
Xplus: A SQL-Tuning-Aware Query Optimizer

Herodotos Herodotou and Shivnath Babu∗
Department of Computer Science

Duke University
Durham, North Carolina, USA
{hero,shivnath}@cs.duke.edu

ABSTRACT
The need to improve a suboptimal execution plan picked by the
query optimizer for a repeatedly run SQL query arises routinely.
Complex expressions, skewed or correlated data, and changing con-
ditions can cause the optimizer to make mistakes. For example, the
optimizer may pick a poor join order, overlook an important index,
use a nested-loop join when a hash join would have done better, or
cause an expensive, but avoidable, sort to happen. SQL tuning is
also needed while tuning multi-tier services to meet service-level
objectives. The difficulty of SQL tuning can be lessened consid-
erably if users and higher-level tuning tools can tell the optimizer:
“I am not satisfied with the performance of the plan p being used
for the query Q that runs repeatedly. Can you generate a (δ%)
better plan?” This paper designs, implements, and evaluates Xplus
which, to our knowledge, is the first query optimizer to provide this
feature. Xplus goes beyond the traditional plan-first-execute-next
approach: Xplus runs some (sub)plans proactively, collects mon-
itoring data from the runs, and iterates. A nontrivial challenge is
in choosing a small set of plans to run. Xplus guides this process
efficiently using an extensible architecture comprising SQL-tuning
experts with different goals, and a policy to arbitrate among the
experts. We show the effectiveness of Xplus on real-life tuning
scenarios created using TPC-H queries on a PostgreSQL database.

1. INTRODUCTION
Database query optimizers have predominantly followed a plan-

first execute-next approach [22]: the optimizer uses a search algo-
rithm to enumerate plans, estimates plan costs based on a perfor-
mance model and statistics, and picks the plan with least estimated
cost to execute a given SQL query. While this approach has been
widely successful, it causes a lot of grief when the optimizer mis-
takenly picks a poor plan for a query that is run repeatedly (e.g., by
a business intelligence or report generation application).

Optimizer mistakes are common in practice: an important index
may not be used in the selected plan, the choice of join order may
be poor, or an expensive, but avoidable, sort may get done [10].
A database administrator (DBA) or expert consultant may have to

∗Supported by NSF awards 0917062 and 0964560

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.

step in to lead the optimizer towards a good plan [6]. This process
of improving the performance of a “problem query” is referred to
in the database industry as SQL tuning. Tuning a problem query is
critical in two settings:
• Bad plan setting: Cardinality (number of tuples) estimation er-

rors due to unknown or stale statistics—common for complex
queries over skewed or correlated data—can cause optimizers
to pick a highly suboptimal plan for a query.
• SLO setting: Databases are used as one of the tiers in multi-

tiered services that need to meet service-level objectives (SLOs)
on response time or workload completion time (e.g., all reports
should be generated by 6.00 AM). Tuning a multi-tiered service
to meet SLOs creates SQL tuning tasks (e.g., find a plan that can
execute query Q in under 10 minutes).

Need for a SQL-Tuning-Aware Query Optimizer: SQL tuning is
a human-intensive and time-consuming process today, and expen-
sive in terms of the total cost of database ownership. The pain of
SQL tuning can be lessened considerably if query optimizers sup-
port a feature using which a user or higher-level tuning tool can
tell the optimizer: “I am not satisfied with the performance of the
plan p being used for the query Q that runs repeatedly. Can you
generate a (δ%) better plan?” This paper designs, implements, and
evaluates Xplus which, to the best of our knowledge, is the first
query optimizer to provide this feature.

The key to effective tuning of Q is to make the best use of the
information available from running a plan/subplan for Q; and to
repeat this process until a satisfactory plan is found. The following
information is available for each operatorO of a plan p after p runs:
• Estimated Cardinality (EC): the number of tuples produced by
O as estimated by the optimizer during plan selection.
• Actual Cardinality (AC): the actual number of tuples produced.
• Estimated-Actual Cardinality (EAC): the number of tuples pro-

duced byO as estimated by the optimizer if the optimizer knew
the actual cardinality (AC) values of O’s children. (EAC is a
new concept introduced in this paper.)

Existing Approaches: The Learning Optimizer (Leo) [23] incor-
porates AC values obtained from previous plan runs to correct EC
values during the optimization of queries submitted by users and
applications [9]. The pay-as-you-go approach takes this idea fur-
ther using proactive plan modification and monitoring techniques
to measure approximate cardinalities for subexpressions to supple-
ment the AC values collected from operators in a plan [8]. The
overall approach of [23, 8, 9] has some limitations in practice:
• Risk of unpredictable behavior: Making changes to plans of

user-facing queries runs the risk of performance regression be-
cause incorporating a few AC values alongside EC values can
sometimes lead to selection of plans with worse performance
than before [19]. DBAs and users usually prefer predictable,

Figure 1: (a) Neighborhoods and physical plans, (b) Neighborhood Table, and (c) Cardinality Table for our example star-join query

possibly lower, performance over unpredictable behavior [4].
• Imbalanced use of exploitation and exploration: Effective tun-

ing of a problem query needs to balance two conflicting ob-
jectives. Pure exploitation recommends running the plan with
least cost based on the current cardinality estimates. Leo and
pay-as-you-go take this route which ignores the uncertainty in
estimates when picking the plan for the query. In contrast, pure
exploration recommends running the plan whose execution will
produce information that reduces the uncertainty in current es-
timates the most, while ignoring plan costs. Oracle’s Automatic
Tuning Optimizer (ATO) [6] takes an exploration-oriented route
where base tables and joins are first sampled to reduce the un-
certainty in their cardinality estimates.
• No support for the SLO setting: No current optimizer supports

the SLO setting where systematic exploration can be critical.
Xplus addresses these limitations. A user or tuning tool can mark
a query Q for which the performance of the plan being picked is
not satisfactory; and Xplus will try to find a new plan that gives the
desired performance. If Xplus fails to find such a plan, it will still
produceQ’s optimal plan for the current database configuration and
optimizer performance model; with all plans costed using accurate
cardinalities. Xplus works with the existing database configuration.
While configuration changes (e.g., new indexes, changes to server
parameters, or provisioning more resources) can also improve Q’s
performance, such changes are disruptive in many ways including
changes to the performance of other queries. If Xplus fails, then we
have the strong guarantee that disruptive changes are unavoidable
to get the desired performance for Q. Appendix A gives a detailed
comparison of Xplus with other SQL tuning approaches.

We introduce a running example to illustrate the challenges faced
during SQL tuning. Suppose Xplus has to tune a star-join query
Q that joins four tables R (fact table), S, T , and U , with filter
conditions on R and S. Figure 1(a) shows four valid execution
plans p1-p4 forQ. Let p1 be the least-cost plan picked by the query
optimizer. Figure 1(a) shows the EC, AC, and EAC values for each
operator in plan p1 that are available after a run of p1.
• Cardinality estimation errors: A large difference between an

AC and corresponding EC value indicates a cardinality estima-
tion error. For example, AC=1800 differs significantly from
EC=800 for the filtered table scan over R, caused possibly by
unknown correlations among columns of R.
• Error propagation: Blind comparison of AC and EC values can

lead to wrong conclusions because estimation errors propagate
up the plan. This issue can be addressed by comparing AC val-
ues with corresponding EAC values. For example, consider the
hash join between R and S in plan p1. While the gap between
AC=1367 and EC=450 is large for this join, the EAC=1350 is
close to AC. (This EAC was computed based on the actual car-

dinalities, 1800 and 1200, of the join’s children.) This infor-
mation suggests that the estimation error in the join’s output
cardinality is almost exclusively due to wrong input cardinality
estimates, rather than a wrong join selectivity estimate.
• Livelock in SQL tuning: Suppose p2 is the new least-cost plan

when the AC values from p1 are incorporated with existing
statistics. Approaches like Leo will use p2 to run the next in-
stance of Q submitted, which is problematic. Although p2 is
seemingly very different from p1, p2 will not bring any new AC
values. Thus, no further progress will be made towards finding
better plans for Q; we say that the tuning of Q is livelocked.1

• Use of EAC: Comparing EAC and AC values for joins indicates
which joins are more (or less) selective than the optimizer’s
estimate. For example, R’s join with T , whose EAC=756 >
AC=508, turned out to be much more selective than estimated.
Such information can guide whether a plan like p3, which has
a different join order from p1, could improve performance. A
run of p3 will also bring the unknown AC value for R ./ T .
• Exploitation Vs. exploration: Would plan p4 be preferable to
p3 as the plan to run next because a run of p4 will bring two
unknown AC values compared to just one from p3? At the same
time, p4 is riskier to run because its cost estimate relies on two
unknowns. This issue is the manifestation in SQL tuning of the
classic “exploit or explore” dilemma in machine learning [12].
• Efficiency features: Running a subplan instead of the full plan

will often bring all the new AC values that the plan brings, e.g.,
the R ./ T subplan will bring all new AC values for p3.

Our Contributions: As this example shows, a number of novel
opportunities and challenges await a SQL-tuning-aware optimizer
like Xplus. We make the following contributions in this paper:
• Xplus uses a novel abstraction called plan neighborhoods to

capture useful relationships among plans that simplify infor-
mation tracking and improve efficiency in SQL tuning.
• Xplus balances exploitation and exploration efficiently using a

combination of tuning experts with different goals, and a policy
to arbitrate among the experts. Efficiency is further improved
through features like subplan selection and parallel execution.
• Xplus enables the tuning overhead on the production database

to be bounded. Xplus is also designed to leverage recent solu-
tions that let the database system run query plans noninvasively
in sandboxed [6] and standby [6, 11] settings for tuning.
• The Xplus architecture emphasizes modularity as well as usage

as a standalone tuning tool while being merged incrementally
into commercial optimizers that are very complex software.
• We report an extensive evaluation of Xplus based on SQL tun-

ing scenarios that arise routinely in practice.

1Livelocks are well-studied phenomena where a process appears to
be executing, but makes no real progress towards its goal.

2. FOUNDATIONS OF XPLUS
2.1 Inputs and Output of a Tuning Session

Xplus can be used both as a regular optimizer—given a query,
return the plan with least-estimated cost—and as a tuning optimizer
where it runs tuning sessions. A tuning session takes three inputs:
1. The query Q and its current plan p to be tuned.
2. The stopping condition to stop tuningQ. Current options are to

run Xplus until (i) a new plan is found that is a given δ% better
than p; or (ii) a given time interval; or (iii) Xplus can cost all
plans for Q using accurate cardinalities (a novel contribution);
or (iv) the user exits the tuning session when she is satisfied
with the performance of the best plan found so far.

3. Resource constraints to limit the overhead placed by Xplus on
the regular database workload. Xplus accepts a parameter MPLT

(multiprogramming level of tuning) that represents the maxi-
mum number of plans Xplus can run concurrently.

Xplus outputs the best plan p′ found so far in the tuning session,
and the improvement of p′ over p. Database systems provide mul-
tiple ways to enable p′ to be used for future instances of Q: (i)
associating a plan with a query template (stored outlines in Oracle
[6], abstract plans in Sybase ASE [1], and Explain Plan in Post-
greSQL [15]), (ii) optimizer hints in Microsoft SQL Server [7] and
IBM DB2 [17], and (iii) optimization profiles [16] in DB2.

2.2 Plan Neighborhoods
We begin by discussing the plan neighborhood abstraction that

Xplus uses to partition a query Q’s physical plan space. The cost-
based optimizer in a database system will use a performance model
to estimate the cost of plans forQ. The performance model consists
of a cardinality model and a cost model [14]. The cardinality model
is used to estimate the cardinality of relational algebra expressions
defining the data processed as input and produced as output by each
operator in a plan. Given these cardinality estimates, the cost model
estimates the execution cost of each operator. The cost model takes
as input factors such as CPU and disk-access speeds, memory avail-
ability, and data layout on disk. While modern cost models have
been validated to be quite accurate when cardinalities are known,
the cardinality models are laced with simplifying assumptions that
can introduce order-of-magnitude errors [14].

Definition 1. Cardinality Set: To estimate the execution cost of
an operatorO in a plan p, the optimizer uses its cardinality model to
estimate cardinalities for a set CS(O) of relational algebra expres-
sions. CS(O) is calledO’s cardinality set. The cardinality set CS(p)
of plan p is the set union of the cardinality sets of all operators in p.

A function Generate CS(O,p) is written per physical operator type
to return the cardinality set CS(O) of an instance O of that type in
a plan p. The expressions in CS(O) are a subset of the relational
algebra expressions that define each of O’s inputs and outputs in p.
(Appendix B.1 discusses the Generate CS(O,p) functions for the
physical operators in PostgreSQL.) CS(p) is generated by invoking
the Generate CS(O,p) functions of all operators in plan p using a
bottom-up plan traversal.

Definition 2. Plan Neighborhood: The space of physical plans
for a queryQ can be represented as a graphGQ. Each vertex inGQ

denotes a physical plan for Q. An edge exists between the vertices
for plans p1 and p2 if CS(p1) ⊆ CS(p2) or CS(p2) ⊆ CS(p1). The
connected components of GQ define the plan neighborhoods of Q.

CS(N), the cardinality set of plan neighborhood N , is the set union
of the cardinality sets of all plans inN , i.e., the cardinalities needed
to calculate execution costs for all plans inN . Section 3.1 discusses
the enumeration of plan neighborhoods.

Xplus uses two data structures to store all information about
neighborhoods: Neighborhood Table and Cardinality Table. Fig-
ures 1(b) and 1(c) illustrate these two data structures for our run-
ning example query from Section 1. The Neighborhood Table stores
information about all neighborhoods—including cardinality set and
current least-cost plan—with each row corresponding to one neigh-
borhood. Each row in the Cardinality Table stores the EC and
(if available) AC values of a relational algebra expression needed
for costing. The initialization, use, and maintenance of these data
structures during a tuning session are discussed in Section 3.

Figure 1(b) shows the cardinality set of neighborhoodN1 for our
running example. Plans p1 and p2 from Figure 1(a) belong to N1,
with CS(p1)⊂CS(N1) and CS(p2)⊂CS(N1). We get CS(p1)=CS(p2)
even though p2 uses a merge join, has an extra sort, and a different
join order between R and S compared to p1. Plans p3 and p4 be-
long to different neighborhoods than N1 since CS(p3) and CS(p4)
are disjoint from CS(N1).

2.3 Coverage of Neighborhoods
The progress of Xplus while tuning a query Q can be described

in terms of the coverage of neighborhoods in Q’s plan space.

Definition 3. Covering a Neighborhood: A neighborhoodN is
covered when AC values are available for all expressions in CS(N).

When a tuning session starts, only the AC values from the plan
picked originally for Q by the optimizer may be available. More
AC values are brought in as Xplus runs (sub)plans during the tuning
session, leading to more and more neighborhoods getting covered.

Property 1. Once a neighborhood N is covered for a query Q,
Xplus can guarantee that all plans in N are costed with accurate
cardinalities. Xplus can now output the optimal plan in N for the
given database configuration and optimizer cost model. 2

Property 2. Once all neighborhoods are covered for a query Q,
Xplus can output Q’s optimal plan for the given database configu-
ration and optimizer cost model. 2

The efficiency with which Xplus provides these strong guarantees
is captured by Properties 3-5.

Property 3. Xplus runs at most one (possibly modified) plan in
a neighborhood N to obtain AC values for CS(N). 2

Section 3.3 presents techniques for plan modification. Property 3
allows Xplus to reduce the number of plans run to tune a query by
maximizing the use of information collected from each plan run.

Property 4. Xplus can cover all neighborhoods for a query Q
by running plans for only a fraction of Q’s neighborhoods. Almost
all these runs are of subplans of Q (and not full plans). 2

Consider our running example star-join query and plan p1 selected
originally by the optimizer (Figure 1(a)). Xplus can fully tune this
query to provide the strong guarantee in Property 2 by running only
two subplans: one in neighborhood N3 and one in N5. As a real-
life example, PostgreSQL has around 250,000 valid plans for the
complex TPC-H Query Q9; which gave 36 neighborhoods. Xplus
only ran 8 subplans to fully tune this query and give a 2.3x speedup
compared to the original PostgreSQL plan.

Property 5. Xplus can determine efficiently the minimum set of
neighborhoods that contain plans whose cost estimates will change
based on AC values collected from running a plan for a query. 2

3. HOW XPLUS WORKS
We will now discuss how Xplus enumerates neighborhoods and

plans, chooses the next neighborhood to cover at any point, and
selects the (sub)plan to run to cover the chosen neighborhood.

3.1 Enumerating Neighborhoods and Plans
Definition 2 lends itself naturally to an approach to enumerate

all neighborhoods for a query Q: (i) enumerate all plans for Q
and their cardinality sets; (ii) generate the vertices and edges in the
corresponding graph GQ as per Definition 2; and (iii) use Breadth
First Search to identify the connected components of GQ. This ap-
proach quickly becomes very expensive for complex queries, so we
developed an efficient alternative based on plan transformations.

Definition 4. Transformation: A transformation τ when ap-
plied to a plan p for a query Q, gives a different plan p′ for Q. τ is
an intra (neighborhood) transformation if p and p′ are in the same
neighborhood; else τ is an inter (neighborhood) transformation.

Given a sound and complete set of transformations for a given
database system, Xplus can use:
• Inter transformations to enumerate all neighborhoods efficiently

for a query starting from the initial plan given in the tuning ses-
sion. One plan is stored per neighborhood (see Figure 1(b)).
• Intra transformations to enumerate all plans in a neighborhood

efficiently starting from the stored plan.
We have developed a set of transformations applicable to the physi-
cal plans of PostgreSQL. Transformations are implemented as func-
tions that are applied to a plan data structure (similar to work on
extensible query optimizers, e.g., [13]). The details are given in
Appendix B.2.

3.2 Picking the Neighborhoods to Cover
Suppose Xplus were to use an approach like Leo [23] to select

which neighborhoods to cover: find the current least-cost plan popt

in the plan space, and run popt to collect AC values to cover the
neighborhood that contains popt. The new AC values and recosting
of plans may lead to a new least-cost plan p′opt. If so, p′opt is run
to cover the corresponding neighborhood; and the process repeats.
However, this approach will get stuck in a local optimum—what
we call a livelock—if the neighborhood containing p′opt is already
covered. Thus, no new AC value will result from running p′opt,
and the query will not be tuned further. Another serious problem
with this approach is that it limits opportunities for efficient parallel
processing, but we will leave parallel processing to Section 4.

What is missing in the above approach is the ability to explore
the space of physical plans. Exploration will allow the optimizer to
collect additional information—thereby converting more cardinal-
ity estimates from uncertain to accurate—which eventually could
lead to a plan better than the current one. In pure exploration, the
focus is on reducing the uncertainty in cardinality estimates, so a
plan that resolves the current uncertainty the most will be preferred
over other plans. In contrast, in pure exploitation, the plan with
least cost based on current cardinality estimates is always preferred,
while the uncertainty in these estimates is ignored. Exploitation
and exploration are naturally at odds with each other, but elements
of both are required in holistic SQL tuning.

Xplus balances these conflicting objectives using multiple goal-
driven experts—given the current global state, an expert has its own
assumptions and strategy to recommend the next neighborhood to
cover—and a selection policy to arbitrate among the experts.

3.2.1 Experts
We describe the design of four experts whose combined behavior

has worked very well in common query tuning scenarios.2 These
experts operate with different degrees of exploitation and explo-

2We expect that the current set of experts in Xplus will be refined
and extended as Xplus is tried in different environments. The ar-
chitecture of Xplus makes it easy to add and drop experts.

Expert Exploitation Exploration Can run into
Component Component a Livelock?

Pure Exploiter Highest None Yes
Join Shuffler High Low Yes
Base Changer Low High No
Pure Explorer None Highest No

Table 1: Properties of the current experts in Xplus

ration as summarized in Table 1. Implementation details of these
experts are presented in Appendix B.3.
Pure Exploiter Expert: The Pure Exploiter simply recommends
the neighborhood Nopt containing the plan with the lowest esti-
mated cost based on the currently available information. Nopt is
recommended if it has not been covered yet. Otherwise, the Pure
Exploiter is livelocked and has no neighborhood to recommend.
Join Shuffler Expert: The Join Shuffler is one of the current ex-
perts in Xplus whose recommendation strategy is a mix of exploita-
tion and exploration. This expert leans more towards exploitation
based on the observation that the more selective joins should ap-
pear earlier in the plan’s join tree. The Join Shuffler works with
the current least-cost plan pbest among all covered neighborhoods.
It uses AC and EAC values in pbest to identify joins for which the
join selectivity was overestimated, and uses inter transformations
to push these joins as low in the plan as possible. If these trans-
formations result in a plan in an uncovered neighborhood N , then
N is recommended; otherwise the Join Shuffler is livelocked. For
the example tuning scenario from Section 1, the Join Shuffler may
recommend neighborhood N2 because it contains plans like p3.
Base Changer Expert: The Base Changer’s recommendation strat-
egy also mixes exploitation and exploration, but this expert leans
more towards exploration. The motivation for this expert comes
from the observation that the choice of which two tables to join first
(called the base join) in a join tree often has a high impact on the
overall performance of the tree. As anecdotal evidence, optimizer
hints in most database systems have direct support to specify the
first join or the first table to use in the join tree, e.g., the leading hint
in Oracle [6]. The Base Changer considers each two-way join in the
query as a possible base, and creates the rest of each join tree based
on the join order in the current least-cost plan popt. This strategy
causes the Base Changer to recommend neighborhoods with plenty
of uncertain cardinality estimates. The mild exploitation compo-
nent of this expert comes from using popt to build parts of the join
trees. Unless all neighborhoods are covered, the Base Changer will
always have a neighborhood to recommend; it will never run into a
livelock (unlike the previous two experts).
Pure Explorer Expert: If the overall degree of certainty in car-
dinality estimates is low, then a lot of information may need to be
collected in order to find an execution plan with the desired per-
formance. Compared to the other experts, the Pure Explorer is
designed to gather more statistics quickly. Upon invocation, this
expert recommends the uncovered neighborhood with the highest
number of uncertain cardinality estimates in its cardinality set. Like
the Base Changer, the Pure Explorer will never run into a livelock.

3.2.2 Selection Policy for Experts
Xplus supports three different policies to determine which ex-

pert’s recommendation should be followed at any point of time.
Round-Robin Policy: This policy consults the experts in a round-
robin fashion. Apart from its simplicity, this policy has the advan-
tage of ensuring fairness across all experts.
Priority-based Policy: This policy assigns a predefined priority
to each expert. Each time a new recommendation is needed, the
experts are consulted in decreasing order of priority. If an expert

Figure 2: System architecture of Xplus
has no neighborhood to recommend, then the expert with the next
highest priority is consulted. By default, priorities are assigned
to experts in decreasing order of the degree of exploitation they
do. Thus, Pure Exploiter has the highest priority, followed in or-
der by Join Shuffler, Base Changer, and Pure Explorer. Overall,
this strategy realizes a common (greedy) approach that humans use
when faced with an exploitation versus exploration problem: ex-
plore only when further exploitation is not possible currently.
Reward-based Policy: This policy consults experts based on an
online assignment of rewards that reflects how well the recommen-
dations from each expert have performed in the past. Each time a
new recommendation is needed, the expert with the current highest
reward is consulted. If this expert has no neighborhood to recom-
mend, then the expert with the next highest reward is consulted;
and so on. Rewards are assigned as follows: If the overall least-
cost plan changes based on an expert E’s recommendation, then
E’s reward is incremented by 1; otherwise, it is reduced by 1.

3.3 Picking the Plan to Run in a Neighborhood
Once a neighborhood N is selected for coverage, the next step

is to pick the least-cost (possibly-modified) plan prun such that a
run of prun will bring AC values for all expressions in MCS(N).
MCS(N), called the missing cardinality set of N , is the subset of
expressions in CS(N) for which accurate cardinalities are currently
unavailable. Xplus uses the following algorithm:
(a) Use intra transformations to enumerate all plans in N .
(b) For each plan p∈N , generate plan p′ that has any modifications

needed to collect all AC values for MCS(N). Find the cost of p′.
(c) Pick prun as the plan p′ with least cost over all plans from (b).
Xplus supports two general plan-modification techniques for the
nontrivial Step (b): subplan identification and additional scans.
Subplan identification: This technique finds the smallest con-
nected subplan of p, starting from the operators at the leaves of
of p, whose execution will bring all AC values for MCS(N).
Additional scans: While most needed AC values correspond to the
output cardinality of some operator in p, there are exceptions that
need to be handled: (i) an indexed nested-loop join (INLJ) will not
collect the inner table’s cardinality, and (ii) table scans or index-
based access in the presence of filters containing ANDs/ORs of in-
dividual predicates may not collect AC values for specific predicate
combinations needed for costing [8]. Fortunately, both exceptions
arise at leaf operators of p. Thus, Xplus addresses them by adding
additional table or index scans to p in a cost-based manner.

The above plan-modification techniques were sufficient for Post-
greSQL plans. (No changes were made to the PostgreSQL execu-
tion engine’s source code.) Query plans in systems like IBM DB2
pose other exceptions like early exit from pipelines. Adding (block-
ing) materialization operators to plans for statistics collection is a
plan-modification technique that can handle such exceptions [20].

4. IMPLEMENTATION OF XPLUS
4.1 Architecture

Xplus consists of six major components as shown in Figure 2:
• Global State Repository, which stores the data structures for

neighborhoods and cardinalities described in Section 2.2, and
the conventional database statistics from the system catalog.
• Enumeration and Costing Engine, which enumerates neighbor-

hoods and plans as explained in Section 3.1, and estimates plan
costs based on the information in the Repository.
• Recommendation Engine, which uses Experts and a Policy to

recommend neighborhoods to cover as described in Section 3.2.
• Plan Selector, which selects the least-cost (sub)plan to collect

the missing AC values in each recommended neighborhood, as
described in Section 3.3.
• Execution Agent, which schedules selected (sub)plans for exe-

cution based on the specified resource constraints. Monitoring
information from each execution is added to the Repository.
• Controller, which shepherds each input query through its life-

cycle by invoking the above components appropriately. Sec-
tion 4.2 describes multiple controllers implemented in Xplus.

We implemented the Xplus architecture following two guidelines:
1. It should be possible to implement Xplus with minimal changes

to database internals, and without any major loss of efficiency.
Requiring significant changes to database internals as a prereq-
uisite would considerably reduce the chances of adoption.

2. If the SQL tuning feature of Xplus is not implemented directly
by a database system’s optimizer, then users should still be able
to use Xplus as a tuning tool that coexists with the optimizer.

Accordingly, Xplus is implemented currently as a Java application
that interacts with the database system through a well-defined in-
terface provided by the system. SQL database systems contain ex-
ternal or internal interfaces to: (a) get cardinality and cost estimates
for physical plans, and (b) run a specified plan and collect AC val-
ues for operators during the run. We implemented a new server
command in PostgreSQL to expose its interface for costing and
running plans to external applications [15]. Since the plan neigh-
borhood abstraction, central to how Xplus works, is not present in
current optimizers, we developed plan transformations as described
in Section 3.1 and Appendix B.2. Overall, only minor changes were
needed to PostgreSQL internals to support SQL tuning with Xplus.
No changes were made to PostgreSQL’s execution engine.

4.2 Extensibility Features
Xplus provides three dimensions for extensibility: adding new

experts, new selection policies, and new controllers. SQL tuning
problems that are hard to fix in a commercial database system usu-
ally get referred to the optimizer developers. Based on the reports
seen over time, the developers may notice a defect in the optimizer
that causes it to pick poor plans in certain conditions. Rather than
modifying the optimizer and thoroughly testing the new version, an
easy temporary fix can be to release a new Xplus expert that spots
the mistake pattern and recommends plans to correct it. The expert
is dropped once the optimizer is corrected and tested (which is very
time consuming). This scenario illustrates one of the many positive
impacts that Xplus can have on optimizer development and usage.

Adding a new expert, selection policy, or controller involves im-
plementing specific interfaces defined by Xplus. We used this fea-
ture to implement five different controllers, described next. Recall
that a controller is responsible for taking a given query through its
entire lifecyle (tuning or conventional processing) in the system.
Plan-first-execute-next controller: This non-tuning controller en-
ables Xplus to simulate the conventional query lifecyle: get the

least estimated cost plan in the plan space, and run it to generate
the query results.
Serial (experts) controller: This controller repeatedly invokes the
Xplus components in sequence until the stopping condition is met.
The Recommendation Engine picks the next neighborhood N to
cover in consultation with the Experts and the Selection Policy. N
is given to the Plan Selector for selecting the least-cost plan to run
to collect all missing AC values for CS(N). The returned (sub)plan
is run by the Execution Agent subject to the resource constraints
specified. The new monitoring data is entered into the Repository.
Parallel (experts) controller: This controller runs the Recommen-
dation Engine, Enumeration and Costing Engine, Plan Selector,
and Execution Agent concurrently to enable inter-component paral-
lelism in Xplus. The Parallel controller provides multiple benefits:
• If MPLT (recall Section 2.1) is set greater than 1, then these

many (sub)plans will be run concurrently.
• If new AC values from a plan execution are available when a

costing cycle completes, another cycle is started to find the new
least-cost plan; which helps when the plan space is large.
• Running the Recommendation Engine and Plan Selector in par-

allel with other components can hide plan recommendation la-
tency in the presence of complex experts or plan modifications.

Leo controller: This controller implements tuning as done by the
Leo optimizer [23]. In Xplus, the Leo controller effectively means
using the serial controller with the Pure Exploiter as the only ex-
pert. Whenever the current plan finishes, the Pure Exploiter is con-
sulted for the neighborhood to cover next. The Leo controller can-
not make further progress when the Pure Exploiter gets livelocked.
ATO controller: This controller implements how Oracle’s ATO
[6] performs SQL tuning by collecting cardinality values for per-
table filter predicates and two-way joins. After these cardinality
values are collected, the new least-cost plan is recommended. Or-
acle’s ATO estimates cardinality values using random sampling.
Since PostgreSQL’s execution engine has no external support for
sampling, the ATO controller collects accurate AC values using the
least-cost scan operator for filter predicates, and the least-cost join
operator for two-way joins.

We could not implement controllers for other related work like
[3, 5, 8, 20] because they all require nontrivial changes to the plan
execution engine in the database. Such changes to the execution
engine can help Xplus collect AC values faster and more efficiently.

4.3 Efficiency Features
Table 2 gives a summary of the features in Xplus that reduce

the time to find a better plan as well as make Xplus scale to large
queries. The first two features in Table 2 have been the most useful,
so we will discuss them next. The other features are discussed in
Appendix B.4. The first four features in Table 2 are fully integrated
into Xplus, while the last three are left for future work.
Use of Parallelism: In addition to incorporating inter-component
parallelism through the Parallel Controller, Xplus implements intra-
component parallelism in multiple places. The Execution Agent
can schedule multiple plans to run in parallel based on the MPLT

setting. The Costing Engine, which leverages the plan space parti-
tioning imposed by neighborhoods, can cost plans in parallel. The
Recommendation Engine can invoke different experts in parallel.
Executing Subplans instead of Full Plans: The Plan Selector im-
plements this optimization as described in Section 3.3, giving major
efficiency improvements as we will see in Section 5.

5. EXPERIMENTAL EVALUATION
The purpose of our evaluation of Xplus is threefold. First, we

evaluate the effectiveness and efficiency of Xplus in tuning poorly-

Feature Description
Use of parallelism Leverage intra- and inter-component parallelism
Plan modification Run lower-cost subplans instead of full plans
Prioritize Avoid neighborhoods with bad subplans that cannot
neighborhoods lead to a plan better than the current best plan
Table-level Perform optimized table/index scans to collect
preprocessing table-level AC values in a fast preprocessing step
Materialization Store and reuse intermediate results during tuning
Sampling Run (sub)plans on samples instead of the full data
Modifications to Make modifications to the execution engine as in
execution engine [5, 8, 20] to increase monitoring capabilities of plans

Table 2: Summary of features that improve efficiency of Xplus
TPC-H Queries

Tuning Scenario Class 2 5 7 9 10 11 16 20 21
Query-level issues X X X X X
Data-level issues X X X X X
Statistics-level issues X X X X
Physical-design issues X X X X

Table 3: Tuning scenarios created with TPC-H queries
performing queries. Second, we compare Xplus with previous work.
Finally, we evaluate different expert-selection policies, combina-
tions of experts, and the impact of the efficiency features. All ex-
periments were run on an Ubuntu Linux 9.04 machine, with an Intel
Core Duo 3.16GHz CPU, 8GB of RAM, and an 80GB 7200 RPM
SATA-300 hard drive. The database server used was PostgreSQL
8.3.4. We used the TPC-H Benchmark with a scale factor of 10.
We used an index advisor3 to recommend indexes for the TPC-H
workload. All table and column statistics are up to date except
when creating problem queries due to stale statistics. Unless oth-
erwise noted, all results were obtained using the Parallel Experts
Controller with MPLT =2 and the Priority policy with all experts.
5.1 Tuning Scenarios

We will present the evaluation of Xplus in terms of tuning sce-
narios, where a query performs poorly due to some root cause.
Four classes of query tuning scenarios are common in practice:
1. Query-level issues: A query may contain a complex predicate

(e.g., with a UDF) for which cardinality estimation is hard.
2. Data-level issues: Real-life datasets contain skew and correla-

tions that are hard to capture using common database statistics.
3. Statistics-level issues: Statistics may be stale or missing.
4. Physical-design issues: The optimizer may not pick a useful

index, or it may pick an index that causes a lot of random I/O.
We created multiple instances per tuning scenario class. Query-
level issues were created by making minor changes to the TPC-
H query templates, mainly in the form of adding filter predicates.
Data-level issues were created by injecting Zipfian skew into some
columns. We decreased the amount of statistics collected by Post-
greSQL for some columns to create issues at the statistics and phys-
ical design levels. Table 3 summarizes the issues that were caused
for each TPC-H query. Often problems are due to some combina-
tion of multiple root causes, which is reflected in Table 3.
5.2 Overall Performance of Xplus

Table 4 provides the results for nine different tuning scenarios.
(All plan running times shown are averaged over six runs.) In all
nine cases, Xplus found a better execution plan, offering an average
speedup of 7.7 times faster compared to the original plan (selected
by the PostgreSQL query optimizer) to be tuned. In three cases,
Xplus found a new plan that is over an order of magnitude faster.

The last two columns of Table 4 show the time Xplus takes to
find the better plan. The absolute times (second-last column) are
3The DB2 index advisor (db2advis) was used since we have ob-
served that its index recommendations work well for PostgreSQL.

Query Run Time Run Time Speedup Number Time to Find
of Original of Factor of Xplus Plan
PostgreSQL Xplus Subplans Absolute Normalized
Plan (sec) Plan (sec) Xplus Ran (sec) (Col6/Col2)

2 8.67 0.59 14.8 5 40.42 4.66
5 1037.80 399.01 2.6 8 149.76 0.14
7 257.55 21.38 12.0 6 131.58 0.51
9 1722.27 754.82 2.3 8 870.78 0.51

10 2248.52 695.70 3.2 4 149.15 0.07
11 20.00 3.55 5.6 2 29.11 1.46
16 15.90 0.77 20.7 2 27.04 1.70
20 3.36 2.32 1.4 4 7.13 2.13
21 509.51 72.17 7.1 4 45.83 0.09

Table 4: Overall tuning results of Xplus for TPC-H queries

Figure 3: Progress of the execution time of the best plan in the
covered space as Xplus tunes TPC-H Query 7. Serial Experts
Controller with Priority policy and all four experts is used

small, which shows the high degree of efficiency that our imple-
mentation achieves. In particular, the last column shows normal-
ized tuning time, which is the ratio of the time taken by Xplus
to find the better plan to the running time of the original plan to
be tuned. The low values in this column clearly demonstrate how
Xplus gives its benefits in the time it takes to run the original plan
a very small number of times (often < 2).

Figure 3 shows the execution timeline of Xplus while tuning
TPC-H Query 7. The y-axis shows the execution time of the best
plan found so far in the covered space. The plan found by the Post-
greSQL optimizer is N1p1 (plan p1 in neighborhood N1) which
runs in 257.55 seconds. Let us see the role of the experts in Xplus
in this tuning task. For ease of plotting the timeline, the Serial
Controller with the Priority policy and all four experts was used.
First, a neighborhood recommended by the Pure Exploiter led to
the discovery of plan N1p1121, which gave a speedup factor of 3.1.
The Pure Exploiter livelocked at this point. The Join Shuffler then
recommended a neighborhood that led to plan N4p681; increasing
the speedup to 4.1. It took a recommendation from the exploration-
heavy Base Changer for Xplus to find planN8p1270 with a speedup
of 12. All neighborhoods were covered by the execution of 7 sub-
plans (not full plans). Recall the strong guarantee that Xplus pro-
vides once all neighborhoods are covered (Property 2).

This tuning task is an excellent example of how exploitation and
exploration are both needed to reach the optimal plan. Appendix C
gives a more detailed description that also discusses how, unlike
Xplus, the Leo and ATO controllers failed to find the optimal plan.

5.3 Comparison with Other Approaches
We now compare Xplus with two other SQL tuning approaches:

Leo and Oracle’s ATO using the respective controllers discussed in
Section 4.2. For the same nine tuning scenarios from Table 4, Fig-
ure 4 shows the speedup factor of the plans produced by the three
approaches compared to the original plan to be tuned. Xplus found
a better plan than Leo in 4 cases, offering up to an order of magni-
tude additional speedup. Xplus found a better plan than ATO in 7

Query Xplus Leo Controller ATO Controller
Time Result Time Result Time Result

2 4.66 Success 5.09 Failure(2.9) 4.99 Failure(2.2)
5 2.56 Guarantee(2.6) 0.57 Failure(2.6) 1.92 Failure(1.5)
7 0.51 Success 0.26 Failure(3.2) 1.03 Failure(4.2)
9 2.91 Guarantee(2.3) 0.91 Failure(1.4) 2.13 Failure(1.5)

10 0.07 Guarantee(3.2) 0.03 Failure(1.9) 0.23 Failure(3.2)
11 1.46 Success 0.14 Success 0.54 Success
16 1.70 Success 0.10 Success 1.35 Failure(2.8)
20 2.23 Guarantee(1.4) 2.12 Failure(1.4) 3.07 Failure(1.0)
21 0.09 Success 0.01 Success 0.59 Failure(1.9)

Table 5: Tuning results of Xplus, Leo controller, and ATO con-
troller when asked to find a 5x better plan. Time is normalized
over the execution time of the original PostgreSQL plan

Figure 4: Speedup from Xplus, Leo, and ATO controllers
cases, with similar improvements. The performance advantages of
Xplus are more prominent for more complex queries.

Motivated by the SLO setting from Section 1, Table 5 shows the
performance of Xplus, Leo, and ATO controllers for the following
tuning task per query Q: find a plan that is 5x faster than the cur-
rent plan picked by the PostgreSQL optimizer for Q. For each ap-
proach, we show its normalized tuning time and result. For the Leo
and ATO controllers, the result is one of: (i) Success, if a plan with
≥5 speedup is found; or (ii) Failure(α), if the controller could only
find a plan with α<5 speedup. In contrast, when Xplus fails to find
a plan with ≥5 speedup, it provides the guarantee Guarantee(α):
for the given database configuration and optimizer cost model, the
optimal plan for Q only gives α speedup. With this knowledge, the
user or tuning tool can plan for the disruptive changes needed to
the physical design, server parameters, or resource provisioning to
get the desired performance for the query.

Xplus finds a 5x faster plan in five cases in Table 5, and provides
a strong guarantee in the rest. The Leo and ATO controllers succeed
in only three cases and one case respectively. The Leo controller
fails to complete a task because it runs into a livelock, whereas
the ATO controller fails because the cardinality estimates gathered
from sampling tables and two-way joins are not enough to produce
a plan with the desired performance.

5.4 Internal Comparisons for Xplus
Figures 5 and 6 illustrate an important trend that emerged in our

evaluation. These figures consider five strategies for plan recom-
mendation: Priority, Round Robin, and Rewards, each with all four
experts; and Priority with (a) the Pure Exploiter and Pure Explorer
(called Exploiter-Explorer), and (b) the Pure Explorer only (called
Explorer-Only). These strategies are compared based on conver-
gence time (how soon they found the best plan), as well as the com-
pletion time (how long they took to cover all neighborhoods).

Note from Figures 5 and 6 that exploration-heavy policies (like
Explorer-Only and Exploiter-Explorer) take longer to converge, but
lead to lower completion times. Exploitation targets missing statis-
tics related to the current least-cost plan, which leads to better con-

Figure 5: Convergence times for the expert-selection policies

Figure 6: Completion times for the expert-selection policies
vergence. However, the time to gather all statistics is longer as ex-
ploitation makes small steps towards this goal. Exploration brings
in more information in each step, often decreasing the total number
of executed (sub)plans and the overall completion time.

Based on these observations, we offer the following guideline
to choose the policy and experts for a SQL tuning task. If the
user or DBA wishes to find the best plan possible (e.g., to decide
whether disruptive tuning can be avoided), then she should select
an exploration-heavy strategy. On the other hand, if she is inter-
ested in quick improvements to the current plan, then a strategy
that favors exploitation over exploration is more suitable.

Figure 7 shows the impact of the two important efficiency fea-
tures of Xplus: use of parallelism and running subplans instead of
full plans whenever possible. Use of subplans is particularly benefi-
cial for complex and long-running queries. For example, Xplus ran
8 subplans to cover all neighborhoods for TPC-H Query 5. Most
of these subplans contained only around half of the tables in a full
plan for the query, causing Xplus to complete four times faster.

6. DISCUSSION
The thesis of this paper is that the query optimizer can automate

the important task of SQL tuning, and is the right entity to do so.
To support this thesis, we designed, implemented, and evaluated
a novel query optimizer called Xplus. An Xplus user can mark a
repeatedly-run query for which she is not satisfied with the perfor-
mance of the plan being picked; and Xplus will try to find a new
plan that gives the desired performance. Xplus differs from regular
query optimizers in its ability to run plans proactively, and to collect
monitoring data from these runs to diagnose its mistakes as well as
to identify better plans. We made the following contributions:
• We introduced the abstraction of plan neighborhoods in the

physical plan space. This abstraction is a key contributor to
the effectiveness and efficiency of Xplus.
• We showed how the two conflicting objectives of exploitation

and exploration need to be balanced in effective SQL tuning.
Xplus uses an architecture based on multiple SQL-tuning ex-
perts and an arbitration policy to achieve this balance.
• We validated the promise of Xplus through an extensive evalu-

ation based on tuning scenarios that arise in practice.

Figure 7: Impact of the efficiency features in Xplus

7. REFERENCES
[1] M. Andrei and P. Valduriez. User-Optimizer Communication using

Abstract Plans in Sybase ASE. In Proc. of VLDB ’01. ACM, 2001.
[2] G. Antoshenkov and M. Ziauddin. Query Processing and

Optimization in Oracle Rdb. VLDB Journal, 5(4):229–237, 1996.
[3] R. Avnur and J. M. Hellerstein. Eddies: Continuously Adaptive

Query Processing. In Proc. of SIGMOD ’00. ACM, 2000.
[4] B. Babcock and S. Chaudhuri. Towards a Robust Query Optimizer: A

Principled and Practical Approach. In Proc. of SIGMOD ’05, 2005.
[5] S. Babu, P. Bizarro, and D. DeWitt. Proactive Reoptimization. In

Proc. of SIGMOD ’05. ACM, 2005.
[6] P. Belknap, B. Dageville, K. Dias, and K. Yagoub. Self-Tuning for

SQL Performance in Oracle Database 11g. Intl. Conf. on Data
Engineering, 2009.

[7] N. Bruno, S. Chaudhuri, and R. Ramamurthy. Power Hints for Query
Optimization. In Intl. Conf. on Data Engineering, 2009.

[8] S. Chaudhuri, V. Narasayya, and R. Ramamurthy. A Pay-As-You-Go
Framework for Query Execution Feedback. In Proc. of VLDB ’08.
VLDB Endowment, 2008.

[9] C. M. Chen and N. Roussopoulos. Adaptive Selectivity Estimation
using Query Feedback. SIGMOD Record, 23(2):161–172, 1994.

[10] A. Deshpande, Z. G. Ives, and V. Raman. Adaptive Query
Processing. Foundations and Trends in Databases, 1(1):1–140, 2007.

[11] S. Duan, V. Thummala, and S. Babu. Tuning Database Configuration
Parameters with iTuned. In Proc. of VLDB ’09. ACM, 2009.

[12] J. C. Gittins and D. M. Jones. A Dynamic Allocation Index for the
Sequential Design of Experiments. Progress in Statistics (European
Meeting of Statisticians), 1972.

[13] G. Graefe and D. J. DeWitt. The EXODUS Optimizer Generator. In
Proc. of SIGMOD ’87. ACM, 1987.

[14] P. J. Haas, I. F. Ilyas, G. M. Lohman, and V. Markl. Discovering and
Exploiting Statistical Properties for Query Optimization in Relational
Databases: A Survey. Statistical Analysis and Data Mining, 2009.

[15] H. Herodotou and S. Babu. Automated SQL Tuning through Trial
and (Sometimes) Error. In Proc. of DBTest ’09. ACM, 2009.

[16] IBM Corp. DB2 Information Center.
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp.

[17] IBM DB2. Giving optimization hints to DB2, 2003.
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/
com.ibm.db29.doc.perf/db2z giveoptimizerhints.htm.

[18] A. Kemper, G. Moerkotte, and K. Peithner. A Blackboard
Architecture for Query Optimization in Object Bases. In Proc. of
VLDB ’93. ACM, 1993.

[19] V. Markl, P. J. Haas, M. Kutsch, N. Megiddo, U. Srivastava, and
T. M. Tran. Consistent Selectivity Estimation via Maximum Entropy.
VLDB Journal, 16(1):55–76, 2007.

[20] V. Markl, V. Raman, D. Simmen, G. Lohman, and H. Pirahesh.
Robust Query Processing through Progressive Optimization. In Proc.
of SIGMOD ’04. ACM, 2004.

[21] F. Olken and D. Rotem. Random Sampling from Databases: A
Survey. Statistics and Computing, 5:25–42, 1995.

[22] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and
T. G. Price. Access Path Selection in a Relational Database
Management System. In Proc. of SIGMOD ’79. ACM, 1979.

[23] M. Stillger, G. M. Lohman, V. Markl, and M. Kandil. LEO - DB2’s
Learning Optimizer. In Proc. of VLDB ’01. Morgan Kaufmann
Publishers Inc., 2001.

APPENDIX
A. OTHER APPROACHES TO SQL TUNING

In this section, we discuss current approaches to SQL tuning and
provide a detailed comparison with Xplus. Table 6 provides a high-
level summary of the similarities and differences between Xplus
and other approaches with respect to various important properties.
Using Feedback from Query Execution: Leo [23] corrects car-
dinality estimation errors made by the query optimizer by compar-
ing EC values with AC values obtained when plans run [9]. This
approach can find a better plan for a poorly-performing query Q
over multiple executions of Q or of queries with similar subex-
pressions. The pay-as-you-go approach took this idea further using
proactive plan modification and monitoring techniques to measure
approximate cardinality values for subexpressions, in addition to
the subexpressions contained in a running plan [8]. While query
execution feedback is related closely to how Xplus performs SQL
tuning, there are some key differences between Xplus and [8, 23]:
• SQL tuning is inherently an unpredictable and risky process in

that a plan better than the optimizer’s original pick p may be
found only after some plans worse than p are tried. Given how
difficult query optimization is, there is always an element of
trial-and-error in SQL tuning. Furthermore, experiences with
Leo show that incorporating some AC values alongside EC val-
ues can cause optimizers to pick plans whose performance is
worse than before [19]. Thus, attempting SQL tuning directly
on queries being run by users runs the risk of unpredictable
behavior and performance regression. DBAs and users usu-
ally prefer predictable, possibly lower, performance over un-
predictable behavior [4]. For this reason, unlike [8, 23], Xplus
deliberately keeps the SQL tuning path separate from the nor-
mal path of submitted queries.
• The concept of balancing the exploitation and exploration ob-

jectives explicitly in SQL tuning is unique to Xplus. Leo and
pay-as-you-go are exploitation-heavy approaches, ignoring the
uncertainty in estimates when picking the plan for the query.
• A serious concern with using an exploitation-heavy approach is

the possibility of a livelock (see Section 3.2) because the subex-
pressions produced by a plan dictate which set of actual cardi-
nality values are available from running that plan.
• Unlike Leo and Xplus, implementing the pay-as-you-go ap-

proach (and related ones like [5, 20]) in a database system re-
quires nontrivial changes to the plan execution engine.
• Execution of plans brings in valuable information like EC, AC,

and EAC cardinality values. Other types of information that
Xplus can track based on plan execution include estimated and
actual costs (including estimated-actual costs similar to EAC),
I/O patterns, and resource bottlenecks. Significant differences
between actual costs and the corresponding estimated-actual
costs may indicate errors in the optimizer cost model.

Oracle’s Automatic Tuning Optimizer (ATO): Xplus shares com-
mon goals with Oracle’s ATO [6], but differs in the algorithms and
system architecture. While Leo and pay-as-you-go focus on ex-
ploitation, ATO is on the exploration side. When invoked for a
query Q, ATO does additional processing to reduce the uncertainty
in cardinality estimates for Q. First, ATO collects random samples
from the base tables to validate the cardinality estimates of Q’s fil-
ter predicates. Given more time, ATO performs random sampling
to validate all two-way join cardinality estimates (possibly, up to
all n-way joins). ATO uses a sandboxed environment for the ad-
ditional processing to limit the overhead of the tuning process on
the rest of the database workload. If the new estimates cause the
least-cost plan to change, then ATO compares the performance of

Property Xplus Leo Pay-As- ATO
You-Go

Balanced use of exploitation
and exploration

Yes No No No

Support for SLO tuning tasks Yes No No No
Risk of unpredictable changes No Yes Yes No
to user-facing query behavior
Requires changes to the query
execution engine

No No Yes No

Provides optimality guarantees
for given database configura-
tion and optimizer cost model

Yes No No No
(Prop. 2,
Sec. 2.3)

Use of parallelism Yes No No Possible
Use of collected statistics to im-
prove plans for other queries

Possible Yes Yes Possible

Potential to address errors in the
optimizer cost model

Yes No No Yes

Possibility for running into a Depends Yes Yes No
livelock in the SQL tuning on choice
process (Section 3.2) of experts
Use in fully automated tuning Possible Yes Yes Yes

Table 6: Comparison of Xplus, Leo, Pay-As-You-Go, and ATO
the new plan against the old one by running both plans in a compet-
itive fashion. Unlike Xplus, ATO has features to recommend new
statistics to collect, indexes to create, and rewrites to the query text.
Adaptive Query Processing: Xplus is one point in the design
spectrum that includes a long line of work on adaptive query pro-
cessing [10]. The Rdb system introduced competition-based query
plan selection, namely, running multiple plans for the same query
concurrently, and retaining the best one [2]. Database systems for
emerging application domains (e.g., MongoDB) are using this con-
cept to address the lack of statistics in these settings.

Eddies [3] identified the relationship of adaptive query process-
ing to multi-armed bandit (MAB) problems from machine learning
[12]. The study of MAB problems has led to theory and algorithms
to balance the exploitation-exploration tradeoff under certain as-
sumptions, including algorithms to control multiple competing ex-
perts [12]. Xplus uses a similar approach by designing experts for
SQL tuning who recommend new plans to try based on the infor-
mation available so far. While the experts in Xplus are static, small
in number, and recommend query plans, each expert in Eddies and
Rdb is a candidate plan for the query; which makes the architecture
and algorithms of Xplus very different from that of [2, 3]. Experts
have also been used in query optimizers to exercise rewrite rules
and heuristics during the optimization of a query [18].
Multiple optimization levels: Most current optimizers provide
multiple levels of optimization. For example, when a query is op-
timized in IBM DB2’s most powerful 9th level, all available statis-
tics, query rewrite rules, access methods, and join orders are con-
sidered [16]. The design of Xplus (which stands for 10+) came
from considering what hypothetical classes 10 and higher of DB2’s
optimizer could usefully do. Our answer is that these higher levels
will execute selected (sub)plans proactively, and iterate based on
the observed information; a challenging task left to DBAs today.

B. FURTHER IMPLEMENTATION DETAILS
We present details on the Xplus implementation that could not be

presented in the main body of the paper due to space constraints.

B.1 Generation of Cardinality Sets
Given an operator instance O in a plan p, the Generate CS(O,p)

function will return CS(O), the cardinality set of O, which con-
sists of the relational algebra expressions whose cardinalities are
needed to find O’s execution cost in p. Table 7 lists the cardinality
sets returned by the Generate CS function for the physical opera-

Physical Operator in PostgreSQL Cardinality Set
Sequential Table Scan (TS) on table S S
Index Scan (IS) on table S with index predicate p σp(S)
Bitmap Index Scan (BIS) on table S with index predi-
cate p (produces a bitmap of rows matching p)

S, σp(S)

Bitmap AND/OR Operator over two or more Bitmap In-
dex Scans (produces a bitmap representing the AND-
ing/ORing of the input bitmaps)

∅5

Bitmap Heap Scan over expression L (fetches rows
based on input bitmap from a Bitmap Index Scan or
Bitmap AND/OR Operator)

L

Hash Join (HJ) over child expressions L and R L, R, L ./ R
Merge Join (MJ) over child expressions L and R L, R, L ./ R
Nested Loop Join (NLJ) over child expressions L andR L, R, L ./ R
Index Nested Loop Join (INLJ) over child expressions
L and R

L, L ./ R

Plain Aggregate (no grouping) over expression L L

Hash/Sort-based GroupBy/Aggregate over expressionL
with grouping attribute a and aggregate function f

L, aGf (L)6

Unique Operator over expression L and attribute a L, aG(L)7

Sort Operator over expression L L
Materialize Operator over expression L L

Table 7: Cardinality sets returned by the Generate CS function
for each physical operator in PostgreSQL

tors in PostgreSQL. The expressions in CS(O) are a subset of the
relational algebra expressions that define each of O’s inputs and
outputs. For example, for a hash join operator H over two sub-
plans representing the relational algebra expressions L and R in
a plan p, Generate CS(H,p) will return the cardinality set {L, R,
L ./ R}. According to PostgreSQL’s cost model for a hash join
operator, the cardinalities of L,R and L./R4 are needed to costH .
B.2 Transformations

Multiple components of Xplus, including the Plan Selector and
the experts in the Recommendation Engine, need to enumerate and
reason about plan neighborhoods and physical plans. As discussed
in Section 3.1, plan transformations serve this purpose. Each trans-
formation τ in Xplus is implemented as a function that operates on
a data structure representing a physical plan p for a query Q. If τ
is applicable to p, then the function’s output is a data structure rep-
resenting a plan p′ (p′ 6= p) for Q. If τ is an intra transformation,
then p′ will belong to the same neighborhood as p. If τ is an in-
ter transformation, then p′ will be in a different neighborhood from
p. Applying these transformations multiple times enables Xplus to
enumerate all of Q’s plans and neighborhoods.

Like many query optimizers (including PostgreSQL), Xplus uses
non-cost-based query rewrite rules to identify the select-project-
join-aggregation (SPJA) blocks in the query. Each SPJA block is
optimized separately to produce a plan per block; and these plans
are connected together to form the execution plan for the full query.
Intra and inter transformations in Xplus are applied to plans for
SPJA blocks. Recall from Section 2.1 that a tuning session of Xplus
takes the input query Q and its current (unsatisfactory) plan p as
input. Xplus works with the SPJA blocks in p.
Intra Transformations: Intra transformations are applied to a sin-
gle operator in a plan to generate a different plan in the same neigh-
borhood. These transformations belong to one of two classes:
4|L ./ R| is used for estimating the CPU cost of the hash join.
5PostgreSQL costs a Bitmap AND/OR Operator by adding a fixed
cost to the cost of the child BISs. No cardinality values are used.
6
aGf (L) represents the relational algebra expression for the group-

ing of tuples from L on attribute a and the application of the aggre-
gate function f on the groups.
7
aG(L) is similar to aGf (L) but without the aggregation. The

groups represent the unique values.

1. Method Transformations, which change one operator imple-
mentation (method) to another implementation of the same un-
derlying logical operation. Instances of this class include: (i)
Transforming a scan method to a different one (e.g., transform-
ing a full table scan on a table to an index scan); (ii) Transform-
ing a join method to a different one (e.g., transforming a hash
join to a merge join); (iii) Transforming a grouping and aggre-
gation method to a different one (e.g., transforming a sort-based
aggregation operator to a hash-based one).

2. Commutativity Transformations, which swap the order of the
outer and inner subplans of a commutative operator. For exam-
ple, transformingL ./ R to R ./ L,for subplansL and R.

It is important to note that some transformations may not be possi-
ble on a given plan. For example, a table scan on table R cannot be
transformed into an index scan unless an index exists on R. Also,
additional changes may be required along with the application of a
transformation in order to preserve plan correctness. For instance,
a merge join requires both of its subplans to produce sorted output.
If they do not produce sorted output, then a transformation from a
hash join to a merge join must add sort operators above the sub-
plans. Note that the addition of these sort operators will not change
the cardinality set of the plan (recall plans p1 and p2 in Figure 1(a)).
Inter Transformations: When applied to a plan p, an inter trans-
formation produces a plan p′ in a different neighborhood. That is,
CS(p) 6= CS(p′). Inter transformations predominantly apply across
multiple operators in a plan. (It is theoretically possible that chang-
ing the implementation method of an operator in a plan produces
a plan in a different neighborhood.) The main inter transformation
swaps two tables that do not belong to the same join in a join tree.
As with intra transformations, any changes required to preserve the
correctness of the new plan are done along with the inter transfor-
mation. The two other inter transformations are: (i) Pulling a filter
operation F over an operator (by default, F is done at the earliest
operator where F ’s inputs are available in the plan); (ii) Pushing a
grouping and aggregation operator below another operator (by de-
fault, the grouping and aggregation operator is done after all filters
and joins). Applying these transformations multiple times, allows
Xplus to generate plans from all neighborhoods.

Our running example star-join query has six neighborhoods, each
with its own distinct join tree (see Figure 1(a)). Plan p2 can be pro-
duced from p1 by applying two intra transformations: a method
transformation that changes the middle join from a hash join to a
merge join, and a commutativity transformation that changes R ./
S to S ./ R. Plan p3 can be produced from p1 by applying one
inter transformation (swap T and S) and one intra transformation
(change R ./ T to T ./ R).

B.3 Experts
This section describes the implementation of the experts (intro-

duced in Section 3.2.1) used by the Recommendation Engine.
Pure Exploiter Expert: Since exploitation is the sole objective of
the Pure Exploiter, it simply recommends the neighborhood Nopt

containing the plan with the lowest estimated cost in the plan space,
based on the currently available information. The least-cost plan
and its neighborhood are readily available in the Repository. Nopt

is recommended if it has not been covered yet; otherwise, the expert
has run into a livelock and no neighborhood is recommended.

Each time new AC values are entered for a set of expressions E
into the Cardinality Table in the Repository, the Enumeration and
Costing Engine finds all (uncovered) neighborhoods N for which
CS(N)∩E 6= ∅. The least-cost plans in these neighborhoods may
have changed, so they are recomputed and the Neighborhood Table
is updated as needed. Thus, the Cardinality and Neighborhood Ta-

bles make it efficient to incrementally maintain the least-cost plan
by comparing the least-cost plan from each neighborhood (both
covered and uncovered). For uncovered neighborhoods, the plan
cost estimation is based on the available AC values and the EC val-
ues computed using statistics supplemented, as is common, with
assumptions of uniformity and independence as well as the use of
magic numbers. Uncertainty in these estimates is not taken into
consideration while computing plan costs. Therefore, it is possi-
ble for the Pure Exploiter to recommend a bad neighborhood by
mistake, just like a regular optimizer could select a bad plan.
Join Shuffler Expert: The Join Shuffler works as follows when
invoked to get a neighborhood recommendation. It first gets the
best plan pbest among all covered neighborhoods from the Reposi-
tory. Since pbest belongs to a covered neighborhood, AC and EAC
values are available for all operators in pbest; which is a required
property as we will see shortly. The Join Shuffler then identifies
the join in pbest with the highest overestimated join selectivity, and
tries to push this join as low in the plan as possible (with any trans-
formations required to maintain correctness as discussed in Ap-
pendix B.2). If the join can be pushed down and that leads to a
new plan pnew in an uncovered neighborhood Nnew, then Nnew

will be the neighborhood recommended by the Join Shuffler.
The degree of overestimation d in the selectivity of a join opera-

tor O is computed as the relative difference between O’s EAC and
AC values. That is, d = EAC−AC

AC
. Large d for O is an indication

thatO’s join selectivity is much smaller than what the optimizer es-
timated based on the current information in the Repository. Hence,
pushing such joins down the join tree can potentially reduce the
data flow up the tree, and decrease the overall cost of the plan.

If pushing down the join with the highest overestimated join se-
lectivity does not lead to a plan in an uncovered neighborhood, then
the same exercise is repeated for the join with the second highest
overestimated join selectivity. This process is repeated until a plan
in an uncovered neighborhood is found. If no such plan can be
found, then the Join Shuffler is itself livelocked.
Base Changer Expert: When invoked for a recommendation, the
Base Changer first gets the current least-cost plan popt in the entire
space from the Repository. If popt is different from the last time
the Base Changer was invoked, inter transformations are applied
to popt to generate a set of plans that contains one plan per neigh-
borhood. The plans in this set are then partitioned such that each
partition contains all plans having the same base. The base of a
plan p is defined as the first join to be executed in p. For example,
the base of the plan p1 in Figure 1(a) isR ./ S. Note that there can
be multiple plans for each base. All plans belonging to the same
partition are added to a queue in order of their generation through
inter transformations starting from popt; which roughly orders the
plans in each queue in decreasing order of similarity to popt.

Each queue is assigned to its corresponding base in an array of
all bases. The Base Changer maintains this array of all possible
bases for the query, and proceeds through it in a round-robin fash-
ion. The base in the plan that was recommended last is kept track
of so that the next recommendation can start from the next base in
the array. Thus, fairness of exploration across all bases is enforced.
When a base b is considered during the round-robin traversal of the
array, the plan phb is removed from the head of b’s queue. If phb be-
longs to an uncovered neighborhood Nphb, then the Base Changer
will recommend Nphb as the neighborhood to be covered next. If
phb belongs to a covered neighborhood, then the Base Changer pro-
ceeds to the next base in the array; phb is not considered again.

Assuming all neighborhoods have not been covered yet, the Base
Changer will always have a neighborhood to recommend. That is,

the Base Changer will not run into a livelock like the Pure Exploiter
or the Join Shuffler. This property holds because each neighbor-
hood is represented in the array, and the round-robin traversal en-
sures that each neighborhood will be considered eventually.
Pure Explorer Expert: For each uncovered neighborhood Nu in
the space (found in the Neighborhood Table in the Repository), the
Pure Explorer computes the number of expressions in the cardinal-
ity set of Nu whose AC values are not available in the Repository.
The Pure Explorer will then recommend the neighborhood with the
highest number of such expressions. Ties are broken arbitrarily.
Like the Base Changer, the Pure Explorer will never livelock.

For example, suppose that neighborhood N1 from our running
example in Figure 1(a) has been covered. The Cardinality Table in
the Repository contains AC values for each expression in the car-
dinality set of N1 (seen in Figure 1(b)). Suppose the Pure Explorer
has two options for the neighborhood to recommend: N2 and N6.
In this case, the Pure Explorer will recommend covering N6 since
it will bring in AC values for two uncertain expressions, namely,
σp(R) ./ U and σp(R) ./ T ./ U ; whereas covering N2 will only
bring in the AC value for σp(R) ./ T .
B.4 Other Efficiency Features

This section discusses the last five features from Table 2 that
improve the efficiency of Xplus.
Prioritize neighborhoods: It is possible that some neighborhoods
consist almost exclusively of highly suboptimal plans. Xplus proac-
tively identifies and avoids such neighborhoods, even when not all
AC values are available for them. As an example, consider plan p4

belonging to neighborhood N6 in Figure 1(a). Let AC values be
available for σp(R), U , and σp(R) ./ U , but not for the rest of the
plan. Also suppose that the three available AC values are very high.
Then, irrespective of what values the unknown cardinalities take,
Xplus may discover that the cost of doing σp(R) ./ U makes all
plans in neighborhood N6 worse than the overall best plan among
the neighborhoods covered so far. If so, Xplus can avoid N6.
Optimized preprocessing: Recall how the Plan Selector may need
to add additional scans to plans to collect needed AC values. Xplus
proactively identifies such exceptions during neighborhood enu-
meration, and does cost-based table/index scans per table to collect
needed AC values in a preprocessing step. Table-by-table prepro-
cessing is efficient because it makes better use of the buffer cache.
Use of materialization: Plans from different neighborhoods may
share common subexpressions (e.g., R ./ S for neighborhoods
N1 and N4 in Figure 1(a)). Finding commonalities and creating
materialized views help avoid recomputation during SQL tuning.
Use of sampling: Database systems have made giant strides in
internal and external support for sampling [21]. Xplus could use
sampling instead of executing (sub)plans on the full data.
Execution engine modifications: Xplus (especially the Plan Se-
lector) can benefit from a number of plan-modification techniques
proposed in the database research literature to increase statistics
and cost monitoring capabilities during plan execution [5, 8, 20].

C. ZOOMING INTO TUNING OF QUERY 7
This section drills down into how Xplus, Leo, and ATO tune

Query 7. The Xplus Serial Controller, with Priority policy and all
four experts, is used to demonstrate the tuning process clearly.

C.1 Tuning Process of Xplus for Query 7
Figure 8 shows several execution plans for Query 7 that came up

in the tuning process (recall Figure 3). All plans have a sort oper-
ator and an aggregate at the top which are omitted from the figure
for clarity. Plan N1p1 (which denotes plan p1 in neighborhood

Figure 8: Execution plans for Query 7 (with one instance of the Nation table removed for clarity). N1p1 was chosen by the Post-
greSQL optimizer, N8p1270 by Xplus (Parallel Controller, Priority Policy, and all four Experts), N1p1121 by the Leo controller, and
N4p681 by the ATO controller. We present the EC and AC values at the time each plan was suggested to be the best plan by Xplus

N1) represents the plan selected and run by the PostgreSQL query
optimizer. The poor performance of this plan causes Xplus to be
invoked for tuning. Note the large cardinality estimation error for
S, which propagates all the way up. Figure 8 shows the AC values
available from the run of N1p1, which covers neighborhood N1.

When Xplus updates plan costs based on the new AC values,
N1p1121 emerges as the least-cost plan in the covered space (only
N1 is covered currently). Correcting the underestimation caused
the index nested loop joins in N1p1 to be replaced with hash joins
over sequential scans inN1p1121. The new least-cost plan in the en-
tire space is N3p1121 (not shown in Figure 8) which has a different
join order fromN1p1 (tablesO andN are swapped), but retains the
index nested loop join over O. We ran plans N1p1121 and N3p1121

separately (as we did for all plans involved) to validate their perfor-
mance. N1p1121 was indeed better that the original N1p1, running
in 80.8 seconds versus 251.7 seconds. However, planN3p1121 exe-
cuted in 172.4 seconds, illustrating how correcting some estimation
errors need not necessarily lead to a better plan.

Since the least-cost plan isN3p1121 and neighborhoodN3 is un-
covered, the Pure Exploiter will recommend N3 next. A subplan
gets run. The new AC values lead to the coverage of N3, and the
convergence of the least-cost plans in the covered and uncovered
spaces to N1p1121. Now the Pure Exploiter is livelocked, so the
Priority Policy consults the Join Shuffler. After executing a sub-
plan resulting from the Join Shuffler’s recommendation, N4p681

becomes the least-cost plan in the covered space. The different join
order (with new base S ./ N) leads to a performance improvement.

After recommending one more neighborhood, the Join Shuffler
also runs into a livelock. The next recommendation comes from the
Base Changer which leads Xplus to plan N8p1270 (with base L ./
O) as the best plan in the covered space; and eventually the entire
space. Specifically, after covering a neighborhood recommended
by the Base Changer, Xplus was able to spot that L ./ O (whose
join selectivity was severely overestimated) has few joining tuples.

Overall, Xplus took 11 minutes to cover the entire plan space
which contains 14 neighborhoods and 22,400 plans. Xplus only ran
7 subplans. 2 of the 11 minutes were spent in plan costing because
of the communication overhead between Xplus and PostgreSQL.
(By implementing Xplus inside PostgreSQL, the plan costing time
can be cut down to a few seconds.) The remaining 9 minutes were
spent executing subplans. 2 out of the 7 subplans took much longer
to complete than the others, which is the price that Xplus pays to
provide the strong guarantee in Property 2.

C.2 Comparing Xplus with Other Approaches
We now compare Xplus with the Leo and ATO controllers on the

tuning task from Section 5.3: find a plan that is 5x faster than the

Policy Convergence Completion Number of
Time (sec) Time (sec) Subplans Run

Priority 131.58 295.66 6
Round Robin 130.00 258.47 5
Rewards 130.56 294.19 6
Exploiter-Explorer 128.28 262.31 5
Explorer-Only 225.05 260.46 5

Table 8: Comparing expert-selection policies for tuning Query
7. The default Parallel Experts controller with MPLT =2 is used

current plan picked by the PostgreSQL optimizer for Query 7. As
we saw in Section C.1, Xplus finds planN8p1270 for Query 7. This
plan gives a speedup of 12 over PostgreSQL’s plan N1p1, which is
far higher than the requested speedup of 5.

For this tuning task, the Leo controller runs into a livelock ex-
actly like the Pure Exploiter. The best plan found by the Leo con-
troller is N1p1121 which offers a speedup of 3.2 only. Thus, the
Leo controller fails the tuning task. The ATO controller generates
and executes a scan query per table to gather cardinalities for all
per-table filter predicates. Then, all relevant two-way joins are run
to collect AC values. Based on this information, the ATO controller
found N4p681 as the least-cost plan. This plan offers a speedup of
4.2 only, so the ATO controller also fails the tuning task.

C.3 Internal Comparisons for Xplus
Finally, we discuss the effect of the different expert-selection

policies on tuning Query 7. Table 8 summarizes the comparison
among the five policies for tuning Query 7 using the Parallel Ex-
perts controller. When the Priority Policy was used, a total of 6
subplans were executed in order to collect the necessary statistics
to cover all neighborhoods. The Rewards policy called the experts
in a different order, but the number of executed subplans as well as
the convergence and completion times were roughly the same.

The Round-Robin policy, however, was able to cover all neigh-
borhoods by executing only 5 subplans. The reason is that Round
Robin—unlike the previous two policies—consulted the Pure Ex-
plorer which helped in collecting more AC values quickly. Thus,
the use of the Pure Explorer decreased the number of executed
plans as well as the overall completion time. The same behavior
was observed for the remaining two policies (Exploiter-Explorer
and Explorer-Only) that used the Pure Explorer expert.

With the exception of the Explorer-Only policy, all other policies
found the best plan at roughly the same time in the tuning process.
Using the Pure Explorer alone does lead to gathering a larger num-
ber of statistics quickly and decreasing the overall number of sub-
plans to execute. However, it does not guarantee that the statistics
brought in will help in finding the best plan early on.

