
Hadoop Performance Models

Herodotos Herodotou
hero@cs.duke.edu

Technical Report, CS-2011-05
Computer Science Department

Duke University

Abstract

Hadoop MapReduce is now a popular choice for performing large-scale data analytics. This
technical report describes a detailed set of mathematical performance models for describing the
execution of a MapReduce job on Hadoop. The models describe dataflow and cost information
at the fine granularity of phases within the map and reduce tasks of a job execution. The
models can be used to estimate the performance of MapReduce jobs as well as to find the
optimal configuration settings to use when running the jobs.

1 Introduction

MapReduce is a relatively young framework—both a programming model and an associated run-
time system—for large-scale data processing. Hadoop is the most popular open-source implementa-
tion of a MapReduce framework that follows the design laid out in the original paper. A combina-
tion of features contributes to Hadoop’s increasing popularity, including fault tolerance, data-local
scheduling, ability to operate in a heterogeneous environment, handling of straggler tasks, as well
as a modular and customizable architecture.

The MapReduce programming model consists of a map(k1, v1) function and a reduce(k2, list(v2))
function. Users can implement their own processing logic by specifying a customized map() and
reduce() function written in a general-purpose language like Java or Python. The map(k1, v1)
function is invoked for every key-value pair 〈k1, v1〉 in the input data to output zero or more
key-value pairs of the form 〈k2, v2〉 (see Figure 1). The reduce(k2, list(v2)) function is invoked
for every unique key k2 and corresponding values list(v2) in the map output. reduce(k2, list(v2))
outputs zero or more key-value pairs of the form 〈k3, v3〉. The MapReduce programming model
also allows other functions such as (i) partition(k2), for controlling how the map output key-value
pairs are partitioned among the reduce tasks, and (ii) combine(k2, list(v2)), for performing partial
aggregation on the map side. The keys k1, k2, and k3 as well as the values v1, v2, and v3 can be of
different and arbitrary types.

A Hadoop MapReduce cluster employs a master-slave architecture where one master node
(called JobTracker) manages a number of slave nodes (called TaskTrackers). Figure 1 shows how
a MapReduce job is executed on the cluster. Hadoop launches a MapReduce job by first splitting
(logically) the input dataset into data splits. Each data split is then scheduled to one TaskTracker
node and is processed by a map task. A Task Scheduler is responsible for scheduling the execution

1

Figure 1: Execution of a MapReduce job.

of map tasks while taking data locality into account. Each TaskTracker has a predefined number
of task execution slots for running map (reduce) tasks. If the job will execute more map (reduce)
tasks than there are slots, then the map (reduce) tasks will run in multiple waves. When map tasks
complete, the run-time system groups all intermediate key-value pairs using an external sort-merge
algorithm. The intermediate data is then shuffled (i.e., transferred) to the TaskTrackers scheduled
to run the reduce tasks. Finally, the reduce tasks will process the intermediate data to produce the
results of the job.

As illustrated in Figure 2, the Map task execution is divided into five phases:

1. Read: Reading the input split from HDFS and creating the input key-value pairs (records).

2. Map: Executing the user-defined map function to generate the map-output data.

3. Collect: Partitioning and collecting the intermediate (map-output) data into a buffer before
spilling.

4. Spill: Sorting, using the combine function if any, performing compression if specified, and
finally writing to local disk to create file spills.

5. Merge: Merging the file spills into a single map output file. Merging might be performed in
multiple rounds.

As illustrated in Figure 3, the Reduce Task is divided into four phases:

1. Shuffle: Transferring the intermediate data from the mapper nodes to a reducer’s node and
decompressing if needed. Partial merging may also occur during this phase.

2. Merge: Merging the sorted fragments from the different mappers to form the input to the
reduce function.

3. Reduce: Executing the user-defined reduce function to produce the final output data.

2

Figure 2: Execution of a map task showing the
map-side phases.

Figure 3: Execution of a reduce task showing
the reduce-side phases.

4. Write: Compressing, if specified, and writing the final output to HDFS.

We model all task phases in order to accurately model the execution of a MapReduce job. We
represent the execution of an arbitrary MapReduce job using a job profile, which is a concise
statistical summary of MapReduce job execution. A job profile consists of dataflow and cost
estimates for a MapReduce job j: dataflow estimates represent information regarding the number
of bytes and key-value pairs processed during j’s execution, while cost estimates represent resource
usage and execution time.

For a map task, we model the Read and Map phases in Section 3, the Collect and Spill phases
in Section 4, and the Merge phase in Section 5. For a reduce task, we model the Shuffle phase in
Section 6, the Merge phase in Section 7, and the Reduce and Write phases in Section 8.

2 Preliminaries

The performance models calculate the dataflow and cost fields in a profile:

• Dataflow fields capture information about the amount of data, both in terms of bytes as well
as records (key-value pairs), flowing through the different tasks and phases of a MapReduce
job execution. Table 1 lists all the dataflow fields.

• Cost fields capture information about execution time at the level of tasks and phases within
the tasks for a MapReduce job execution. Table 2 lists all the cost fields.

The inputs required by the models are estimated dataflow statistics fields, estimated cost statistics
fields, as well as cluster-wide and job-level configuration parameter settings:

• Dataflow Statistics fields capture statistical information about the dataflow that is expected
to remain unchanged across different executions of the MapReduce job unless the data dis-
tribution in the input dataset changes significantly across these executions. Table 3 lists all
the dataflow statistics fields.

3

Table 1: Dataflow fields in the job profile. d, r, and c denote respectively input data properties,
cluster resource properties, and configuration parameter settings.

Abbreviation Profile Field (All fields, unless Depends On
otherwise stated, represent d r c
information at the level of tasks)

dNumMappers Number of map tasks in the job X X
dNumReducers Number of reduce tasks in the job X
dMapInRecs Map input records X X
dMapInBytes Map input bytes X X
dMapOutRecs Map output records X X
dMapOutBytes Map output bytes X X
dNumSpills Number of spills X X
dSpillBufferRecs Number of records in buffer per spill X X
dSpillBufferSize Total size of records in buffer per spill X X
dSpillFileRecs Number of records in spill file X X
dSpillFileSize Size of a spill file X X
dNumRecsSpilled Total spilled records X X
dNumMergePasses Number of merge rounds X X
dShuffleSize Total shuffle size X X
dReduceInGroups Reduce input groups (unique keys) X X
dReduceInRecs Reduce input records X X
dReduceInBytes Reduce input bytes X X
dReduceOutRecs Reduce output records X X
dReduceOutBytes Reduce output bytes X X
dCombineInRecs Combine input records X X
dCombineOutRecs Combine output records X X
dLocalBytesRead Bytes read from local file system X X
dLocalBytesWritten Bytes written to local file system X X
dHdfsBytesRead Bytes read from HDFS X X
dHdfsBytesWritten Bytes written to HDFS X X

• Cost Statistics fields capture statistical information about execution time for a MapReduce
job that is expected to remain unchanged across different executions of the job unless the
cluster resources (e.g., CPU, I/O) available per node change. Table 4 lists all the cost statistics
fields.

• Configuration Parameters: In Hadoop, a set of cluster-wide and job-level configuration pa-
rameter settings determine how a given MapReduce job will execute on a given cluster. Table
5 lists all relevant configuration parameters.

The performance models give good accuracy by capturing the subtleties of MapReduce job execution
at the fine granularity of phases within map and reduce tasks. The current models were developed
for Hadoop, but the overall approach applies to any MapReduce implementation.

To simplify the notation, we use the abbreviations contained in Tables 1, 2, 3, 4, and 5. Note
the prefixes in all abbreviations used to distinguish where each abbreviation belongs to: d for
dataset fields, c for cost fields, ds for data statistics fields, cs for cost statistics fields, p for Hadoop
parameters, and t for temporary information not stored in the profile.

4

Table 2: Cost fields in the job profile. d, r, and c denote respectively input data properties, cluster
resource properties, and configuration parameter settings.

Abbreviation Profile Field (All fields represent Depends On
information at the level of tasks) d r c

cSetupPhaseTime Setup phase time in a task X X X
cCleanupPhaseTime Cleanup phase time in a task X X X
cReadPhaseTime Read phase time in the map task X X X
cMapPhaseTime Map phase time in the map task X X X
cCollectPhaseTime Collect phase time in the map task X X X
cSpillPhaseTime Spill phase time in the map task X X X
cMergePhaseTime Merge phase time in map/reduce task X X X
cShufflePhaseTime Shuffle phase time in the reduce task X X X
cReducePhaseTime Reduce phase time in the reduce task X X X
cWritePhaseTime Write phase time in the reduce task X X X

In an effort to present concise formulas and avoid the use of conditionals as much as possible,
we make the following definitions and initializations:

Identity Function I (x) =

{
1 , if x exists or equals true

0 , otherwise
(1)

If (pUseCombine == FALSE)

dsCombineSizeSel = 1

dsCombineRecsSel = 1

csCombineCPUCost = 0

If (pIsInCompressed == FALSE)

dsInputCompressRatio = 1

csInUncomprCPUCost = 0

If (pIsIntermCompressed == FALSE)

dsIntermCompressRatio = 1

csIntermUncomCPUCost = 0

csIntermComCPUCost = 0

If (pIsOutCompressed == FALSE)

dsOutCompressRatio = 1

csOutComprCPUCost = 0

5

Table 3: Dataflow statistics fields in the job profile. d, r, and c denote respectively input data
properties, cluster resource properties, and configuration parameter settings.

Abbreviation Profile Field (All fields represent Depends On
information at the level of tasks) d r c

dsInputPairWidth Width of input key-value pairs X
dsRecsPerRedGroup Number of records per reducer’s group X
dsMapSizeSel Map selectivity in terms of size X
dsMapRecsSel Map selectivity in terms of records X
dsReduceSizeSel Reduce selectivity in terms of size X
dsReduceRecsSel Reduce selectivity in terms of records X
dsCombineSizeSel Combine selectivity in terms of size X X
dsCombineRecsSel Combine selectivity in terms of records X X
dsInputCompressRatio Input data compression ratio X
dsIntermCompressRatio Map output compression ratio X X
dsOutCompressRatio Output compression ratio X X
dsStartupMem Startup memory per task X
dsSetupMem Setup memory per task X
dsCleanupMem Cleanup memory per task X
dsMemPerMapRec Memory per map’s record X
dsMemPerRedRec Memory per reduce’s record X

3 Modeling the Read and Map Phases in the Map Task

During this phase, the input split is read (and uncompressed if necessary) and the key-value pairs
are created and passed as input to the user-defined map function.

dMapInBytes =
pSplitSize

dsInputCompressRatio
(2)

dMapInRecs =
dMapInBytes

dsInputPairWidth
(3)

The cost of the Map Read phase is:

cReadPhaseTime = pSplitSize × csHdfsReadCost

+ pSplitSize × csInUncomprCPUCost (4)

The cost of the Map phase is:

cMapPhaseTime = dMapInRecs × csMapCPUCost (5)

If the MapReduce job consists only of mappers (i.e., pNumReducers = 0), then the spilling and
merging phases will not be executed and the map output will be written directly to HDFS.

dMapOutBytes = dMapInBytes × dsMapSizeSel (6)

dMapOutRecs = dMapInRecs × dsMapRecsSel (7)

6

Table 4: Cost statistics fields in the job profile. d, r, and c denote respectively input data properties,
cluster resource properties, and configuration parameter settings.

Abbreviation Profile Field (All fields represent information Depends On
at the level of tasks) d r c

csHdfsReadCost I/O cost for reading from HDFS per byte X
csHdfsWriteCost I/O cost for writing to HDFS per byte X
csLocalIOReadCost I/O cost for reading from local disk per byte X
csLocalIOWriteCost I/O cost for writing to local disk per byte X
csNetworkCost Cost for network transfer per byte X
csMapCPUCost CPU cost for executing the Mapper per record X
csReduceCPUCost CPU cost for executing the Reducer per record X
csCombineCPUCost CPU cost for executing the Combiner per record X
csPartitionCPUCost CPU cost for partitioning per record X
csSerdeCPUCost CPU cost for serializing/deserializing per record X
csSortCPUCost CPU cost for sorting per record X
csMergeCPUCost CPU cost for merging per record X
csInUncomprCPUCost CPU cost for uncompr/ing the input per byte X
csIntermUncomCPUCost CPU cost for uncompr/ing map output per byte X X
csIntermComCPUCost CPU cost for compressing map output per byte X X
csOutComprCPUCost CPU cost for compressing the output per byte X X
csSetupCPUCost CPU cost of setting up a task X
csCleanupCPUCost CPU cost of cleaning up a task X

The cost of the Map Write phase is:

cWritePhaseTime =

dMapOutBytes × csOutComprCPUCost

+dMapOutBytes × dsOutCompressRatio × csHdfsWriteCost (8)

4 Modeling the Collect and Spill Phases in the Map Task

The map function generates output key-value pairs (records) that are placed in the map-side mem-
ory buffer of size pSortMB . The amount of data output by the map function is calculated as follows:

dMapOutBytes = dMapInBytes × dsMapSizeSel (9)

dMapOutRecs = dMapInRecs × dsMapRecsSel (10)

tMapOutRecWidth =
dMapOutBytes

dMapOutRecs
(11)

The map-side buffer consists of two disjoint parts: the serialization part that stores the serialized
map-output records, and the accounting part that stores 16 bytes of metadata per record. When
either of these two parts fills up to the threshold determined by pSpillPerc, the spill process begins.
The maximum number of records in the serialization buffer before a spill is triggered is:

7

Table 5: A subset of cluster-wide and job-level Hadoop parameters.

Abbreviation Hadoop Parameter Default
Value

pNumNodes Number of Nodes
pTaskMem mapred.child.java.opts -Xmx200m
pMaxMapsPerNode mapred.tasktracker.map.tasks.max 2
pMaxRedsPerNode mapred.tasktracker.reduce.tasks.max 2
pNumMappers mapred.map.tasks
pSortMB io.sort.mb 100 MB
pSpillPerc io.sort.spill.percent 0.8
pSortRecPerc io.sort.record.percent 0.05
pSortFactor io.sort.factor 10
pNumSpillsForComb min.num.spills.for.combine 3
pNumReducers mapred.reduce.tasks
pReduceSlowstart mapred.reduce.slowstart.completed.maps 0.05
pInMemMergeThr mapred.inmem.merge.threshold 1000
pShuffleInBufPerc mapred.job.shuffle.input.buffer.percent 0.7
pShuffleMergePerc mapred.job.shuffle.merge.percent 0.66
pReducerInBufPerc mapred.job.reduce.input.buffer.percent 0
pUseCombine mapred.combine.class or mapreduce.combine.class null
pIsIntermCompressed mapred.compress.map.output false
pIsOutCompressed mapred.output.compress false
pIsInCompressed Whether the input is compressed or not
pSplitSize The size of the input split

tMaxSerRecs =

⌊
pSortMB × 2 20 × (1 − pSortRecPerc)× pSpillPerc

tMapOutRecWidth

⌋
(12)

The maximum number of records in the accounting buffer before a spill is triggered is:

tMaxAccRecs =

⌊
pSortMB × 2 20 × pSortRecPerc × pSpillPerc

16

⌋
(13)

Hence, the number of records in the buffer before a spill is:

dSpillBufferRecs = Min{ tMaxSerRecs, tMaxAccRecs , dMapOutRecs } (14)

The size of the buffer included in a spill is:

dSpillBufferSize = dSpillBufferRecs × tMapOutRecWidth (15)

The overall number of spills is:

dNumSpills =

⌈
dMapOutRecs

dSpillBufferRecs

⌉
(16)

The number of pairs and size of each spill file (i.e., the amount of data that will be written to
disk) depend on the width of each record, the possible use of the Combiner, and the possible use of

8

compression. The Combiner’s pair and size selectivities as well as the compression ratio are part of
the Dataflow Statistics fields of the job profile. If a Combiner is not used, then the corresponding
selectivities are set to 1 by default. If map output compression is disabled, then the compression
ratio is set to 1.
Hence, the number of records and size of a spill file are:

dSpillFileRecs = dSpillBufferRecs × dsCombineRecsSel (17)

dSpillFileSize =dSpillBufferSize × dsCombineSizeSel

×dsIntermCompressRatio (18)

The total cost of the Map’s Collect and Spill phases are:

cCollectPhaseTime =dMapOutRecs × csPartitionCPUCost

+ dMapOutRecs × csSerdeCPUCost (19)

cSpillPhaseTime = dNumSpills×

[dSpillBufferRecs × log2 (
dSpillBufferRecs

pNumReducers
)× csSortCPUCost

+ dSpillBufferRecs × csCombineCPUCost

+ dSpillBufferSize × dsCombineSizeSel × csIntermComCPUCost

+ dSpillFileSize × csLocalIOWriteCost] (20)

5 Modeling the Merge Phase in the Map Task

The goal of the Merge phase is to merge all the spill files into a single output file, which is written
to local disk. The Merge phase will occur only if more than one spill file is created. Multiple merge
passes might occur, depending on the pSortFactor parameter. pSortFactor defines the maximum
number of spill files that can be merged together to form a new single file. We define a merge pass
to be the merging of at most pSortFactor spill files. We define a merge round to be one or more
merge passes that merge only spills produced by the spill phase or a previous merge round. For
example, suppose dNumSpills = 28 and pSortFactor = 10 . Then, 2 merge passes will be performed
(merging 10 files each) to create 2 new files. This constitutes the first merge round. Then, the 2
new files will be merged together with the 8 original spill files to create the final output file, forming
the 2nd and final merge round.

The first merge pass is unique because Hadoop will calculate the optimal number of spill files
to merge so that all other merge passes will merge exactly pSortFactor files. Notice how, in the
example above, the final merge round merged exactly 10 files.

The final merge pass is also unique in the sense that if the number of spills to be merged is
greater than or equal to pNumSpillsForComb, the combiner will be used again. Hence, we treat
the intermediate merge rounds and the final merge round separately. For the intermediate merge
passes, we calculate how many times (on average) a single spill will be read.

9

Note that the remaining section assumes numSpils ≤ pSortFactor2 . In the opposite case, we
must use a simulation-based approach in order to calculate the number of spill files merged during
the intermediate merge rounds as well as the total number of merge passes. Since the Reduce task
also contains a similar Merge Phase, we define the following three methods to reuse later:

calcNumSpillsFirstPass(N ,F) =
N , if N ≤ F

F , if (N − 1) MOD (F − 1) = 0

(N − 1) MOD (F − 1) + 1 , otherwise

(21)

calcNumSpillsIntermMerge(N ,F) ={
0 , if N ≤ F

P +
⌊
N−P
F

⌋
∗ F , if N ≤ F 2

, where P = calcNumSpillsFirstPass(N ,F) (22)

calcNumSpillsFinalMerge(N ,F) ={
N , if N ≤ F

1 +
⌊
N−P
F

⌋
+ (N − S) , if N ≤ F 2

, where P = calcNumSpillsFirstPass(N ,F)

, where S = calcNumSpillsIntermMerge(N ,F) (23)

The number of spills read during the first merge pass is:

tNumSpillsFirstPass = calcNumSpillsFirstPass(dNumSpills, pSortFactor) (24)

The number of spills read during intermediate merging is:

tNumSpillsIntermMerge = calcNumSpillsIntermMerge(dNumSpills, pSortFactor) (25)

The total number of merge passes is:

dNumMergePasses =
0 , if dNumSpills = 1

1 , if dNumSpills ≤ pSortFactor

2 +
⌊
dNumSpills−tNumSpillsF irstPass

pSortFactor

⌋
, if dNumSpills ≤ pSortFactor2

(26)

The number of spill files for the final merge round is:

tNumSpillsFinalMerge = calcNumSpillsFinalMerge(dNumSpills, pSortFactor) (27)

10

As discussed earlier, the Combiner might be used during the final merge round. In this case, the
size and record Combiner selectivities are:

tUseCombInMerge =(dNumSpills > 1) AND (pUseCombine)

AND (tNumSpillsFinalMerge ≥ pNumSpillsForComb) (28)

tMergeCombSizeSel =

{
dsCombineSizeSel , if tUseCombInMerge

1 , otherwise
(29)

tMergeCombRecsSel =

{
dsCombineRecsSel , if tUseCombInMerge

1 , otherwise
(30)

The total number of records spilled equals the sum of (i) the records spilled during the Spill phase,
(ii) the number of records that participated in the intermediate merge rounds, and (iii) the number
of records spilled during the final merge round.

dNumRecsSpilled =dSpillFileRecs × dNumSpills

+dSpillFileRecs × tNumSpillsIntermMerge

+dSpillFileRecs × dNumSpills × tMergeCombRecsSel (31)

The final size and number of records for the final map output data are:

tIntermDataSize =dNumSpills × dSpillFileSize × tMergeCombSizeSel (32)

tIntermDataRecs =dNumSpills × dSpillFileRecs × tMergeCombRecsSel (33)

The total cost of the Merge phase is divided into the cost for performing the intermediate merge
rounds and the cost for performing the final merge round.

tIntermMergeTime =tNumSpillsIntermMerge ×
[dSpillFileSize × csLocalIOReadCost

+dSpillFileSize × csIntermUncomCPUCost

+dSpillFileRecs × csMergeCPUCost

+
dSpillFileSize

dsIntermCompressRatio
× csIntermComCPUCost

+dSpillFileSize × csLocalIOWriteCost] (34)

tFinalMergeTime =dNumSpills ×
[dSpillFileSize × csLocalIOReadCost

+dSpillFileSize × csIntermUncomCPUCost

+dSpillFileRecs × csMergeCPUCost

+dSpillFileRecs × csCombineCPUCost]

+
tIntermDataSize

dsIntermCompressRatio
× csIntermComCPUCost

+tIntermDataSize × csLocalIOWriteCost (35)

11

cMergePhaseTime = tIntermMergeTime + tFinalMergeTime (36)

6 Modeling the Shuffle Phase in the Reduce Task

In the Shuffle phase, the framework fetches the relevant map output partition from each mapper
(called a map segment) and copies it to the reducer’s node. If the map output is compressed,
Hadoop will uncompress it after the transfer as part of the shuffling process. Assuming a uniform
distribution of the map output to all reducers, the size and number of records for each map segment
that reaches the reduce side are:

tSegmentComprSize =
tIntermDataSize

pNumReducers
(37)

tSegmentUncomprSize =
tSegmentComprSize

dsIntermCompressRatio
(38)

tSegmentRecs =
tIntermDataRecs

pNumReducers
(39)

where tIntermDataSize and tIntermDataRecs are the size and number of records produced as
intermediate output by a single mapper (see Section 5). A more complex model can be used to
account for the presence of skew. The data fetched to a single reducer will be:

dShuffleSize = pNumMappers ∗ tSegmentComprSize (40)

dShuffleRecs = pNumMappers ∗ tSegmentRecs (41)

The intermediate data is transfered and placed in an in-memory shuffle buffer with a size propor-
tional to the parameter pShuffleInBufPerc:

tShuffleBufferSize = pShuffleInBufPerc × pTaskMem (42)

However, when the segment size is greater than 25% times the tShuffleBufferSize, the segment will
get copied directly to local disk instead of the in-memory shuffle buffer. We consider these two
cases separately.

Case 1: tSegmentUncomprSize < 0 .25 × tShuffleBufferSize
The map segments are transfered, uncompressed if needed, and placed into the shuffle buffer.
When either (a) the amount of data placed in the shuffle buffer reaches a threshold size determined
by the pShuffleMergePerc parameter or (b) the number of segments becomes greater than the
pInMemMergeThr parameter, the segments are merged and spilled to disk creating a new local file
(called shuffle file). The size threshold to begin merging is:

tMergeSizeThr = pShuffleMergePerc × tShuffleBufferSize (43)

The number of map segments merged into a single shuffle file is:

tNumSegInShuffleFile =
tMergeSizeThr

tSegmentUncomprSize
(44)

12

If (dtNumSegInShuffleFilee × tSegmentUncomprSize ≤ tShuffleBufferSize)

tNumSegInShuffleFile = dtNumSegInShuffleFilee
else

tNumSegInShuffleFile = btNumSegInShuffleFilec

If (tNumSegInShuffleFile > pInMemMergeThr)

tNumSegInShuffleFile = pInMemMergeThr (45)

If a Combiner is specified, then it is applied during the merging. If compression is enabled, then the
(uncompressed) map segments are compressed after merging and before written to disk. Note also
that if numMappers < tNumSegInShuffleFile, then merging will not happen. The size and number
of records in a single shuffle file is:

tShuffleFileSize =

tNumSegInShuffleFile × tSegmentComprSize × dsCombineSizeSel (46)

tShuffleFileRecs =

tNumSegInShuffleFile × tSegmentRecs × dsCombineRecsSel (47)

tNumShuffleFiles =

⌊
pNumMappers

tNumSegInShuffleFile

⌋
(48)

At the end of the merging process, some segments might remain in memory.

tNumSegmentsInMem = pNumMappers MOD tNumSegInShuffleFile (49)

Case 2: tSegmentUncomprSize ≥ 0 .25 × tShuffleBufferSize
When a map segment is transfered directly to local disk, it becomes equivalent to a shuffle file.
Hence, the corresponding temporary variables introduced in Case 1 above are:

tNumSegInShuffleFile = 1 (50)

tShuffleFileSize = tSegmentComprSize (51)

tShuffleFileRecs = tSegmentRecs (52)

tNumShuffleFiles = pNumMappers (53)

tNumSegmentsInMem = 0 (54)

Either case can create a set of shuffle files on disk. When the number of shuffle files on disk increases
above a certain threshold (which equals 2 × pSortFactor − 1), a new merge thread is triggered and
pSortFactor shuffle files are merged into a new and larger sorted shuffle file. The Combiner is not
used during this so-called disk merging. The total number of such disk merges are:

tNumShuffleMerges ={
0 , if tNumShuffleF iles < 2× pSortFactor − 1⌊
tNumShuffleF iles−2×pSortFactor+1

pSortFactor

⌋
+ 1 , otherwise

(55)

13

At the end of the Shuffle phase, a set of “merged” and “unmerged” shuffle files will exist on disk.

tNumMergShufFiles = tNumShuffleMerges (56)

tMergShufFileSize = pSortFactor × tShuffleFileSize (57)

tMergShufFileRecs = pSortFactor × tShuffleFileRecs (58)

tNumUnmergShufFiles =tNumShuffleFiles

−(pSortFactor × tNumShuffleMerges) (59)

tUnmergShufFileSize = tShuffleFileSize (60)

tUnmergShufFileRecs = tShuffleFileRecs (61)

The total cost of the Shuffle phase includes cost for the network transfer, cost for any in-memory
merging, and cost for any on-disk merging, as described above.

tInMemMergeTime =

I (tSegmentUncomprSize < 0 .25 × tShuffleBufferSize)×
[dShuffleSize × csIntermUncomCPUCost

+tNumShuffleFiles × tShuffleFileRecs × csMergeCPUCost

+tNumShuffleFiles × tShuffleFileRecs × csCombineCPUCost

+tNumShuffleFiles × tShuffleFileSize

dsIntermCompressRatio
× csIntermComCPUCost]

+tNumShuffleFiles × tShuffleFileSize × csLocalIOWriteCost (62)

tOnDiskMergeTime = tNumMergShufFiles ×
[tMergShufFileSize × csLocalIOReadCost

+tMergShufFileSize × csIntermUncomCPUCost

+tMergShufFileRecs × csMergeCPUCost

+
tMergShufFileSize

dsIntermCompressRatio
× csIntermComCPUCost

+tMergShufFileSize × csLocalIOWriteCost] (63)

cShufflePhaseTime =dShuffleSize × csNetworkCost

+tInMemMergeTime

+tOnDiskMergeTime (64)

14

7 Modeling the Merge Phase in the Reduce Task

After all map output data has been successful transfered to the Reduce node, the Merge phase1

begins. During this phase, the map output data is merged into a single stream that is fed to the
reduce function for processing. Similar to the Map’s Merge phase (see Section 5), the Reduce’s
Merge phase may occur it multiple rounds. However, instead of creating a single output file during
the final merge round, the data is sent directly to the reduce function.

The Shuffle phase may produce (i) a set of merged shuffle files on disk, (ii) a set of unmerged
shuffle files on disk, and (iii) a set of map segments in memory. The total number of shuffle files
on disk is:

tNumShufFilesOnDisk = tNumMergShufFiles + tNumUnmergShufFiles (65)

The merging in this phase is done in three steps.

Step 1: Some map segments are marked for eviction from memory in order to satisfy a memory
constraint enforced by the pReducerInBufPerc parameter, which specifies the amount of memory
allowed to be occupied by the map segments before the reduce function begins.

tMaxSegmentBufferSize = pReducerInBufPerc × pTaskMem (66)

The amount of memory currently occupied by map segments is:

tCurrSegmentBufferSize =

tNumSegmentsInMem × tSegmentUncomprSize (67)

Hence, the number of map segments to evict from, and retain in, memory are:

If (tCurrSegmentBufferSize > tMaxSegmentBufferSize)

tNumSegmentsEvicted =⌈
tCurrSegmentBufferSize − tMaxSegmentBufferSize

tSegmentUncomprSize

⌉
else

tNumSegmentsEvicted = 0 (68)

tNumSegmentsRemainMem = tNumSegmentsInMem − tNumSegmentsEvicted (69)

If the number of existing shuffle files on disk is less than pSortFactor , then the map segments
marked for eviction will be merged into a single shuffle file on disk. Otherwise, the map segments
marked for eviction are left to be merged with the shuffle files on disk during Step 2 (i.e., Step 1
does not happen).

1The Merge phase in the Reduce task is also called “Sort phase” in the literature, even though no sorting occurs.

15

If (tNumShufFilesOnDisk < pSortFactor)

tNumShufFilesFromMem = 1

tShufFilesFromMemSize = tNumSegmentsEvicted × tSegmentComprSize

tShufFilesFromMemRecs = tNumSegmentsEvicted × tSegmentRecs

tStep1MergingSize = tShufFilesFromMemSize

tStep1MergingRecs = tShufFilesFromMemRecs

else

tNumShufFilesFromMem = tNumSegmentsEvicted

tShufFilesFromMemSize = tSegmentComprSize

tShufFilesFromMemRecs = tSegmentRecs

tStep1MergingSize = 0

tStep1MergingRecs = 0 (70)

The total cost of Step 1 (which could be zero) is:

cStep1Time =tStep1MergingRecs × csMergeCPUCost

+
tStep1MergingSize

dsIntermCompressRatio
× csIntermComCPUCost

+tStep1MergingSize × csLocalIOWriteCost (71)

Step 2: Any shuffle files that reside on disk will go through a merging phase in multiple merge
rounds (similar to the process in Section 5). This step will happen only if there exists at least one
shuffle file on disk. The total number of files to merge during Step 2 is:

tFilesToMergeStep2 =

tNumShufFilesOnDisk + tNumShufFilesFromMem (72)

The number of intermediate reads (and writes) are:

tIntermMergeReads2 =

calcNumSpillsIntermMerge(tFilesToMergeStep2 , pSortFactor) (73)

The main difference from Section 5 is that the merged files in this case have different sizes. We
account for the different sizes by attributing merging costs proportionally. Hence, the total size
and number of records involved in the merging process during Step 2 are:

tStep2MergingSize =
tIntermMergeReads2

tFilesToMergeStep2
×

[tNumMergShufFiles × tMergShufFileSize

+tNumUnmergShufFiles × tUnmergShufFileSize

+tNumShufFilesFromMem × tShufFilesFromMemSize] (74)

16

tStep2MergingRecs =
tIntermMergeReads2

tFilesToMergeStep2
×

[tNumMergShufFiles × tMergShufFileRecs

+tNumUnmergShufFiles × tUnmergShufFileRecs

+tNumShufFilesFromMem × tShufFilesFromMemRecs] (75)

The total cost of Step 2 (which could also be zero) is:

cStep2Time =tStep2MergingSize × csLocalIOReadCost

+tStep2MergingSize × cIntermUnomprCPUCost

+tStep2MergingRecs × csMergeCPUCost

+
tStep2MergingSize

dsIntermCompressRatio
× csIntermComCPUCost

+tStep2MergingSize × csLocalIOWriteCost (76)

Step 3: All files on disk and in memory will be merged together. The process is identical to step
2 above. The total number of files to merge during Step 3 is:

tFilesToMergeStep3 = tNumSegmentsRemainMem

+calcNumSpillsFinalMerge(tFilesToMergeStep2 , pSortFactor) (77)

The number of intermediate reads (and writes) are:

tIntermMergeReads3 =

calcNumSpillsIntermMerge(tFilesToMergeStep3 , pSortFactor) (78)

Hence, the total size and number of records involved in the merging process during Step 3 are:

tStep3MergingSize =
tIntermMergeReads3

tFilesToMergeStep3
× dShuffleSize (79)

tStep3MergingRecs =
tIntermMergeReads3

tFilesToMergeStep3
× dShuffleRecs (80)

The total cost of Step 3 (which could also be zero) is:

cStep3Time =tStep3MergingSize × csLocalIOReadCost

+tStep3MergingSize × cIntermUnomprCPUCost

+tStep3MergingRecs × csMergeCPUCost

+
tStep3MergingSize

dsIntermCompressRatio
× csIntermComCPUCost

+tStep3MergingSize × csLocalIOWriteCost (81)

The total cost of the Merge phase is:

cMergePhaseTime = cStep1Time + cStep2Time + cStep3Time (82)

17

8 Modeling the Reduce and Write Phases in the Reduce Task

Finally, the user-defined reduce function will processed the merged intermediate data to produce
the final output that will be written to HDFS. The size and number of records processed by the
reduce function is:

dReduceInBytes =
tNumShuffleFiles × tShuffleFileSize

dsIntermCompressRatio

+
tNumSegmentsInMem × tSegmentComprSize

dsIntermCompressRatio
(83)

dReduceInRecs =tNumShuffleFiles × tShuffleFileRecs

+tNumSegmentsInMem × tSegmentRecs (84)

The size and number of records produce by the reduce function is:

dReduceOutBytes = dReduceInBytes × dsReduceSizeSel (85)

dReduceOutRecs = dReduceInRecs × dsReduceRecsSel (86)

The input data to the reduce function may reside in both memory and disk, as produced by the
Shuffle and Merge phases.

tInRedFromDiskSize =tNumMergShufFiles × tMergShufFileSize

+tNumUnmergShufFiles × tUnmergShufFileSize

+tNumShufFilesFromMem × tShufFilesFromMemSize (87)

The total cost of the Reduce phase is:

cReducePhaseTime =tInRedFromDiskSize × csLocalIOReadCost

+tInRedFromDiskSize × cIntermUncompCPUCost

+dReduceInRecs × csReduceCPUCost (88)

The total cost of the Write phase is:

cWritePhaseTime =

dReduceOutBytes × csOutComprCPUCost

+dReduceOutBytes × dsOutCompressRatio × csHdfsWriteCost (89)

18

8.1 Modeling the Overall MapReduce Job Execution

A MapReduce job execution consists of several map and reduce tasks executing in parallel and in
waves. There are two primary ways to estimate the total execution time of the job: (i) simulate the
task execution using a Task Scheduler Simulator, and (ii) calculate the expected total execution
time analytically.

Simulation involves scheduling and simulating the execution of individual tasks on a virtual
cluster. One simple way for estimating the cost for each task is to sum up the cost fields estimated
in Sections 3–8. The overall cost for a single map task is:

totalMapTime =
cReadPhaseT ime + cMapPhaseT ime + cWritePhaseT ime , if pNumReducers = 0

cReadPhaseT ime + cMapPhaseT ime + cCollectPhaseT ime

+cSpillPhaseT ime + cMergePhaseT ime , if pNumReducers > 0

(90)

The overall cost for a single reduce task is:

totalReduceTime =cShufflePhaseTime + cMergePhaseTime

+cReducePhaseTime + cSpillPhaseTime (91)

The second approach for calculating the total job execution time involves using the following ana-
lytical estimates:

totalMapsTime =
pNumMappers × totalMapTime

pNumNodes × pMaxMapsPerNode
(92)

totalReducesTime =
pNumReducers × totalReduceTime

pNumNodes × pMaxRedPerNode
(93)

The overall job cost is simply the sum of the costs from all the map and the reduce tasks.

totalJobTime =

{
totalMapsT ime , if pNumReducers = 0

totalMapsT ime + totalReducesT ime , if pNumReducers > 0
(94)

19

