine Tuning Advisor (DTA) [2], DB2 Design Advisor [30]

and Oracle’s SQL Access Advisor [15]. These tools are capable of providing useful

recommendations regarding the physical design, that complement our approach to

SQL tuning.
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3

Opening Up the Query Optimizer

There are several tools and database mechanisms available for a DBA to leverage

in order to perform SQL tuning. Index advisors might recommend the creation of

new indexes and configuration parameter tuning tools may find better parameter

settings. However, in many cases, DBAs need to manually experiment with different

execution plans, in an attempt to correct the mistakes of the query optimizer. In

order to search for a different plan, they first need to find out which plan the query

optimizer selected along with the cardinality estimates that led to that selection.

3.1 Explain Command

PostgreSQL has a very useful command, called Explain, that can be used to display

the generated execution plan. The execution plan shows how the tables referenced

by the query will be scanned (by plain sequential scan, index scan, etc.) and if

multiple tables are referenced, what join operators will be used to bring together the

required rows from each input table. It also displays other operators like aggregates

and sorting if needed.

In addition, it is crucial for the DBAs to gain some more insight into the reasons
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why that particular selection was made. The output from the Explain command is

once again very useful as it contains the following information for each operator:

• Estimated startup time1 before the first row can be returned.

• Estimated total time to return all rows.

• Estimated number of rows that this operator will produce.

• Estimated number of bytes for each row.

The Explain command offers an additional option, called analyze, that causes the

statement to be actually executed, not only planned. The output then contains the

following information:

• Actual startup time (in milliseconds) before the first row can be returned.

• Actual total time (in milliseconds) to return all rows.

• Actual number of rows that this operator will produce.

• Number of times this operator was used.

This information is particularly useful for seeing whether the optimizer’s estimates

are close to reality. Let us consider the Explain command shown in Figure 3.1.

EXPLAIN ANALYZE
SELECT c_name, o_totalprice, c_acctbal
FROM customer, orders
WHERE c_custkey = o_custkey

AND o_orderdate >= date ’1996-01-01’
AND o_orderdate < date ’1996-01-10’
AND o_totalprice < 1500
AND c_acctbal < 1500;

Figure 3.1: Explain Command for a Sample Query

1 Time is measured in terms of disk page fetches
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The query shown in Figure 3.1 looks for all customers who placed an order during

the first ten days of year 1996, and their account balance as well as the order price

were less than $1,500. This query was executed over a TPC-H 2 database with a

scale factor of 1GB. The Explain output can be seen in Figure 3.2.

QUERY PLAN
---------------------------------------------------------------------
Hash Join (cost=5667.09..58413.08 rows=162 width=29)

(actual time=221.371..973.714 rows=48 loops=1)
Hash Cond: (orders.o_custkey = customer.c_custkey)
-> Seq Scan on orders (cost=0.00..52725.00 rows=1550 width=14)

(actual time=1.230..763.017 rows=457 loops=1)
Filter: ((o_orderdate >= ’1996-01-01’::date) AND

(o_orderdate < ’1996-01-10’::date) AND
(o_totalprice < 1500::numeric))

-> Hash (cost=5471.00..5471.00 rows=15687 width=23)
(actual time=208.153..208.153 rows=15728 loops=1)

-> Seq Scan on customer
(cost=0.00..5471.00 rows=15687 width=23)
(actual time=135.745..189.854 rows=15728 loops=1)

Filter: (c_acctbal < 1500::numeric)
Total runtime: 975.405 ms

Figure 3.2: Explain Output from Executing the Command in Figure 3.1

The query optimizer selected to perform a hash join over two sequential scan

for the two tables. It is interesting to note that the number of output tuples from

the sequential scan on table orders was overestimated by the optimizer, probably

because of the complex filter condition. Perhaps, a better choice would have been to

use an index nested loop join, using the index on the primary key of the customer

table. Trying to use the existing hinting mechanism of PostgreSQL turns out to be

quite troublesome. Initially, we set the flag enable hashjoin to false. In this case,

the optimizer selected to use a merge join, which has a worse running time from the

original plan. We then set the flag enable mergejoin to false. Then, the optimizer

2 TPC BenchmarkTM H (TPC-H) is a decision support benchmark comprised by queries that
simulate business intelligence queries.
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selected to use a nested loop join but it used a bitmap heap scan over customer,

which still did not lead to a better result.

3.2 Explain Plan Command

This inadequate hinting mechanism has lead to the development of a new command

in PostgreSQL, called Explain Plan. The Explain Plan command allows for the

full specification of a query execution plan that can be costed and executed for a

particular query. It is similar in nature with the Explain command but the input

includes a string representation of the desired physical plan. It can be used for both

costing a particular plan and executing it using the analyze option. The full syntax

of the command is described in Appendix A.1.

EXPLAIN_PLAN ANALYZE
"{ nestjoin

:outerjoinpath {
seqscan

:parent orders
:filter orders.o_orderdate >= ’1996-01-01’ AND

orders.o_orderdate < ’1996-01-10’ AND
orders.o_totalprice < 1500 }

:innerjoinpath {
indexscan

:parent customer
:using customer_pkey
:filter customer.c_acctbal < 1500
:indexCondition customer.c_custkey = orders.o_custkey }

}"
FOR
SELECT c_name, o_totalprice, c_acctbal
FROM customer, orders
WHERE c_custkey = o_custkey

AND o_orderdate >= date ’1996-01-01’
AND o_orderdate < date ’1996-01-10’
AND o_totalprice < 1500
AND c_acctbal < 1500;

Figure 3.3: Explain Plan Command with a Particular Plan for a Sample Query

The command shown in Figure 3.3 shows how we can specify the full execution
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path we wanted to test, for the same query from Figure 3.1.

The output style of the Explain Plan command is identical to the output from

an Explain command. The output of the command in Figure 3.3 can be seen in

Figure 3.4. It contains all the estimated and actual information per operator. It

is interesting to note that the estimated total cost of the nested loop join is higher

that the estimated total cost of the hash join seen in Figure 3.2. This is due to

the incorrect cardinality estimation for the sequential scan over the orders table.

However, the actual running time of the new plan is about 20% better.

QUERY PLAN
---------------------------------------------------------------------
Nested Loop (cost=0.00..61137.12 rows=162 width=29)

(actual time=90.133..756.746 rows=48 loops=1)
-> Seq Scan on orders (cost=0.00..52725.00 rows=1550 width=14)

(actual time=1.293..759.017 rows=457 loops=1)
Filter: ((o_orderdate >= ’1996-01-01’::date) AND

(o_orderdate < ’1996-01-10’::date) AND
(o_totalprice < 1500::numeric))

-> Index Scan using customer_pkey on customer
(cost=0.00..6.03 rows=1 width=23)
(actual time=0.531..0.531 rows=0 loops=457)

Index Cond: (customer.c_custkey = orders.o_custkey)
Filter: (customer.c_acctbal < 1500::numeric)

Total runtime: 759.557 ms

Figure 3.4: Explain Plan Output from Executing the Command in Figure 3.3

3.3 Explain Plan Features

We have seen how the Explain Plan command can be used to fully specify the ex-

ecution plan for a particular query. There are also two other important features

in Explain Plan, (a) the implicit operator support for certain operators and (b) the

so-called cardinality feature.
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3.3.1 Implicit Operator Support

When a query is send to the database for execution, the query optimizer is respon-

sible to searching the space of possible execution plans to find the optimal one. In

PostgreSQL, the query optimizer operates in two phases. During the first phase,

it only considers the “Select-Project-Join” part of the query and builds the optimal

execution plan bottom up. During the second phase, the optimizer takes into consid-

eration any group by or order by clauses (among with more advance SQL options),

and adds those operators to the plan as needed.

Following the same spirit, the input execution plan in the Explain Plan command

consists only of joins, scans and materialized nodes. This is the “important part” of

the query that DBAs are mostly interested in modifying, and the part that usually

matters the most. However, the Explain Plan command can be used with queries

that are more complex from simple Select-Project-Join queries. There is an implicit

support for all aggregates, sort clauses, group clauses, having clauses etc. Implicit

here means that a DBA does not need to specify these operators in the input physical

plan. Instead, they are inferred from the provided query, and optimized during the

second optimization phase.

3.3.2 Cardinality Feature

A unique feature of Explain Plan is the ability to specify the expected number of

tuples produced from each operator. For example, if the DBA knows that a join will

produce 42 tuples based on execution history or data properties, she can specify it in

the input plan. This information will be used instead of the optimizer’s estimations

for costing purposes. This feature is extremely useful in many situations and allows

for a much deeper analysis of the database internals.

For instance, suppose the DBA has several plans in mind to experiment with.

Without the cardinality feature, she would have to use the analyze option for each
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plan, which might be very time consuming for large queries. Instead, she can use

Explain Plan with the actual cardinalities per node and compare their estimated

costs based on the database cost engine. Hence, she can quickly prune the space of

plans she was initially considering and perhaps only use the analyze option on the

most promising one. A similar technique is used by zTuned to effectively prune the

search space.

With the cardinality feature we can additionally test and validate a query opti-

mizer. We can now ask questions like: if the query optimizer had perfect information

about the flow of tuples in a logical plan, would it still select the same physical plan?

We could explore a chosen space of possible plans, cost each plan in the space and,

find out the optimal plan in the space based on the current cost models. We could

then compare this plan with the plan selected by the query optimizer (with likely

invalid statistics and assumptions).
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4

Exploring the Execution Plan Space

When a DBA attempts to correct the mistakes of the query optimizer, she needs to

experiment with different execution plans. We have already seen that using hints to

force the optimizer to use a specific plan is very difficult. The Explain Plan command

can be used to overcome this difficulty since it allows for the full specification of a plan

to be costed and executed for a particular query. However, generating alternative

plans manually and then using Explain Plan to execute them is a tedious process.

It is thus crucial to automate the process of generating alternative plans that are, of

course, valid for the offending query.

4.1 Execution Plan Neighborhood

In order to generate plans, we need to explore the execution plan space. We have

developed algorithms to traverse the plan space in a structured and systematic way,

while maximizing the use of all currently available information. The central concepts

in our algorithms rely on the definitions of the cardinality set for an execution plan

and the plan neighborhood.
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Definition 4.1.1. A cardinality set for an execution plan is the set of cardinality

values that are needed for costing that particular plan.

Consider the execution plan shown in Figure 4.1a. The numbers above each

operator are the number of tuples produced from each operator i.e. the cardinality

for that operator. These values are used by the database cost models to calculate the

estimated cost for each operator and thus the entire plan. For example, in order to

calculate the cost of a hash join, we need the cardinalities of the two child operators.

Definition 4.1.2. An Execution Plan Neighborhood is the set of all plans that are

associated with the same cardinality set.

(a) Original Plan (b) Plan in the Same Neigh-
borhood

(c) Plan in a Different Neigh-
borhood

Figure 4.1: Plans Within and Across Neighborhoods

In more practical terms, two plans belong in the same neighborhood if when we

know the cardinalities for all operators in the first plan, we can induce the cardinal-

ities for all operators in the second plan.

Consider the plans shown in Figure 4.1 and assume they are all valid for the

same query. The first two plans belong to the same neighborhood since if we had

the cardinalities from the plan in Figure 4.1a, we would know exactly what the

cardinalities are for the plan in Figure 4.1b. Even though the two joins are different,
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the number of output tuples they will produce are going to be the same. The same

is true when changing a table scan to an index scan and vice versa. Also note that

the tables T1 and T2 are joined in a different order. Again, a join order change under

a single join does not affect the number of tuples produced by the scans or the join

itself.

Comparing the two plans from Figures 4.1a and 4.1c we see that the only change

is the order change between tables T2 and T3. However, this causes plan 4.1c to

belong to a different neighborhood. Given the cardinality estimates from plan 4.1a,

we can induce the cardinalities for all the scans and the final join, but we cannot

draw any conclusions about the cardinality of the join over tables T1 and T3.

The above definition of a plan neighborhood leads to two very interesting and

useful properties.

1. Cardinality Mapping - Given two plans in the same neighborhood, there exists

a one-to-one mapping between the cardinalities of each operator in the two

plans. This property is a direct consequence of the neighborhood definition.

Since we can use all cardinalities from one plan to induce the cardinalities of

the other plan, there exists an appropriate mapping for this induction.

2. Transitivity - Suppose plan P1 and plan P2 belong to the same neighborhood,

and suppose plan P2 and plan P3 also belong to the same neighborhood. Then,

plan P1 and plan P3 must belong to the same neighborhood as well. By the

previous property, there exists a one-to-one mapping between the cardinalities

in the plans P1 and P2, and a one-to-one mapping between the cardinalities in

the plans P2 and P3. Therefore, there must exist a one-to-one mapping between

the cardinalities in the plans P1 and P3, i.e. plans P1 and P3 belong to the

same neighborhood.
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Lemma 4.1.3. The space of all possible and equivalent plans can be partitioned into

disjoint neighborhoods.

Proof. First, we will provide a proof by contradiction that any two different neigh-

borhoods are disjoint. Suppose that plan P1 belongs to the neighborhood N1 and

plan P2 belongs to a different neighborhood N2. Also suppose that N1 and N2 are

not disjoint and let plan P3 be a common plan in the two neighborhoods. Then, by

the transitivity property we conclude that plans P1 and P2 must belong to the same

neighborhood. Therefore, N1 and N2 are the same neighborhood. However, this is a

contradiction since we assumed that N1 and N2 were different. Therefore, any two

different neighborhoods must be disjoint. Second, all possible plans must belong to a

neighborhood. Even a single plan can form its own neighborhood since it can utilize

its own set of cardinalities for all its operators. Since any two neighborhoods are dis-

joint and all plans must belong in some neighborhood, we conclude that the space of

all possible and equivalent plans can be partitioned into disjoint neighborhoods.

4.2 Exploring Within a Plan Neighborhood

Instead of exploring the entire plan space, let us first consider the exploration of a

single plan neighborhood. Exploration in this context is equivalent to the genera-

tion of all valid plans within a particular neighborhood. Hence, given a particular

execution plan P0, we can generate a set of different plans that belong in the same

neighborhood as P0. Note that based on our definition for a neighborhood, all gener-

ated plans must be equivalent to P0, that is, they must be valid plans that produce

the same actual output as P0.

Let us return to Figure 4.1 and the previous discussion we had concerning these

sample plans. We observed that changing a sequential scan to an index scan does not

affect the number of output tuples. Of course, since we require that the generated
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plans are equivalent, any filter condition imposed to the sequential scan, is also

transfered to the index scan. We also observed that changing a particular join from

a hash join to a merge join, or changing the join order under the same join also does

not affect the number of output tuples for that particular join.

We formalize the above observations into a set of transformation rules, which we

call intra-transformations1.

Definition 4.2.1. Intra-transformations are operator transformations that can be

applied to a single node in the operator tree to generate a different execution plan

within the same neighborhood.

All intra-transformations we are considering fall into the following broad cate-

gories:

1. Scan Operator Transformations - Transform a particular scan operator to a

different one. For example, transform a sequential scan into an index scan.

2. Join Operator Transformations - Transform a particular join operator to a

different one. For example, transform a hash join into a merge join.

3. Single Join Order Transformations - Swap the order of the outer and inner

sub-plans of a particular join. For example, transform A ./ B into B ./ A,

where A and B represent any sub-plan.

It is important to note that some transformations might not be possible on a

given plan. For example, a sequential join cannot be transformed into an index

join unless there exists an index over that table. Also, some transformation might

involve additional changes in order to preserve the correctness of the new plan. For

instance, a merge join requires that the two sub-plans produce sorted output. If

1 The prefix “intra” means “within” and in this context it refers to plans generated “within a
particular neighborhood”.
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they don’t, then a transformation to a merge join must add sort operators above the

sub-plans. Certainly, such additions do not affect the number of tuples produced by

the underlying operators and hence, the transformation still produces a plan in the

same neighborhood.

Intra-transformations also have a set of interesting properties.

1. Transitivity - Suppose there exist a set of intra-transformations S1 to transform

plan P1 to P2 and another set S2 to transform P2 to P3. Then, there exists

another set of intra-transformations S3 (for instance S1 ∪ S2) to transform P1

to P3.

2. Reversibility - All intra-transformations are reversible. Suppose we have a plan

P1 and we perform a particular intra-transformation to produce plan P2. Then,

we can perform another transformation on P2 to produce back P1. Reversibility

follows from the fact that any operator can be transformed to an equivalent

operator. For example, a hash join can be transformed to a merge join and a

merge join to a hash join. The single join order transformation is reversible on

its own, that is, when applied twice on the same operator, the new plan is the

same as the original plan.

Lemma 4.2.2. The exploration of a neighborhood is independent from the initial

plan, on which intra-transformations are applied.

Proof. Suppose we have a plan P0 and continually perform all intra-transformations

to produce a set of plans S = {P0, P1, ..., Pn} in the same neighborhood. Then, if

we start from any plan Pi, i = 1, 2, ..., n, we will produce the same set S. To prove

this lemma we will use a proof by contradiction. Suppose we start from plan Pk and

we produce the set S ′. S ′ must be a superset of S. We know that there exists a

set of transformations to transform P0 to Pk. By the reversibility property, we can

27



transform Pk to P0 and from there produce at least S. Now, suppose that Pm ∈ S ′

but Pm /∈ S. Then, there exists a set of transformations to transform Pk to Pm.

By transitivity, P0 can also be transformed into Pm. Thus, Pm ∈ S, which is a

contradiction. Therefore, the exploration of a neighborhood is independent from the

initial plan.

4.3 Exploring Across Plan Neighborhoods

Intra-transformations are used to generate plans within a particular neighborhood.

However, in order to explore the full plan space, we also need to generate plans

that belong to different neighborhoods. For this purpose, we defined a new set of

transformation rules, which we call inter-transformations2.

Definition 4.3.1. Inter-transformations are transformations that can be applied

across multiple operators and produce execution plans that belong to different neigh-

borhoods.

Inter-transformations affect the structure of the execution plan. In particular, we

are considering join order changes across multiple joins. For example, a join sequence

((A ./ B) ./ C) can be transformed into (A ./ (B ./ C)) to produce a new execution

plan that belongs to a different neighborhood. Inter-transformations have analogous

properties with the intra-transformations, namely transitivity and reversibility.

A combination of intra and inter transformations can be used to effectively and

systematically explore the space of equivalent execution plans. In particular, given

an initial plan, we can use intra-transformations to explore its neighborhood. Then,

we can perform an inter-transformation to generate a new plan, that will serve as

the initial plan in a different neighborhood. We can then repeat the process until we

2 The prefix “inter” means “across” and in this context it refers to plans generated “across neigh-
borhoods”.
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have explore the entire plan space. Of course, caution is needed to avoid returning

to an already explored neighborhood to avoid an infinite loop. An easy solution is to

generate all plans that belong in different neighborhoods together, before exploring

within neighborhoods.
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5

An Experiment-Driven Approach to SQL Tuning

We have seen how intra and inter transformations can be used to generate valid

query execution plans within and across neighborhoods. We have also seen how the

Explain Plan command can be used to fully specify a query execution plan that

could then be costed and executed. zTuned, our new SQL tuning tool, leverages the

transformations and the capabilities of the Explain Plan command to formalize and

fully automate the process of SQL tuning using an experiment-driven approach.

5.1 Experiment-Driven Workflow

In order to explore the space of possible valid execution plans, a sequence of experi-

ments will need to be performed. We define a single experiment to mean generating

a plan through the use of transformations and running it using the Explain Plan

command with or without the “analyze” option. The experiments utilized estimated

and actual cardinalities and execution costs, in order to effectively prune the large

space of execution plans and reach to an optimal plan. We formalize this sequence

through the experiment-driven workflow shown in Figure 5.1.

The first and most critical step in the workflow involves generating an experiment
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Figure 5.1: Experiment-Driven Workflow

design; that is a sequence of experiments to generate alternative plans, collect sam-

ples, improve statistics, or verify performance improvements of a proposed solution.

The total space of experiments is extremely large to cover and hence, our goal is to

choose a smart ordering of experiments to conduct, in order to reach a better plan as

fast as possible. At the same time, we wish to maximize the use of the available in-

formation we have collected so far. We describe the details of the experiment design

in Section 5.2.

Conducting an experiment with a chosen setting of factors is nontrivial. These

factors could be (i) workload-related (run in isolation or within a production work-

load replay), (ii) resource-related (for specified amounts of CPU and memory) or

(iii) configuration-related (various database configuration parameters like buffer pool

size). By default, zTuned uses the same settings with the production database, even

though those could be adjusted if needed. Depending on which mode zTuned is used
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in (online Vs offline), experiments will either be conducted on the production system

or on the proposed workbench discussed in detail in Section 5.3.

Finally, the output of these experiments must be processed to decide the next

step. Analysis of the output data could lead to either a new query execution plan or

to the design of the next set of experiments.

5.2 Experiment Design

Based on our experimental approach, we generate alternative plans until we find a

better execution plan. Initially, we execute the query in isolation using the current

execution plan and collect several pieces of information like time spent on each op-

erator, estimated and actual cardinalities of data between the operators, disk I/O,

memory utilization etc. Such information may be already available from plan execu-

tion history on the production database, in which case we avoid or limit the initial

execution of the plan.

First, let us consider applying a set of intra-transformation on the initial plan

P0 in order to produce a set of plans S = {P0, P1, ..., Pn} that belong to the same

neighborhood. According to the definition of the neighborhood (Section 4.1) and

given that we already know the cardinality of every operator in P0, we induce the

cardinalities for every plan in S. Then, we use the costing engine of the database

(through the use of the Explain Plan and its cardinality featured explained in Sec-

tion 3.3.2) to estimate the execution cost of each plan in the neighborhood. Since

all the plans are similar in structure and we used the same cardinalities for all of

them, we can compare the estimated execution costs to select the optimal plan in

the neighborhood.

It is important to remember here the potential causes of mistakes made by the

query optimizer. These causes lie in two general categories: (a) cardinality mistakes,

and (b) cost modeling mistakes. Previous studies have shown that cardinality mis-
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takes are usually the main cause of incorrect costing. In general, the cost models are

assumed to be correct enough. For now, we will make the same assumption as well

and discuss later how zTuned could potentially relax it.

Essentially, this set of experiments explore a large part of the plan space using

all the available cardinality information. This approach thus avoids executing all

possible plans in the neighborhood, which would be prohibitively costly.

Intra-transformations are used to generate plans within a particular neighbor-

hood. However, in order to explore the full plan space, we also need to gener-

ate plans that belong to different neighborhoods. For this purpose, we use inter-

transformations on the original plan P0 to produce a new set of plans that belong

to different neighborhoods. These plans will serve as starting points for exploring

different neighborhoods. It is worth remembering here that the space of all possi-

ble and equivalent plans can be partitioned into disjoint neighborhoods as shown

in Section 4.2. Hence, with each neighborhood exploration, we effectively explore a

different, disjoint set of execution plans.

When exploring different neighborhoods, we are faced with two problems. The

first problem involves the selection of which neighborhood to explore next, given

multiple choices. We would somehow need to decide which neighborhood is more

promising to explore. The second problem occurs when we wish to compare two

plans that were selected as optimal plans from two different neighborhoods. Both

problems depend on the execution mode of zTuned and the solutions are described

in Chapter 6.

5.3 Workbench for Experiments

Experiments may be run before or after the database goes into production use.

Once the database is in production use, experiments can be run on: (i) the pro-

duction database that serves user queries, (ii) the standby databases backing up the
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Figure 5.2: Workbench for Experiments

production database, or (iii) the test database used by DBAs and developers (see

Figure 1.1).

Running experiments on the user-facing production database is a risky proposi-

tion unless the impact of experiments can be bounded or do not make an excessive

use of database resources. For example, the DBA should be able to specify some-

thing like: “Use up to 10% of the system’s resources to generate useful data through

experiments, but do not harm the production workload by more than 5%”. Ref-

erences [7, 8, 12] take this approach. Furthermore, fine-grained resource control and

isolation through OS-level resource containers and virtualization [28] is a key enabler

here.

However, many administrators will remain fearful of running experiments on the

user-facing database system. We propose a novel framework for running online ex-

periments that exploits the standby database environment (Figure 5.2) maintained

for high availability [6]. This design emerged from the following observations:
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• The competitive edge gained from high availability makes enterprises run data-

bases with built-in redundancy. All commercial databases support one or more

hot standby databases that are kept up to date with the (primary) production

database through redo log shipping. If the primary fails, a standby will quickly

take over as the new primary. Hence, the standby databases run the same

hardware and software as the production database.

• Each standby database has very low utilization since it only has to apply redo

log records. (Modern OS and storage systems provide very efficient mechanisms

for applying redo logs.) Reference [16] mentions that enterprises that have

99.999% (five nines) availability typically have standby databases that are idle

99.999% of the time.

The standby databases are a valuable and underutilized asset that can be used for

online experiments without impacting user-facing queries. However, the recovery

time on failure should not be affected. Our workbench runs two resource-isolated

virtual machines on each standby database: the slave and the garage (see Figure 5.2).

• The slave takes over the original responsibility of the standby database, and is

responsible for applying the redo log records. The slave usually needs less than

1% resources. The remaining resources are given to the garage where exper-

iments are run, but redo logs are not applied, in order to ensure consistency

among each set of experiments.

• The slave runs continuously, while the garage is started on demand when ex-

periments need to be done. When the garage is started, it is given a snapshot

of the current database. Although both the slave and the garage logically

have separate local copies of the database, only a single physical copy of the

database exists on the standby system. The snapshots have copy-on-write se-
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mantics. Thus, the redo logs applied by the slave do not affect the garage’s

snapshot.

• When we are done with experiments or if the primary fails, the garage is torn

down immediately. All resources are then released to the slave which will

continue functioning as a pure standby or take over the primary as needed.

• Setting up the garage (including snapshots and resource allocation) takes less

than a minute, and tear-down takes even less time. The whole process is so

efficient that recovery time is not increased by more than a few seconds.
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6

zTuned: Automated SQL Tuning

SQL tuning has become a critical aspect of database administration and its success

usually depends on the expertise of highly-skilled database administrators (DBAs).

However, many medium and small size enterprises do not have trained database ad-

ministrators, rather they have general purpose information technology (IT) person-

nel. Even in the presence of DBAs, the SQL tuning task is extremely time consuming

since in many cases it involves experimentation with different execution plans in an

attempt to correct the mistakes of the query optimizer.

For this purpose, we developed zTuned, a system that formalizes and automates

the process of SQL tuning using the experiment-driven approach presented in Chap-

ter 5. zTuned utilizes several mechanisms, including the Explain and Explain Plan

commands discussed in Chapter 3. It has the ability to generate different yet equiv-

alent execution plans using a set of transformations, and then through a smart ex-

ploration of the plan space, find a better execution plan. It is important to note that

this process is similar to what a DBA would perform in order to manually diagnose

and fix the issue. We automated this process in a way that provides confidence to

the DBA that she can trust the system to perform SQL tuning automatically.
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The plan generation occurs independently from the query optimizer, allowing

for a larger and different exploration of the plan space. In addition, since zTuned

works outside the optimizer, it can potentially be used with any database that uses

a cost-based optimizer and supports the specification of full execution plans.

In an attempt to produce a system that is both efficient and practical, we gave

zTuned the capability of performing SQL tuning in two different modes, online and

offline. Given the different set of restrictions and requirements, we utilized the

mechanisms and algorithms we developed in two different ways.

6.1 Performing SQL Tuning Online

Online SQL tuning refers to performing the tuning directly on the production system.

Of course, the main concern is the additional overhead introduced by this process.

Hence, our goal in this mode is to incur as small overhead as possible and search

the plan space very efficiently and effectively. In the online mode, zTuned explores a

smaller part of the plan and in particular, the neighborhood of the plan provided by

the optimizer. This exploration occurs in an incremental fashion and it incurs a very

small overhead. Figure 6.1 shows the flow of execution for zTuned in Online Mode.

Initially, zTuned collects the necessary statistics from the execution history that

affect the poorly-performing query we are asked to tune. These statistics include past

execution times as well as actual cardinalities for each operator. If this information

is not available, zTuned must execute the offending query; but this is the only query

execution that it will perform.

After obtaining the execution plan selected by the query optimizer, zTuned will

attempt to explore the plan’s neighborhood. It is important to remember here some

of the essential properties of a plan neighborhood described in Section 4.1. In partic-

ular, all plans in the same neighborhood can utilize the exact same cardinality esti-

mates for all their operators. Hence, zTuned uses the costing engine of the database
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Figure 6.1: Online Mode Implementation Workflow

to estimate the execution cost of each plan it generates. Since all the plans are

similar in structure and the same cardinalities are used, zTuned can safely compare

the estimated execution costs in order to select the best execution plan within the

neighborhood.

Even though a plan neighborhood consists of plans with similar structure and

merely different operators, its size could be very large. Actually, the size of a plan

neighborhood could be exponential in the number of tables, depending on the number

of valid intra-transformations. Hence, it is also essential to explore a single neigh-
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borhood in a more systematic way. The idea is to order the operators in such a way

that when transformations are applied to them, the generated plans are more likely

to be better. We have devised two techniques that appear to work well in practice.

First, we consider the difference between the estimated (eci) and actual (aci)

execution cost of each operator Opi. However, the two costs cannot be directly

compared because estimated costs are usually expressed in terms of disk page fetches,

whereas real costs are expressed in terms of time. Instead, we perform a relative

comparison between them based on the cost of the entire plan. Let E and A be the

estimated and actual execution costs of the entire plan respectively. Then, eci

E
and

aci

A
are the fractions of total estimated and actual costs attributed to Opi. We define

the Costing Error (Ei) for each operator Opi to be:

Ei =
| eci

E
− aci

A
|

aci

A

(6.1)

We rank the operators according to the costing error. Operators with higher

costing error Ei are more likely to be the cause of the problem since they are an

indication that the query optimizer has made a significant costing mistake. Hence, we

perform all valid intra-transformations to the k operators with the highest ranking.

The parameter k is an adjustable parameter and for our experiments, we used k = 3.

If the above set of experiments do not produce an execution plan that is better, a

more detailed sensitivity analysis is needed. Based on this analysis, we compare the

difference between the estimated (edi) and actual (adi) cardinalities of the different

operators. We define the Cardinality Error (Di) for each operator Opi to be:

Di =
|edi − adi|

adi

(6.2)

Unlike the cost comparison, a higher cardinality error does not necessarily imply
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the need for a different operator. For each operator input, there exists a range of

cardinality values for which that particular operator is the best. Therefore, only

when the actual cardinality value is located outside that range, a different operator

will be used. However, it is still a promising starting point for the neighborhood

exploration, especially if the operator is located low in the tree. In this case, it is

quite possible that this error propagated up the tree and thus affected the entire plan.

Thus, we rank the operators according to the cardinality error and then perform all

valid intra-transformations to the k operator with the highest ranking. We ensure

that these operators are different from the k operators produced by the costing error

ranking.

If the above set of experiments do not produce an execution plan that is better,

the exploration continues until it covers the entire neighborhood. However, in order

to explore the full plan space, we would also need to generate plans that belong to

different neighborhoods. Unfortunately, zTuned is no longer able to use the original

actual cardinalities. Even though zTuned could use as much information as possible

and estimate the remaining cardinalities using the database statistics, comparing

estimated costs would no longer be valid. Hence, in the online mode, zTuned does

not explore different neighborhoods. If the original neighborhood does not include a

better execution plan, the user is recommended to run zTuned in the offline mode.

6.2 Performing SQL Tuning Offline

In the offline mode, zTuned has the ability to explore a much larger space using more

experiments that involve the execution of a particular plan. Even though it might

take more time to find a better plan, it will take considerably less time compared

to the manual experimentation used today by DBAs. Figure 6.2 shows the flow of

execution for zTuned in Offline Mode.

Initially, zTuned uses the same exploration techniques outlined in Section 6.1 to
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Figure 6.2: Offline Mode Implementation Workflow

generate all possible plans in the neighborhood of the plan selected by the query

optimizer. If this does not lead to a better execution plan, zTuned will then use

inter-transformations to generate plans that belong to different neighborhoods.

However, we are no longer able to use the original running cardinalities since the

generated plans belong in different neighborhoods. The idea here is to execute one

or more of these further-away plans in order to collect the additional cardinalities

needed, and then explore their neighborhoods with full information.

When exploring different neighborhoods, we are faced with three problems. The
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first problem involves the selection of which neighborhood to explore next, given

multiple choices. After selecting the neighborhood, we need to select which plan from

that neighborhood to execute initially in order to collect the necessary cardinalities.

The final problem occurs when we wish to compare two plans that were selected as

optimal plans from two different neighborhoods.

Continuing in the spirit of exploring the space incrementally, zTuned orders the

plans generated by the inter-transformations based on the estimated running costs.

It then fully explores each neighborhood, starting from the one with the smallest

estimated running cost.

In the offline mode, zTuned has the ability to execute additional plans in order to

collect any missing statistics that are needed to explore different neighborhoods. In

Section 4.2, we proved that the exploration of a neighborhood is independent from

the initial plan that is executed. Hence, we have two choices: (a) we can generate

all plans in the neighborhood, cost them, and then execute the one with the smallest

estimated cost or (b) execute the plan that was produced by the inter-transformation

i.e., the plan that is closest to the plan selected by the query optimizer. We selected

the latter choice because it would be inefficient to generate all plans and then store

them or re-generate them during the neighborhood exploration. In addition, starting

from the plan that is most similar to the plan selected by the query optimizer has

some potential benefits that we plan to take advantage of in the future. In particular,

since the two plans are so similar, we could materialize some subplans from the

original plan and avoid the execution of the entire plan. Moreover, if we only need

one additional cardinality value for our new plan, we might perform sampling instead

of executing the entire plan.

Finally, zTuned executes the best plan from each neighborhood and uses the

actual running times to compare them. These final runs also serve as validation for

the improvement offered by the new plan.
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6.3 zTuned Settings

In both modes, the user is able to provide tuning goals for each query. A tuning goal

can be specified as an absolute running time threshold or a percent improvement over

the running time of the poorly-performing plan. For example, the user may specify

that a query must run under 5 minutes, or that she wishes that the query execution

time is improved by 20%. In both cases, zTuned explores the space of plans until it

finds a plan that satisfies the provided condition.

Alternatively, the user can bound the execution of zTuned in two ways. She can

either specify a maximum time for zTuned to run or specify how many “better”

plans to find. In the former case, the user could instruct zTuned to execute for 3

minutes and return the best plan it found so far. In the latter case, the user may

instruct zTuned to return the first plan that it found to be better from the original

plan. These settings are particularly useful when running the online mode. The full

command to execute zTuned and all the options are outlined in Appendix A.2.
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7

Experimental Evaluation

We performed an extended experimental evaluation of our automated SQL Tuning

tool run in both online and offline mode. The purpose of the experimental evaluation

is three fold. First, we evaluate the effectiveness of zTuned in finding better execution

plans for poorly-performing queries. Second, we compare the online and offline modes

of zTuned and discuss the trade offs between them. Finally, we provide an interesting

study of the effects of skewed data on the performance of the query optimizer and

zTuned.

7.1 Environment

Our experiments were run on a VMWare Virtual Machine running Ubuntu Linux

8.10, with an Intel Core Duo 2.53GHz CPU and 1GB of RAM memory. The database

server we used was PostgreSQL v8.3.4. We used the TPC Benchmark H (TPC-

H) database with a scale factor of 1GB. TPC-H is a decision support benchmark

comprised of queries that try to simulate business intelligence queries.

By default, the TPC-H benchmark populates the tables with uniform data. How-

ever, it is unrealistic to believe that a given dataset does not contain any data skew.
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For example, a typical international company will have different numbers of cus-

tomers in each country. Therefore, we modified the TPC-H data generation tool

(DBGEN ) to produce skewed data that follow a zipfian distribution. We used the

original DBGEN to generate all the data in a database, called TPCH Z0, and the

modified DBGEN to generate skewed data with a zipfian parameter of 3 in another

database, called TPCH Z3. We used an index advisor to produce indexes for the

TPC-H workload in order to ensure a proficient physical design. We used the default

value for all PostgreSQL configuration parameters. Finally, we run the “Analyze”

command in PostgreSQL to update all the database statistics. By default, Post-

greSQL collects the 10 most frequent values and creates histograms with 10 bins for

almost all columns in all tables in the database.

The Explain Plan command was implemented as an internal command in Post-

greSQL and was written in C. As a result, some core PostgreSQL code was modified.

zTuned is currently implemented as a stand-alone Java application. For our exper-

iments, we used TPC-H queries generated from the 22 available templates. The

TPC-H tool QGEN was used to generate all instances of the queries with different

parameter values. The results presented below were obtain by executing zTuned in

offline mode over the TPCH Z3 database, unless otherwise noted.

7.2 Effectiveness Evaluation

The first set of experiments targets the ability and efficiency of zTuned to find better

execution plans for poorly-performing queries. First, we will present detailed results

from tuning a specific query over TPC-H data. Second, we compare execution plans

selected by the query optimizer to the ones selected by zTuned. For this purpose,

we selected some queries and executed all possible plans. The truly optimal plan is

the one that executes in the least amount of time. Finally, we discuss how zTuned

can find better execution plans for a large variety of queries.
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In order to get a better insight to why the query optimizer makes mistakes and

how zTuned can correct them, we will use the sample query shown in Figure 7.1.

This is a variant of query 21 from the TPC-H Benchmark. It identifies certain

suppliers from Argentina whose products are part of a multi-supplier order (with

current status of ’F’) and with certain account characteristics. We generated and

executed all possible plans for this particular query.

SELECT s_name, count(*) as numwait
FROM supplier, lineitem, orders, nation
WHERE s_suppkey = l_suppkey

AND o_orderkey = l_orderkey
AND o_orderstatus = ’F’
AND s_nationkey = n_nationkey
AND s_acctbal < 5000
AND l_extendedprice > 80000
AND n_name = ’ARGENTINA’

GROUP BY s_name
ORDER BY numwait desc, s_name;

Figure 7.1: Variant of TPC-H Query 21

The execution plan selected by the query optimizer is shown in Figure 7.2a. We

see how the estimated cardinalities differ more from the actual ones for joins rather

than for table scans. The optimizer does a reasonable job at estimating cardinalities

for tables since all statistics are updated. However, the cardinalities of both joins

were severely underestimated, which led the optimizer to select an index nested loop

join at the top. The actual cardinality of the child hash join was much higher than

expected and thus, the index over the orders table was hit a lot. The query from

Figure 7.1 was then tuned using zTuned in the offline mode. In this case, zTuned

selected the plan shown in Figure 7.2b, which performs about 20% better. Indeed,

the new plan changes the index nested loop join into a hash join, which performs

better given the larger number of tuples it needs to join.
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(a) Plan Selected by Optimizer (b) Plan Selected by zTuned

Figure 7.2: Execution Plans for Query in Figure 7.1

We repeated the above process for 3 more queries and the results are summarized

in Figure 7.3. We note that in all cases, zTuned was able to find a plan that was

either the truly optimal plan (found by exhaustive search), or much closer to the

optimal plan compared to the plan selected by the query optimizer.

Finally, we generated a large set of TPC-H queries and tuned them using zTuned

in offline mode. All queries were run three times and we report average times.

Table 7.1 provides the results for 7 queries. The percent improvement that zTuned

can offer varies greatly depending on the query. In general, larger queries see more

improvement than smaller queries, since there is a higher probability for the query

optimizer to make a mistake. When a query involves 3 or 4 joints, the incorrect

cardinality estimates that are mainly based on invalid independence assumptions,

have a larger effect on the selected plan. In addition, if a large mistake happens low
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Figure 7.3: Running Times for the Optimal, Optimizer, and zTuned Plans

in the execution tree, then that mistake usually propagates up the tree. On average,

zTuned is able to provide a plan with a 30% improvement over the plan selected by

the query optimizer, and in some cases even up to 86% improvement.

The total number of plans explored in each tuning session also varies greatly. It is

directly related to the number of tables accessed by the query. For instance, queries

8 and 9 involve joins over 6 tables and we see that zTuned explores 4000 and 7800

plans respectively. On the other hand, query 12 consists of a single join over two

tables and the number of possible plans is just 12. Of course, tuning time is also

directly related to the number of plans explored, as well as to the running time of

the query.

7.3 Evaluating Online Vs Offline Modes

In an attempt to produce a system that is both efficient and practical, we gave

zTuned the capability of performing SQL tuning in two different modes, online and

offline. In the online mode, the cardinalities are collected from the plan selected
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Query Run Time Run Time Percent Tuning Number of
of Optimizer of zTuned Improvement Time Plans

Plan (sec) Plan (sec) (sec) Explored
5 41.76 40.64 2.68 225.84 1440
7 6.65 0.90 86.51 67.03 630
8 31.59 30.24 4.28 329.88 4000
9 224.88 95.28 57.63 884.92 7800
10 42.86 38.23 10.81 131.73 190
11 3.69 2.30 37.71 13.10 48
12 39.52 30.72 22.27 70.88 12

Table 7.1: Tuning Results for TPC-H Queries

by the query optimizer and then a single neighborhood is explored. Exploration

within a neighborhood is only based on costing, and hence, we can explore a large

number of plans very quickly. In the offline mode, we explore both within and across

neighborhoods, using a combination of costing and execution in order to select a

better plan. However, in most cases we don’t actually execute more than 5-6 plans.

In this section, we present the results from tuning the same queries in both online

and offline mode. Figure 7.4 summarizes the results whereas Table 7.2 provides more

details.

As expected, the percent improvement achieved with offline mode is greater com-

pared to online mode. Actually, in about half the cases, the online mode is not able

to find a better plan and suggests running zTuned in offline mode. It is important

to note the time it takes to explore plans in online mode, which is less than 1 second

in many cases. This happens because the two heuristics described in Section 6.1

work well in practice. Operators with larger execution cost or cardinality mistakes

are more promising to produce a better plan. Indeed, with just a few transforma-

tions for those operators, zTuned is able to produce plans with better performance.

The tuning time for queries 5 and 8 is much larger because in this case, an entire

neighborhood was fully explored unsuccessfully.
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Figure 7.4: Tuning Improvement in Online Vs Offline Modes

Query Run Time Online Mode Offline Mode
of Optimizer Tuning Percent Tuning Percent

Plan (sec) Time (sec) Improvement Time (sec) Improvement
5 41.76 50.71 0.00 225.84 2.68
7 6.65 0.15 82.57 67.03 86.51
8 31.59 104.97 0.00 329.88 4.28
9 224.88 0.16 26.14 884.92 57.63
10 42.86 0.06 0.00 131.73 10.81
11 3.69 0.10 36.99 13.10 37.71
12 39.52 0.24 0.00 70.88 22.27

Table 7.2: Tuning Results in Online Vs Offline Modes

For the offline mode, the tuning time is larger compared to the online tuning time

since we actually execute some generated plans. However, the tuning times for those

particular queries are still within minutes, which is significantly less compared to the

time a DBA would need to find a better plan. In addition, note that the times we

report are the times to explore the full space of plans, and not until the first better

plan is found. zTuned provides both abilities but we chose to explore the full space
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for better evaluating its performance. Once again, there is a trade-off between the

time spent and the percent of improvement that can be achieved.

7.4 Case Study with Skewed Data

In the presence of many joins, invalid independence assumptions have a strong af-

fect on the selected execution plan. There is another class of invalid assumptions

that can have similar negative effects even with few joins; namely, invalid uniformity

assumptions. Most databases keep track of single table statistics with the use of

histograms, which are usually relatively coarse. Hence, when the query optimizer

needs to calculate cardinality estimates over predicates, it usually resorts to uni-

formity assumptions. Considering that the TPC-H Benchmark generates uniform

data, evaluating zTuned only over the default TPC-H data seemed inappropriate.

We thus modified DBGEN to generate skewed TPC-H data and match more realistic

scenarios.

In this section we evaluate zTuned when asked to tuned the same queries over a

database with uniform data and another with skewed data. Figure 7.5 summarizes

the results whereas Table 7.3 provides more details.

The percent improvement for queries over skewed data was larger than over uni-

form data, as expected. Over uniform data, the cardinality estimates of the query

optimizer were relatively close to the actual cardinalities, and hence it made better

plan choices. In some cases, zTuned was in agreement with the query optimizer as

to which plan is better, and in other cases the plan it found was marginally better.

However, over skewed data, the query optimizer was making more mistakes on car-

dinality estimations, which led to many suboptimal plans. In these cases, zTuned

was able to find much better plans.

Finally, note that the tuning times between the two cases are very similar most of

the time, because the selected plans were similar. However, in some cases the selected
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Figure 7.5: Tuning Improvement over Uniform Vs Skewed Data

Query Uniform Data Skewed Data
Tuning Percent Tuning Percent

Time (sec) Improvement Time (sec) Improvement
5 274.42 2.10 225.84 2.68
7 143.02 11.09 67.03 86.51
8 223.79 2.01 329.88 4.28
9 1143.52 30.58 884.92 57.63
10 101.74 6.22 131.73 10.81
11 17.18 0.00 13.10 37.71
12 69.79 0.00 70.88 22.27

Table 7.3: Tuning Results over Uniform Vs Skewed Data

plans were very different even though the queries and the database configuration

parameters were the same. Since we run the “Analyze” option for both databases,

each database had its own (and probably) different sets of histograms and statistics.

Even with updated statistics, the query optimizer was making mistakes over both

databases but even more mistakes over the skewed data. The ability of zTuned to

find better plans however, is less affected by the statistics kept by the database.
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8

Conclusion

SQL tuning is a critical aspect of database performance. Its success usually depends

on the expertise of highly-skilled DBAs or time consuming trial-end-error steps. We

developed a new command for the PostgreSQL database, called Explain Plan, that

is capable of costing and executing a fully specified physical plan. We then defined

the concepts of plan neighborhoods, inter, and intra transformations in order to

effectively and efficiently search the large space of execution plans.

Using the above mentioned mechanisms and techniques, we developed a system,

called zTuned, that formalizes and automates the process of SQL tuning using an

experiment-driven approach. We developed automated algorithms for planning ex-

periments aimed at improving the poorly-running plan that is currently being used

for a particular query. These experiments take place on a new workbench that takes

advantage of underutilized resources, like the standby system that most production

environments have.
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Appendix A

Appendix

A.1 Explain Plan Design

Command synopsis:

EXPLAIN PLAN (ANALYZE) (VERBOSE) "<Physical Plan>" FOR <Query>

Parameters:

Analyze With this option the command will actually executes the plan and then

displays the run time accumulated within each plan node along with the same

estimated costs that the plain command shows

Verbose Shows the full internal representation of the plan tree, rather than just a

summary. This option is only useful for debugging purposes.

Physical Plan The physical plan under consideration. The syntax is given below.

Note that the quotes are important.

Query The actual SQL query that corresponds to the provided plan. This is re-

quired because it can provide useful information for the relations, indexes, and

target lists (which is the information that the query should return) after the
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query is process by the parser. It is also used to infer aggregates, group by

clauses, sort by clauses etc.

Physical Plan Syntax

Each plan node must appear within braces. The supported plan nodes and the

corresponding keywords are:

Operator Keyword
Sequential Scan seqscan
Index Scan indexscan
Nested Loop Join nestjoin
Hash Join hashjoin
Sort-Merge Join mergejoin
Materialization materialize

The syntax for each plan node is described next.

Sequential Scan

Attribute Value Notes
:parent TableName required
:filter <expression> optional
:cardinality <integer> optional

Index Scan

Attribute Value Notes
:parent TableName required
:using IndexName required
:indexCondition <expression> required
:filter <expression> optional
:cardinality <integer> optional

Nested Loop Join

Attribute Value Notes
:nestCondition <expression> optional if inner join is index scan
:filter <expression> optional
:outerjoinpath <plan node> required
:innerjoinpath <plan node> required
:cardinality <integer> optional

Hash Join
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Attribute Value Notes
:hashCondition <expression> required
:filter <expression> optional
:outerjoinpath <plan node> required
:innerjoinpath <plan node> required
:cardinality <integer> optional

Merge Join

Attribute Value Notes
:mergeCondition <expression> required
:filter <expression> optional
:outersortkeys <column list> needed if outerjoinpath is not sorted
:innersortkeys <column list> needed if innerjoinpath is not sorted
:outerjoinpath <plan node> required
:innerjoinpath <plan node> required
:cardinality <integer> optional

Materialize

Attribute Value Notes
:path <plan node> required
:cardinality integer> optional

Expression Syntax

Operand Definition
<expression> A sequence of <subexpression> separated

by AND/OR and grouped into parenthesis.
<subexpression> <operand> <op> <operand>
<operand> One of: <column name>, string, integer, or double
<column name> It must have the form tablename.columnname
<op> Any mathematical operators and LIKE
<column list> A comma separated list of <column name>

Other Notes

• Aggregates, group clauses, having clauses, sort clauses etc are implicitely sup-

ported, that is they are induced from the provided query. The user should not

specify them in the string representation of the physical plan.

• The cardinality value represents the expected number of output tuples for a

particular node.
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A.2 zTuned Usage

zTuned command:

java zTuned [-v <n>] [-l logId] [-m mode]

-c <config\textunderscore file>

-q "<query\textunderscore text>"

-f <query\textunderscore file>

Console verbosity (-v) options:

0 : No output, no error messages

1 : No output except error messages

2 : Basic output (default)

3 : Detailed output

Log id (-l) option:

A string to be appended to the log files.

If none, the current data and time is used.

Mode (-m) options:

online : Online Tuning (Default);

offline : Offline Tuning

Configuration (-c) option:

A configuration file for the database that specifies all the necessary

information needed to connect to a database (url, name, port etc.)

Query (-q) option:

A query to tune

File (-f) option:

A file containing one or more queries to tune
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