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ABSTRACT
Table partitioning splits a table into smaller parts that can be ac-
cessed, stored, and maintained independent of one another. From
their traditional use in improving query performance, partitioning
strategies have evolved into a powerful mechanism to improve the
overall manageability of database systems. Table partitioning sim-
plifies administrative tasks like data loading, removal, backup, statis-
tics maintenance, and storage provisioning. Query language exten-
sions now enable applications and user queries to specify how their
results should be partitioned for further use. However, query opti-
mization techniques have not kept pace with the rapid advances in
usage and user control of table partitioning. We address this gap
by developing new techniques to generate efficient plans for SQL
queries involving multiway joins over partitioned tables. Our tech-
niques are designed for easy incorporation into bottom-up query
optimizers that are in wide use today. We have prototyped these
techniques in the PostgreSQL optimizer. An extensive evaluation
shows that our partition-aware optimization techniques, with low
optimization overhead, generate plans that can be an order of mag-
nitude better than plans produced by current optimizers.

Categories and Subject Descriptors
H.2.4 [Database Management]: Systems—query processing

General Terms
Algorithms

Keywords
query optimization, partitioning

1. INTRODUCTION
Table partitioning is a standard feature in database systems today

[13, 15, 20, 21]. For example, a sales records table may be parti-
tioned horizontally based on value ranges of a date column. One
partition may contain all sales records for the month of January,
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Uses of Table Partitioning in Database Systems
Efficient pruning of unneeded data during query processing
Parallel data access (partitioned parallelism) during query processing
Reducing data contention during query processing and administrative
tasks. Faster data loading, archival, and backup
Efficient statistics maintenance in response to insert, delete, and update
rates. Better cardinality estimation for subplans that access few partitions
Prioritized data storage on faster/slower disks based on access patterns
Fine-grained control over physical design for database tuning
Efficient and online table and index defragmentation at the partition level

Table 1: Uses of table partitioning in database systems
another partition may contain all sales records for February, and so
on. A table can also be partitioned vertically with each partition
containing a subset of columns in the table. Hierarchical combina-
tions of horizontal and vertical partitioning may also be used.

The trend of rapidly growing data sizes has amplified the usage
of partitioned tables in database systems. Table 1 lists various uses
of table partitioning. Apart from giving major performance im-
provements, partitioning simplifies a number of common adminis-
trative tasks in database systems. In this paper, we focus on hori-
zontal table partitioning in centralized row-store database systems
such as those sold by major database vendors as well as popular
open-source systems like MySQL and PostgreSQL. The uses of ta-
ble partitioning in these systems have been studied [2, 24].

The growing usage of table partitioning has been accompanied
by efforts to give applications and users the ability to specify parti-
tioning conditions for tables that they derive from base data. SQL
extensions from database vendors now enable queries to specify
how derived tables are partitioned (e.g., [11]). Given such exten-
sions, Database Administrators (DBAs) may not be able to con-
trol or restrict how tables accessed in a query are partitioned. Fur-
thermore, multiple objectives—e.g., getting fast data loading along
with good query performance—and constraints—e.g., on the max-
imum size or number of partitions per table—may need to be met
while choosing how each table in the database is partitioned.

1.1 Query Optimization for Partitioned Tables
Query optimization technology has not kept pace with the grow-

ing usage and user control of table partitioning. Previously, query
optimizers had to consider only the restricted partitioning schemes
specified by the DBA on base tables. Today, the optimizer faces
a diverse mix of partitioning schemes that expand on traditional
schemes like hash and equi-range partitioning. Hierarchical (or
multidimensional) partitioning is one such scheme to deal with mul-
tiple granularities or hierarchies in the data [4]. A table is first par-
titioned on one attribute. Each partition is further partitioned on a
different attribute; and so on for two or more levels.

Figure 1 shows an example hierarchical partitioning for a table
S(a, b) where attribute a is an integer and attribute b is a date. S



Figure 1: A hierarchical partitioning of table S

is equi-partitioned on ranges of a into four partitions S1-S4, each
of which is further partitioned on ranges of b. Figure 2 shows how
the hierarchical partitioning of table S can be interpreted as a two-
dimensional partitioning. The figure also shows partitions for ta-
bles R(a), T (a), and U(b). R, S, and T are all partitioned on
a—typical for multiple related data sources or even star/snowflake
schemas—but with different ranges due to data properties and stor-
age considerations. For example, if the number of records with the
same value of a is large in T (e.g., user clicks), then smaller ranges
will give more manageable partitions.

Table U is partitioned using nonequi ranges on b for data load-
ing and archival efficiency as well as workload performance. Daily
partitions for daily loads are an attractive option since it is faster to
load an entire partition at a time. However, maintenance overheads
and database limitations on the maximum number of partitions can
prevent the creation of daily partitions. Hence, 10-day ranges are
used for recent partitions of U . Older data is accessed less fre-
quently, so older 10-day partitions are merged into monthly ones to
improve query performance and archival efficiency.

The flexible nature and rising complexity of partitioning schemes
pose new challenges and opportunities during the optimization of
queries over partitioned tables. Consider an example queryQ1 over
the partitioned tables R, S, and T in Figure 2.

Q1: Select *
From R, S, T
Where R.a=S.a and S.a=T.a

and S.b≥02-15-10 and T.a<25;

Use of filter conditions for partition pruning: An optimization
that many current optimizers apply to Q1 is to prune partitions
T4-T8 and S11, S21, S31, S41 from consideration because it is
clear from the partitioning conditions that records in these parti-
tions will not satisfy the filter conditions. Partition pruning can
speed up query performance drastically by eliminating unneces-
sary table and index scans as well as reducing memory needs, disk
spills, and contention-related overheads.
Use of join conditions for partition pruning: Based on a transi-
tive closure of the filter and join conditions, partition pruning can
also eliminate partitions S32, S33, S42, S43, R3, R4, and U1.

Most current optimizers will stop here as far as exploiting par-
titions during the optimization of Q1 is concerned; and generate a
plan likeQ1P1 shown in Figure 3. In a plan likeQ1P1, the leaf op-
erators logically append together (i.e., UNION ALL) the unpruned
partitions for each table. Each unpruned partition is accessed using
regular table or index scans. The appended partitions are joined
using operators like hash, merge, and (index) nested-loop joins.
Partition-aware join path selection: Depending on the data prop-
erties, physical design, and storage characteristics in the database
system, a plan like Q1P2 shown in Figure 3 can significantly out-
perform plan Q1P1. Q1P2 exploits a number of properties arising
from partitioning in the given setting:
• Records in partition R1 can join only with S12 ∪ S13 and T1 ∪
T2. Similarly, records in partition R2 can join only with S22 ∪

Figure 2: Partitioning of tables R, S, T , U . Dotted lines show
partitions with potentially joining records

S23 and T3. Thus, the full R ./ S ./ T join can be broken up
into smaller and more efficient partition-wise joins.
• The best join order for R1 ./ (S12 ∪ S13) ./ (T1 ∪ T2) can

be different from that for R2 ./ (S22 ∪ S23) ./ T3. One likely
reason is change in the data properties of tables S and T over
time, causing variations in statistics across partitions.1

• The best choice of join operators for R1 ./ (S12 ∪ S13) ./
(T1∪T2) may differ from that forR2 ./ (S22∪S23) ./ T3, e.g.,
due to storage or physical design differences across partitions
(e.g., index created on one partition but not on another).

Let us now consider query Q2 to further understand the challenges
and opportunities arising while optimizing queries over partitioned
tables. Q2 is a typical query in traditional star schemas where a fact
table is joined with several dimension tables on different attributes.
Q2: Select *

From R, S, U
Where R.a=S.a and S.b=U.b

and U.b≥02-15-10 and R.a<25;
Plan Q2P1 from Figure 3 shows the plan that simply appends the
unpruned partitions before performing the joins. Given the join and
partitioning conditions forR and S, the optimizer has the option of
creating the partition-wise joins R1 ./ (S12 ∪ S13) and R2 ./
(S22 ∪ S23). The output of these joins is logically partitioned on
attribute a—which does not affect the later join with table U—
leading to the plan Q2P2 in Figure 3. Alternatively, the optimizer
has the option of creating partition-wise joins between S and U
first, generating the plan Q2P3.

1.2 Challenges and Contributions
The above examples illustrate the optimization possibilities for

SQL queries over partitioned tables, which enlarge the plan space
drastically. To our knowledge, no current optimizer (commercial
or research prototype) takes this space into account to find efficient
plans with low optimization overhead. We address this limitation
by developing a novel partition-aware SQL query optimizer:
Dealing with plan space explosion: A nontrivial challenge we
have to address in a partition-aware optimizer is to keep the ad-
ditional computational and memory overheads of the optimization
process in check while enabling good plans to be found.
Incorporation into state-of-the-art optimizers: The new tech-
niques we propose are designed for easy incorporation into bottom-
up query optimizers (like the seminal System R optimizer [19]) that
are in wide use today. With this design, we leverage decades of past
investment as well as potential future enhancements to these opti-
mizers (e.g., new rewrite rules, new join operators, and improve-
ments in statistics and cardinality estimation).
1Most enterprises keep 6-24 months of historical data online.



Figure 3: Q1P1 and Q2P1 are plans generated by current optimizers for our example queries Q1 and Q2 respectively. Q1P2, Q2P2,
and Q2P3 are plans generated by our partition-aware optimizer. IS and TS are respectively index and table scan operators. HJ, MJ,
and INLJ are respectively hash, merge, and index-nested-loop join operators. Union is a bag union operator

Partitions as physical or logical properties? The conventional
wisdom in the database literature as well as implementation in com-
mercial bottom-up query optimizers treat partitions as physical prop-
erties [18]. We show that treating partitions only as physical prop-
erties falls well short of making the best use of partitioned tables.
Our optimizer considers partitions efficiently at both the logical and
physical levels to get the best of two worlds: (a) generating plans
like Q1P2, Q2P2, and Q2P3 in Figure 3, and (b) preserving in-
teresting partitions [18] that may benefit operators (e.g., group-by)
higher-up in the plan.
Supporting practical partitioning conditions: In addition to con-
ventional DBA-specified partitioning conditions on base tables, our
optimizer supports a wide range of user-specified partitioning con-
ditions including multidimensional partitions, multi-level hierar-
chical partitions, and irregular ranges. The challenge here is to
deal with complex join graphs arising at the partition level (like
Figure 2) from the combination of the filter, join, and table-level
partitioning conditions for a SQL query.
Improving cardinality estimates: A nonobvious effect arises from
the fact that most database systems keep statistics (e.g., number of
distinct values) at the level of individual partitions. Cardinality es-
timation for appended partitions necessitates combination of per-
partition statistics. We have found that estimation errors from such
combination are worse for a plan like Q1P1 compared to Q1P2.
Prototyping and evaluation: All our techniques have been pro-
totyped in the PostgreSQL optimizer, and we report an extensive
evaluation based on the popular TPC-H benchmark.

2. RELATED WORK
Various table partitioning schemes as well as techniques to find a

good partitioning scheme automatically have been proposed as part
of database physical design tuning (e.g., [2, 18]). In contrast, our
goal is to fully exploit possible query optimization opportunities
given the existing horizontal partitioning scheme in the database.
Partitioning in Centralized DBMSs: Commercial DBMS ven-
dors (e.g., IBM, Microsoft, Oracle, and Sybase) provide support for
different types of partitioning, including hash, range, and list parti-
tioning, as well as support for hierarchical (multidimensional) par-
titioning. However, they implement different partition-aware opti-
mization techniques. Most commercial optimizers have excellent
support for per-table partition pruning. In addition to optimization-
time pruning, systems like IBM DB2 support pruning of partitions
at plan execution time, e.g., to account for join predicates in index-
nested-loop joins [13]. Some optimizers generate plans containing
n one-to-one partition-wise joins for any pair of tables R and S
that are partitioned into the same number n of partitions with one-
to-one correspondence between the partitions [15, 21]. For joins
where only table R is partitioned, Oracle supports dynamic parti-
tioning of S based on R’s partitioning; effectively creating a one-
to-one join between the partitions.

UNION ALL views are a useful construct that can be used to
support table partitioning [27]. The techniques proposed in this
paper are related closely to pushing joins down through UNION
ALL views. For example, when a UNION ALL view representing
a partitioned table R=R1 ∪ . . . ∪Rn is joined with a table S, IBM
DB2’s query optimizer considers pushing the join down to gener-
ate a UNION of base-table joins (R1./S) ∪ . . . ∪ (Rn./S) [27].
However, unlike our techniques, the join pushdown is considered
in the query-rewrite phase. As the authors of [27] point out, this
step can increase the time and memory overheads of optimization
significantly because of the large number of joins generated (espe-
cially, if multiple UNION ALL views are joined like in our exam-
ple queries in Figure 3). The techniques we propose are designed to
keep these overheads in check—even in the presence of hundreds
of partitions—while ensuring that good plans can be found.
Partitioning in Parallel/Distributed DBMSs: While we focus on
centralized DBMSs, the partition-aware optimization techniques
we propose are related closely to data localization in distributed
DBMSs [16]. Data localization is a query-rewrite phase where
heuristic rules like filter pushdown are used to prune partitions and
their joins that will not contribute to the query result. A join graph
is created for the partitions belonging to the joining tables, and in-
ference rules are used to determine the empty joins [8]. While our
work shares some goals with data localization, a number of differ-
ences exist. Instead of heuristic rewrite rules, we propose (provably
optimal) cost-based optimization of partitioned tables. In particu-
lar, we address the accompanying nontrivial challenge of plan space
explosion—especially in the presence of hundreds of partitions per
table (e.g., daily partitions for a year)—and the need to incorporate
the new optimization techniques into industry-strength cost-based
SQL optimizers. Section 8.7 compares our techniques empirically
with an adaptation of data localization to centralized DBMSs.

The cost-based optimization algorithms we present are indepen-
dent of the physical join methods supported by the DBMS. Paral-
lel DBMSs support several partition-aware join methods including
collocated, directed, broadcast, and repartitioned joins [6]. SCOPE
is a system for large-scale data analysis that uses cost-based opti-
mization to select the repartitioning of tables and intermediate re-
sults [25]. Query optimizers in these systems attempt to minimize
data transfer costs among nodes, which is orthogonal to our work.
Dynamic partitioning: Selectivity-based partitioning [17], content-
based routing [7], and conditional plans [10] are techniques that
enable different execution plans to be used for different subsets of
the input data. Unlike our work, these techniques focus on dynamic
partitioning of (unpartitioned) tables and data streams rather than
exploiting the properties of existing partitions. Easy incorporation
into widely-used SQL optimizers is not a focus of [7, 10, 17].
Predicate optimization: Predicate move-around [14] is a query
transformation technique that moves predicates among different re-
lations, and possibly query blocks, to generate potentially better



plans. Magic sets [5] represent a complementary technique that can
generate auxiliary tables to be used as early filters in a plan. Both
techniques are applied in the rewrite phase of query optimization,
thereby complementing our cost-based optimization techniques.

3. PROBLEM AND SOLUTION OVERVIEW
Our goal is to generate an efficient plan for a SQL query that

contains joins of partitioned tables. In this paper, we focus on tables
that are partitioned horizontally based on conditions specified on
one or more partitioning attributes (columns). The condition that
defines a partition of a table is an expression involving any number
of binary subexpressions of the form Attr Op Val, connected by
AND or OR logical operators. Attr is an attribute in the table, Val is
a constant, and Op is one of {=, 6=, <,≤, >,≥}.

Joins in a SQL query can be equi or nonequi joins. The joined
tables could have different numbers of partitions and could be par-
titioned on multiple attributes (like in Figure 2). Furthermore, the
partitions between joined tables need not have one-on-one corre-
spondence with each other. For example, a table may have one
partition per month while another table has one partition per day.

Our approach for partition-aware query optimization is based on
extending bottom-up query optimizers. We will give an overview
of the well-known System R bottom-up query optimizer [19] on
which a number of current optimizers are based, followed by an
overview of the extensions we make.

A bottom-up optimizer starts by optimizing the smallest expres-
sions in the query, and then uses this information to progressively
optimize larger expressions until the optimal physical plan for the
full query is found. First, the best access path (e.g., table or index
scan) is found and retained for each table in the query. The best
join path is then found and retained for each pair of joining tables
R and S in the query. The join path consists of a physical join op-
erator (e.g., hash or merge join) and the access paths found earlier
for the tables. Next, the best join path is found and retained for all
three-way joins in the query; and so on.

Bottom-up optimizers pay special attention to physical proper-
ties (e.g., sort order) that affect the ability to generate the optimal
plan for an expression e by combining optimal plans for subexpres-
sions of e. For example, for R ./ S, the System R optimizer stores
the optimal join path for each interesting sort order [19] of R ./ S
that can potentially reduce the plan cost of any larger expression
that contains R ./ S (e.g., R ./ S ./ U ).
Our extensions: Consider the join path selection in a bottom-up
optimizer for two partitioned tables R and S. R and S can be
base tables or the result of intermediate subexpressions. Let the
respective partitions be R1-Rr and S1-Ss. For ease of exposition,
we call R and S the parent tables in the join, and each Ri (Sj)
a child table. By default, the optimizer will consider a join path
corresponding to (R1∪· · ·∪Rr) ./ (S1∪· · ·∪Ss), i.e., a physical
join operator that takes the bag unions of the child tables as input.
This approach leads to plans like Q1P1 and Q2P1 in Figure 3.

Partition-aware optimization must consider joins among the child
tables in order to get efficient plans like Q1P2 in Figure 3; effec-
tively, pushing the join below the union(s). Joins of the child tables
are called child joins. When the bottom-up optimizer considers the
join of partitioned tables R and S, we extend its search space to
include plans consisting of the union of child joins. This process
works in four phases: applicability testing, matching, clustering,
and path creation.
Applicability testing: We first check whether the specified join
condition between R and S match the partitioning conditions on R
and S appropriately. Intuitively, efficient child joins can be utilized
only when the partitioning columns are part of the join attributes.

For example, the R.a = S.a join condition makes it possible to
utilize the R2 ./ (S22 ∪ S23) child join in plan Q1P2 in Figure 3.
Matching: This phase uses the partitioning conditions to determine
efficiently which joins between individual child tables of R and
S can potentially generate output records, and to prune the empty
child joins. For R ./ S in our running example query Q1, this
phase outputs {(R1, S12),(R1, S13),(R2, S22), (R2, S23)}.
Clustering: Production deployments can contain tables with many
tens to hundreds of partitions that lead to a large number of joins
between individual child tables.2 To reduce the join path creation
overhead, we carefully cluster the child tables; details are in Section
5. ForR ./ S in our running example, the matching phase’s output
is clustered such that only the two child joins R1 ./ (S12 ∪ S13)
and R2 ./ (S22 ∪ S23) are considered during path creation.
Path Creation: This phase creates and costs join paths for all child
joins output by the clustering phase, as well as the path that repre-
sents the union of the best child-join paths. This path will be chosen
for R ./ S if it costs lower than the one produced by the optimizer
without our extensions.
The next three sections give the details of these phases. Section 6
will also discuss how our techniques can be incorporated into the
bottom-up optimization process.

4. MATCHING PHASE
Suppose the bottom-up optimizer is in the process of selecting

the join path for parent tables R and S with respective child ta-
bles R1-Rr and S1-Ss. The goal of the matching phase is to iden-
tify all partition-wise join pairs (Ri, Sj) such that Ri ./ Sj can
produce output tuples as per the given partitioning and join condi-
tions. Equivalently, this algorithm prunes out (from all possible join
pairs) partition-wise joins that cannot produce any results. An ob-
vious matching algorithm would enumerate and check all the r× s
possible child table pairs. In distributed query optimization, this al-
gorithm is implemented by generating a join graph for the child ta-
bles [8]. The real inefficiency from this quadratic algorithm comes
from the fact that it gets invoked from scratch for each distinct join
of parent tables considered throughout the bottom-up optimization
process. Note that R and S can be base tables or the result of inter-
mediate subexpressions.

We developed an efficient matching algorithm that builds, probes,
and reuses Partition Index Trees (PITs). We will describe this new
data structure, and then explain how the matching algorithm uti-
lizes it to generate the partition-wise join pairs efficiently. PITs
apply to range and list partitioning conditions. Section 7 describes
how our techniques can be extended to handle hash partitioning.

4.1 Partition Index Trees
The core idea behind Partition Index Trees is to associate each

child table with one or more intervals generated from the table’s
partitioning condition. An interval is specified as a Low to High
range, which can be numeric (e.g., (0, 10]), date (e.g., [02-01-10,
03-01-10)), or a single numeric or categorical value (e.g., [5, 5],
[url,url]). A PIT indexes all intervals of all child tables for one of
the partitioning columns of a parent table. The PIT then enables
efficient lookup of the intervals that overlap with a given probe in-
terval from the other table. The use of PITs provides two main
advantages:
• For most practical partitioning and join conditions, building and

probing PITs has O(r log r) complexity (for r partitions in a
table). The memory needs are θ(r).

2We are aware of such deployments in a leading social networking
company and for a commercial parallel DBMS.



Figure 4: A partition index tree containing intervals for all
child tables (partitions) of T from Figure 2

• Most PITs are built once and then reused many times over the
course of the bottom-up optimization process (see Section 4.4).

Implementation: PIT, at a basic level, is an augmented red-black
tree [9]. The tree is ordered by the Low values of the intervals,
and an extra annotation is added to every node recording the max-
imum High value (denoted Max) across both its subtrees. Figure
4 shows the PIT created on attribute T.a based on the partitioning
conditions of all child tables of T (see Figure 2). The Low and Max
values on each node are used during probing to efficiently guide
the search for finding the overlapping intervals. When the interval
[20, 40) is used to probe the PIT, five intervals are checked (high-
lighted in Figure 4) and the two overlapping intervals [20, 30) and
[30, 40) are returned.

A number of nontrivial enhancements to PITs were needed to
support complex partitioning conditions that can arise in practice.
First, PITs need support for multiple types of intervals: open, closed,
partially closed, one sided, and single values (e.g., (1, 5), [1, 5],
[1, 5), (−∞, 5], and [5, 5]). In addition, supporting nonequi joins
required support from PITs to efficiently find all intervals in the tree
that are to the left or to the right of the probe interval.

Both partitioning and join conditions can be complex combina-
tions of AND and OR subexpressions, as well as involve any oper-
ator in {=, 6=, <,≤, >,≥}. Our implementation handles all these
cases by restricting PITs to unidimensional indexes and handling
complex expressions appropriately in the matching algorithm.

4.2 Matching Algorithm
Figure 5 provides all the steps for the matching algorithm. The

input consists of the two tables to be joined and the join condition.
We will describe the algorithm using query Q1 in our running ex-
ample from Section 1. The join condition for S ./ T in Q1 is a
simple equality expression: S.a = T.a. Later, we will discuss how
the algorithm handles more complex conditions involving logical
AND and OR operators, as well as nonequi join conditions. Since
the matching phase is executed only if the Applicability Test passes
(see Section 3), the attributes S.a and T.a must appear in the parti-
tioning conditions for the partitions of S and T respectively.

The table with the smallest number of (unpruned) partitions is
identified as the build relation and the other as the probe relation.
In our example, T (with 3 partitions) will be the build relation and
S (with 4 partitions) will be the probe one. Since partition pruning
is performed before any joins are considered, only the unpruned
child tables are used for building and probing the PIT. Then, the
matching algorithm works as follows:
• Build phase: For each child table Ti of T , generate the interval

for Ti’s partitioning condition (explained in Section 4.3). Build
a PIT that indexes all intervals from the child tables of T .
• Probe phase: For each child table Sj of S, generate the inter-

val int for Sj’s partitioning condition. Probe the PIT on T.a to
find intervals overlapping with int. Only T ’s child tables corre-

Algorithm for performing the matching phase
Input: Relation R, Relation S, Join Condition
Output: All partition-wise join pairs (Ri,Sj ) that can produce join results
For each (binary join expression in Join Condition) {

Convert all partitioning conditions to intervals;
Build PIT with intervals from partitions of R;
Probe the PIT with intervals from partitions of S;
Adjust matching result based on logical AND or OR semantics of the

Join Condition;
}

Figure 5: Matching algorithm

sponding to these overlapping intervals can have tuples joining
with Sj ; output the identified join pairs.

For S ./ T in our running example query, the PIT on T.a will
contain the intervals [0, 10), [10, 20) and [20, 30), which are asso-
ciated with partitions T1, T2, and T3 respectively (Figure 2). When
this PIT is probed with the interval [20, 40) for child table S22,
the result will be the interval [20, 30); indicating that only T3 will
join with S22. Overall, this phase outputs {(S12, T1), (S12, T2),
(S13, T1), (S13, T2), (S22, T3), (S23, T3)}; the remaining possi-
ble child joins are pruned.

4.3 Support for Complex Conditions
Before building and probing the PIT, we need to convert each

partitioning condition into one or more intervals. A condition could
be any expression involving logical ANDs, ORs, and binary expres-
sions. Subexpressions that are ANDed together are used to build a
single interval, whereas subexpressions that are ORed together will
produce multiple intervals. For example, suppose the partitioning
condition is (R.a ≥ 0 AND R.a < 20). This condition will create
the interval [0, 20). The condition (R.a > 0 AND R.b > 5) will
create the interval (0,∞), since only R.a appears in the join con-
ditions of query Q1. The condition (R.a < 0 OR R.a > 10) will
create the intervals (−∞, 0) and (10,∞). If the particular condi-
tion does not involveR.a, then the interval created is (−∞,∞), as
any value for R.a is possible.

Our approach can also support nonequi joins, for exampleR.a <
S.a. The PIT was adjusted in order to efficiently find all inter-
vals in the PIT that are to the left or to the right of the provided
interval. Suppose A = (A1, A2) is an interval in the PIT and
B = (B1, B2) is the probing interval. The interval A is marked
as an overlapping interval if ∃α∈A,β∈B such that α < β. Note
that this check is equivalent to finding all intervals in the PIT that
overlap with the interval (−∞, B2).

Finally, we support complex join expressions involving logical
ANDs and ORs. Suppose the join condition is (R.a = S.a AND
R.b = S.b). In this case, two PITs will be built; one for R.a and
one forR.b. After probing the two PITs, we will get two sets of join
pairs. We then adjust the pairs based on whether the join conditions
are ANDed or ORed together. In the example above, suppose that
R1 can join with S1 based on R.a, and that R1 can join with both
S1 and S2 based on R.b. Since the two binary join expressions
are ANDed together, we induce that R1 can join only with S1.
However, if the join condition were (R.a = S.a OR R.b = S.b),
then we would induce that R1 can join with both S1 and S2.

4.4 Complexity Analysis
Suppose N and M are the number of partitions for the build

and probe relations respectively. Also suppose each partition con-
dition is translated into a small, fixed number of intervals (which
is usually the case). In fact, a simple range partitioning condition
will generate exactly one interval. Then, building a PIT requires
O(N × logN) time. Probing a PIT with a single interval takes



Figure 6: Clustering algorithm applied to example query Q1

O(min(N, k × logN)) time, where k is the number of matching
intervals. Hence, the overall time to identify all possible child join
pairs is O(M ×min(N, k × logN)).

The space overhead introduced by a PIT is θ(N) since it is a
binary tree. However, a PIT can be reused multiple times during the
optimization process. Consider the join condition (R.a=S.a AND
S.a=T.a) for tables R, S, and T in Q1. A PIT built for S.a can be
(re)used for performing the matching algorithm when considering
the joins R ./ S, S ./ T , (R ./ S) ./ T , and (S ./ T ) ./ R.

5. CLUSTERING PHASE
The number of join pairs output by the matching phase can be

large, e.g., when each child table of R joins with multiple child
tables of S. In such settings, it becomes important to reduce the
number of join pairs that need to be considered during join path cre-
ation to avoid both optimization and execution inefficiencies. Join
path creation introduces optimization-time overheads for enumer-
ating join operators, accessing catalogs, and calculating cardinality
estimates. During execution, if multiple child-join paths reference
the same child table Ri, then Ri will be accessed multiple times; a
situation we want to avoid.

The approach we use to reduce the number of join pairs is to
cluster together multiple child tables of the same parent table. Fig-
ure 6 considers S ./ T for query Q1 from Section 1. The six
partition-wise join pairs output by the matching phase are shown
on the left. Notice that the join pairs (S22, T3) and (S23, T3) indi-
cate that both S22 and S23 can join with T3 to potentially generate
output records. If S22 is clustered with S23, then the single (clus-
tered) join (S22∪S23) ./ T3 will be considered in the path creation
phase instead of the two joins S22 ./ T3 and S23 ./ T3. Further-
more, because of the clustering, the child table T3 will have only
one access path (say, a table or index scan) in Q1’s plan.

Definition 1. Clustering metric: For an R ./ S join, two (un-
pruned) child tables Sj and Sk of S will be clustered together iff
there exists a (unpruned) child tableRi ofR such that the matching
phase outputs the join pairs (Ri, Sj) and (Ri, Sk). 2

If Sj and Sk are clustered together when no such Ri exists, then
the union of Sj and Sk will lead to unneeded joins with child tables
of R; hurting plan performance during execution. In our running
example in Figure 6, suppose we cluster S22 with S13. Then, S22

will have to be considered unnecessarily in joins with T1 and T2.
On the other hand, failing to cluster Sj and Sk together when

the matching phase outputs the join pairs (Ri, Sj) and (Ri, Sk)
would result in considering join paths separately for Ri ./ Sj and
Ri ./ Sk. The result is higher optimization overhead as well as
access of Ri in at least two separate paths during execution. In
our example, if we consider separate join paths for S22 ./ T3 and
S23 ./ T3, then partition T3 will be accessed twice.
Clustering algorithm: Figure 7 shows the clustering algorithm
that takes as input the join pairs output by the matching phase. The
algorithm first constructs the join partition graph from the input

Algorithm for clustering the output of the matching phase
Input: Partition join pairs (output of matching phase)
Output: Clustered join pairs (which will be input to path creation phase)
Build a bipartite join graph from the input partition join pairs where:

Child tables are the vertices, and
Partition join pairs are the edges;

Use Breadth-First-Search to identify connected components in the graph;
Output a clustered join pair for each connected component;

Figure 7: Clustering algorithm

join pairs. Each child table is a vertex in this bipartite graph, and
each join pair forms an edge between the corresponding vertices.
Figure 6 shows the join partition graph for our example. Breadth-
First-Search is used to identify all the connected components in the
join partition graph. Each connected component will give a (pos-
sibly clustered) join pair. Following our example in Figure 6, S12

will be clustered with S13, S22 with S23, and T1 with T2, forming
the output of the clustering phase consisting of the two (clustered)
join pairs ({S12, S13}, {T1, T2}) and ({S22, S23}, {T3}).

6. PATH CREATION AND SELECTION
We will now consider how to create and cost join paths for all

the (clustered) child joins output by the clustering phase, as well
as the union of the best child-join paths. Join path creation has to
be coupled tightly with the physical join operators supported by
the database system. As discussed in Section 1.2, we will leverage
the functionality of a bottom-up query optimizer [19] to create join
paths for the database system. The main challenge is how to extend
the enumeration and path retention aspects of a bottom-up query
optimizer in order to find the optimal plan in the new extended plan
space efficiently.
Definition 2. Optimal plan in the extended plan space: In ad-
dition to the default plan space considered by the bottom-up opti-
mizer for an n-way (n≥2) join of parent tables, the extended plan
space includes the plans containing any possible join order and join
path for joins of the child tables such that each child table (parti-
tion) is accessed at most once. The optimal plan is the plan with
least estimated cost in the extended plan space. 2

We will discuss three different approaches on how to extend the
bottom-up optimizer to find the optimal plan in the extended plan
space. Query Q1 from Section 1 is used as an example throughout.

Note that Q1 joins the three parent tables R, S, and T . For Q1,
a bottom-up optimizer will consider the three 2-way joins R ./ S,
R ./ T , S ./ T , and the single 3-way join R ./ S ./ T . For
each join considered, the optimizer will find and retain the best join
path for each interesting order and the best “unordered” path. Sort
orders onR.a, S.a, and T.a are the candidate interesting orders for
Q1. When the optimizer is considering an n-way join, it only uses
the best join paths retained for smaller joins.

6.1 Extended Enumeration
The first approach is to extend the existing path creation process

that occurs during the enumeration of each possible join. The ex-
tended enumeration includes the path representing the union of the
best child-join paths for the join. For instance, as part of the enu-
meration process for query Q1, the optimizer will create and cost
join paths for S ./ T . The conventional join paths include joining
the union of S’s partitions with the union of T ’s partitions using
all applicable join operators (like hash join or merge join), leading
to plans like Q1P1 in Figure 3. At this point, extended enumera-
tion will also create join paths for (S12 ∪ S13) ./ (T1 ∪ T2) and
(S22 ∪ S23) ./ T3, find the corresponding best paths, and create
the union of the best child-join paths. We will use the notation Pu

in this section to denote the union of the best child-join paths.



As usual, the bottom-up optimizer will retain the best join path
for each interesting order (a in this case) as well as the best (pos-
sibly unordered) overall path. If Pu is the best for one of these
categories, then it will be retained. The paths retained will be the
only paths considered later when the enumeration process moves
on to larger joins. For example, when creating join paths for (S ./
T ) ./ R, only the join paths retained for S ./ T will be used (in
addition to the access paths retained for R).
Property 1. Adding extended enumeration to a bottom-up opti-
mizer will not always find the optimal plan in the extended plan
space. 2

We will prove Property 1 using our running example. Suppose plan
Pu for S ./ T is not retained because it is not a best path for any
order. Without Pu for S ./ T , when the optimizer goes on to
consider (S ./ T ) ./ R, it will not be able to consider any 3-way
child join. Thus, plans similar toQ1P2 from Figure 3 will never be
considered; thereby losing the opportunity to find the optimal plan
in the extended plan space.

6.2 Treating Partitions as a Physical Property
The next approach considers partitioning as a physical property

of tables and the output of partition-wise joins. The parallel edition
of DB2 follows this approach. The concept of interesting partitions
(similar to interesting orders) can be used to incorporate partition-
ing as a physical property in the bottom-up optimizer. Interest-
ing partitions are partitions on attributes referenced in equality join
conditions and on grouping attributes [18]. In our example query
Q1, partitions on attributes R.a, S.a, and T.a are interesting.

Paths with interesting partitions can make later joins and group-
ing operations less expensive when these operations can take ad-
vantage of the partitioning. For example, partitioning on S.a for
S ./ T could lead to the creation of three-way child joins for
R ./ S ./ T . Hence, the optimizer will retain the best path for each
interesting partition, in addition to each interesting order. Overall,
if there are n interesting orders and m interesting partitions, then
the optimizer can retain up to n×m paths, one for each combina-
tion of interesting orders and interesting partitions.
Property 2. Treating partitioning as a physical property in a bottom-
up optimizer will not always find the optimal plan in the extended
plan space. 2

Once again we will prove the above property using the example
query Q1. When the optimizer enumerates paths for S ./ T , it
will consider Pu (the union of the best child-join paths). Unlike
what happened in extended enumeration, Pu will now be retained
since Pu has an interesting partition on S.a. Suppose the first and
second child joins of Pu have the respective join paths (S12 ∪S13)
HJ (T1 ∪ T2) and (S22 ∪ S23) HJ T3. (HJ and MJ denote hash
and merge join operators respectively.) Also, the best join path for
S ./ T with an interesting order on S.a is the union of the child-
join paths (S12 ∪ S13) MJ (T1 ∪ T2) and (S22 ∪ S23) MJ T3.

However, it can still be the case that the optimal plan for Q1 is
plan Q1P2 shown in Figure 3. Note that Q1P2 contains (S12 ∪
S13) MJ (T1 ∪ T2): the interesting order on S.a in this child join
led to a better overall plan. However, the interesting order on S.a
was not useful in the case of the second child join of S ./ T , so
(S22 ∪S23) MJ T3 is not used in Q1P2. Simply adding interesting
partitions alongside interesting orders to a bottom-up optimizer will
not enable it to find the optimal plan Q1P2.

The optimizer was not able to generate plan Q1P2 in the above
example because it did not consider interesting orders indepen-
dently for each child join. Instead, the optimizer considered in-
teresting orders and interesting partitions at the level of the parent
tables (R, S, T ) and joins of parent tables (R ./ S, R ./ T ,

Figure 8: Logical relations (with child relations) enumerated
for query Q1 by our partition-aware bottom-up optimizer

S ./ T , R ./ S ./ T ) only. An apparent solution would be for
the optimizer to create union plans for all possible combinations of
child-join paths with interesting orders. However, the number of
such plans is exponential in the number of child joins per parent
join, rendering this approach impractical.

6.3 Treating Partitions as a Logical Property
Our approach eliminates the aforementioned problems by treat-

ing partitioning as a property of the logical relations (tables or
joins) that are enumerated during the bottom-up optimization pro-
cess. A logical relation refers to the output produced by either ac-
cessing a table or joining multiple tables together. For example, the
logical relation (join) RST represents the output produced when
joining the tables R, S, and T , irrespective of the join order or the
join operators used in the physical execution plan. Figure 8 shows
all logical relations created during the enumeration process for our
example query Q1.

As illustrated in Figure 8, each logical relation maintains a list
of logical child relations. A logical child table is created for each
unpruned partition during partition pruning, whereas logical child
joins are created based on the output of the clustering phase. For
our example query Q1, the child-join pairs ({S12, S13}, {T1, T2})
and ({S22, S23}, {T3}) output by the clustering phase are used to
create the respective logical child joins S12S13T1T2 and S22S23T3.
The logical child relations also maintain the partitioning conditions,
which are propagated up when the child joins are created.

For each logical n-way join relation Jn = Jn−1 ./ J1, the logi-
cal child relations and partitioning conditions of Jn−1 and J1 form
the input to Jn’s matching phase (Section 4). The output of the
matching phase forms the input to Jn’s clustering phase (Section
5) which, in turn, outputs Jn’s logical child joins. Note that both
the matching and clustering phases work at the logical level, inde-
pendent of physical plans (paths).

The logical relations are the entities for which the best paths
found so far during the enumeration process are retained. The log-
ical child joins behave in the same way as their parent joins, retain-
ing the best paths for each interesting order and the best unordered
path. Hence, the number of paths retained is linear in the number
of child joins per parent join (instead of exponential as in the case
when partitions are treated as physical properties). The optimizer
considers all child-join paths with interesting orders during path
creation for higher child joins, while ensuring the property:



Property 3. Paths with interesting orders for a single child join can
be used later up the lattice, independent from all other child joins
of the same parent relation. 2

Suppose, the optimizer is considering joining ST with R to create
paths for RST . The output of the clustering phase will produce
the two child-join pairs (S12S13T1T2, R1) and (S22S23T3, R2).
Join paths for these two child joins will be created and costed in-
dependently from each other, using any paths with interesting or-
ders and join operators that are available. The best join paths for
((S12 ∪ S13) ./ (T1 ∪ T2)) ./ R1 and ((S22 ∪ S23) ./ T3) ./
R2) will be retained in the logical relations R1S12S13T1T2 and
R2S22S23T3 respectively (see Figure 8).

For each parent relation, the path representing the union of the
best child-join paths is created only at the end of each enumera-
tion level3 and it is retained only if it is the best path. Hence, the
optimizer will consider all join orders for each child join before
creating the union, leading to the following property:
Property 4. The optimizer will consider plans where different child
joins of the same parent relation can have different join orders
and/or join operators. 2

We have already seen how the optimizer created join paths ((S12 ∪
S13) ./ (T1 ∪ T2)) ./ R1 and ((S22 ∪ S23) ./ T3) ./ R2 when
joining ST with R. Later, the optimizer will consider joining RS
with T , creating join paths for (R1 ./ (S12 ∪ S13)) ./ (T1 ∪ T2)
and (R2 ./ (S22 ∪ S23)) ./ T3. It is possible that the best join
path for ((S12 ∪ S13) ./ (T1 ∪ T2)) ./ R1 is better than that
for (R1 ./ (S12 ∪ S13)) ./ (T1 ∪ T2), while the opposite occurs
between ((S22∪S23) ./ T3) ./ R2 and (R2 ./ (S22∪S23)) ./ T3;
which leads to the plan Q1P2 in Figure 3.
Property 5. Optimality guarantee: By treating partitioning as a
logical property, our bottom-up optimizer will find the optimal plan
in the extended plan space. 2

This property is a direct consequence of Properties 3 and 4. We
have extended the plan space to include plans containing unions
of child joins. Each child join is enumerated during the traditional
bottom-up optimization process in the same way as its parent; the
paths are built bottom-up, interesting orders are taken into consid-
eration, and the best paths are retained. Since each child join is
optimized independently, the topmost union of the best child-join
paths is the optimal union of the child joins. Finally, recall that the
union of the best child-join paths is created at the end of each enu-
meration level and retained only if it is the best plan for its parent
join. Therefore, the full extended plan space is considered and the
optimizer will be able to find the optimal plan (given the current
database configuration, cost model, and physical design).

Traditionally, grouping (and aggregation) operators are added on
top of the physical join trees produced by the bottom-up enumera-
tion process [19]. In this case, interesting partitions are useful for
pushing the grouping below the union of the child joins, in an at-
tempt to create less expensive execution paths. With our approach,
paths with interesting partitions on the grouping attributes can be
constructed at the top node of the enumeration lattice, and used
later on while considering the grouping operator.

Treating partitions as a property of the logical relations allows
for a clean separation between the enumeration process of the log-
ical relations and the construction of the physical plans. Hence,
our algorithms are applicable to any database system that uses a
bottom-up optimizer. Moreover, they can be adapted for non-database
data processing systems like SCOPE and Hive that offer support for
table partitioning and joins.
3Enumeration level n refers to the logical relations representing all
possible n-way joins.

Name Features
Basic Per-table partition pruning only (like MySQL and Post-

greSQL). Our evaluation uses the PostgreSQL 8.3.7 op-
timizer as the Basic optimizer

Intermediate Per-table partition pruning and one-to-one partition-wise
joins (like Oracle and SQLServer). The Intermediate op-
timizer is implemented as a variant of the Advanced op-
timizer that checks for and creates one-to-one partition-
wise join pairs in place of the regular matching and clus-
tering phases

Advanced Per-table partition pruning and all the join optimizations
for partitioned tables as described in the paper

Table 2: Optimizer categories considered in the evaluation

7. EXTENDING OUR TECHNIQUES TO
PARALLEL DATABASE SYSTEMS

While this paper focuses on centralized DBMSs, our work is also
useful in parallel DBMSs like Aster nCluster [3], Teradata [22], and
HadoopDB [1] which try to partition tables such that most queries
in the workload need intra-node processing only. A common data
placement strategy in parallel DBMSs is to use hash partitioning to
distribute tuples in a table among the nodes N1, . . . , Nk, and then
use range/list partitioning of the tuples within each node. Our tech-
niques extend to this setting: if two joining tablesR and S have the
same hash partitioning function and the same number of partitions,
then a partition-wise joinRi ./ Si is created for each nodeNi. If a
secondary range/list partitioning has been used to further partition
Ri and Si at an individual node, then our techniques can be applied
directly to produce child joins for Ri ./ Si.

Another data placement strategy popular in data warehouses is
to replicate the dimension tables on all nodes, while the fact table
is partitioned across the nodes. The fact-table partition as well as
the dimension tables may be further partitioned on each node, so
our techniques can be used to create child joins at each node. In
such settings, multi-dimensional partitioning of the fact table can
improve query performance significantly as we show in Section 8.

8. EXPERIMENTAL EVALUATION
The purpose of this section is to evaluate the effectiveness and ef-

ficiency of our optimization techniques across a wide range of fac-
tors that affect table partitioning. We have prototyped all our tech-
niques in the PostgreSQL 8.3.7 optimizer. All experiments were
run on Amazon EC2 nodes of m1.large type. Each node has 7.5GB
RAM, dual-core 2GHz CPU, and 850GB of storage. We used the
TPC-H benchmark with scale factors ranging from 10 to 40, with
30 being the default scale. Following directions from the TPC-H
Standard Specifications [23], we partitioned tables only on primary
key, foreign key, and/or date columns. We present experimental
results for a representative set of 10 out of the 22 TPC-H queries,
ranging from 2-way up to the maximum possible 8-way joins. All
results presented are averaged over three query executions.

8.1 Experimental Setup
The most important factor affecting query performance over par-

titioned tables is the partitioning scheme that determines which ta-
bles are partitioned and on which attribute. We identified two cases
that arise in practice:
1. The DBA has full control in selecting and deploying the parti-

tioning scheme to maximize query-processing efficiency.
2. The partitioning scheme is forced either partially or fully by

practical reasons beyond query-processing efficiency.
For evaluation purposes, we categorized query optimizers into three
categories—Basic, Intermediate, and Advanced—based on how they
exploit partitioning information to perform optimization. Details



Figure 9: (a) Execution times, (b) Optimization times, (c) Memory usage for TPC-H queries over PS-J

Figure 10: (a) Execution times, (b) Optimization times, (c) Memory usage for TPC-H queries 5 and 8 over three partitioning schemes

Partition Table Partitioning Number of
Scheme Attributes Partitions

PS-P orders o_orderdate 28
lineitem l_shipdate 85

PS-J orders o_orderkey 48
lineitem l_orderkey 48
partsupp ps_partkey 12
part p_partkey 12

PS-B orders o_orderkey, o_orderdate 72
lineitem l_orderkey, l_shipdate 120
partsupp ps_partkey 12
part p_partkey 6

PS-C orders o_orderkey, o_orderdate 36
lineitem l_orderkey, l_shipdate 168
partsupp ps_partkey 30
part p_partkey 6
customer c_custkey 6

Table 3: Partitioning schemes for TPC-H

are given in Table 2. We compare the optimizers on three metrics
used to evaluate optimizers [12]: (i) query execution time, (ii) op-
timization time, and (iii) optimizer’s memory usage.

8.2 Results from DBA-Controlled Schemes
Given the capabilities of the query optimizer, the DBA has a

spectrum of choices regarding the partitioning scheme [26]. In one
extreme, the DBA can partition tables based on attributes appearing
in filter conditions in order to take maximum advantage of partition
pruning. At the other extreme, the DBA can partition tables based
on joining attributes in order to take maximum advantage of one-
to-one partition-wise joins; assuming the optimizer supports such
joins (like the Intermediate optimizer in Table 2). In addition, our
techniques now enable the creation of multidimensional partitions
to take advantage of both partition pruning and partition-wise joins.
We will refer to the three above schemes as partitioning schemes
respectively for pruning (PS-P), for joins (PS-J), and for both (PS-
B). Table 3 lists all partitioning schemes used in our evaluation.

Figure 9(a) shows the execution times for the plans selected by

the three query optimizers for the ten TPC-H queries running on the
database with the PS-J scheme. The Intermediate and Advanced
optimizers are able to generate a better plan than the Basic opti-
mizer for all queries, providing up to an order of magnitude ben-
efit for some of them. Note that the Intermediate and Advanced
optimizers produce the same plan in all cases, since one-to-one
partition-wise joins are the only join optimization option for both
optimizers for the PS-J scheme.

Figure 9(b) presents the corresponding optimization times for the
queries. The Intermediate optimizer introduces some overhead on
optimization time—average of 17% and worst case of 21% due to
the creation of child-join paths—compared to Basic. The additional
overhead introduced by the Advanced optimizer over Intermediate
is on average less than 3%. This overhead is due to the matching
and clustering algorithms. Overall, the optimization overhead in-
troduced by Advanced is low, and is most definitely gained back
during execution as we can see by comparing the y-axes of Figures
9(a) and 9(b) (execution time is in minutes whereas optimization
time is in milliseconds). The memory overheads shown in Figure
9(c) follow the same trend: average memory overhead of Advanced
over Basic is around 7%, and the worst case is 10%.

Query performance is related directly to the optimizer capabil-
ities and the partitioning scheme used in the database. Figure 10
shows the performance results for TPC-H queries 5 and 8 for the
three optimizers over databases with different partitioning schemes.
(Results for other queries are similar.) Since a database using the
PS-P scheme only allows for partition pruning, all three optimiz-
ers behave in an identical manner. A PS-J scheme on the other
hand, does not allow for any partition pruning since join attributes
do not appear in filter conditions in the queries. Hence, the Basic
optimizer performs poorly in many cases, whereas the Intermediate
and Advanced optimizers take advantage of partition-wise joins to
produce better plans with very low overhead.

The presence of multidimensional partitions in a PS-B scheme
prevents the Intermediate optimizer from generating any one-to-
one partition-wise joins, but it can still perform partition pruning



Figure 11: (a) Execution times, (b) Optimization times, (c) Memory usage for TPC-H queries over PS-C with partition size 128MB

Figure 12: (a) Execution times, (b) Optimization times, (c) Memory usage as we vary the partition size for TPC-H queries 5 and 8

like the Basic optimizer. The Advanced optimizer utilizes both
partition pruning and partition-wise joins to find better-performing
plans. Consider the problem of picking the best partitioning scheme
for a given query workload. The best query performance can be ob-
tained either from (a) partition pruning (PS-P is best for query 8 in
Figure 10), or (b) from partition-aware join processing (PS-J is best
for query 5 in Figure 10), or (c) from a combination of both due to
some workload or data properties. In all cases, the Advanced opti-
mizer enables finding the plan with the best possible performance.

8.3 Results from Constrained Schemes
As discussed in Section 1, external constraints or objectives may

limit the partitioning scheme that can be used. For instance, data
arrival rates may require the creation of daily or weekly partitions;
file-system properties may impose a maximum partition size to en-
sure that each partition is laid out contiguously; or optimizer limi-
tations may impose a maximum number of partitions per table.

For a TPC-H scale factor of 30, biweekly partitions of the fact ta-
ble lead to a 128MB partition size. We will impose a maximum par-
tition size of 128MB to create the partitioning scheme PS-C used in
this section (see Table 3). Figure 11 shows the results for the TPC-
H queries executed over a database with the PS-C scheme. The
constraint imposed on the partitioning scheme does not allow for
any one-to-one partition-wise joins. Hence, the Intermediate opti-
mizer produces the same plans as Basic, and is excluded from the
figures for clarity. Once again, the Advanced optimizer was able to
generate a better plan than the Basic optimizer for all queries, pro-
viding over 2x speedup for 50% of them. The average optimization
time and memory overheads were just 7.9% and 3.6% respectively.

8.4 Effect of Size and Number of Partitions
In this section, we evaluate the performance of the optimizers

as we vary the size (and thus the number) of partitions created for
each table, using the PS-C scheme. As we vary the partition size
from 64MB to 256MB, the number of partitions for the fact table
vary from 336 to 84. Figure 12(b) shows the optimization times
taken by the two optimizers for TPC-H queries 5 and 8. As the

Figure 13: Execution times as we vary the total data size

partition size increases (and the number of partitions decreases),
the optimization time decreases for both optimizers. We observe
that (i) the optimization times for the Advanced optimizer scale
in a similar way as for the Basic optimizer, and (ii) the overhead
introduced by the creation of the partition-wise joins remains small
(around 12%) in all cases.

The overhead added by our approach remains low due to two
reasons. First, Clustering bounds the number of child joins for
R ./ S to min(number of partitions in R,S); so we cause only a
linear increase in paths enumerated per join. Second, optimizers
have other overheads like parsing, rewrites, scan path enumeration,
catalog and statistics access, and cardinality estimation. Let us con-
sider Query 5 from Figure 12(b). Query 5 joins 5 tables, including
orders and lineitem with 72 and 336 partitions respectively. In this
case, Basic enumerated 2317 scan and join paths in total, while
Advanced enumerated 2716 paths. The extra 17% paths are for
the 72 partition-wise joins created by Advanced. The trends are
similar for the memory consumption of the optimizers as seen in
Figure 12(c).

Decreasing the partition size for the same total data size has a
positive effect on plan execution times as seen in Figure 12: smaller



Figure 14: (a) Execution times, (b) Optimization times, (c) Memory usage as we vary the number of tables joined on the same
attribute for a modified TPC-H schema and queries 2 and 5

Figure 15: (a) Execution times, (b) Optimization times, (c) Memory usage for enabling and disabling clustering

partition sizes force finer-grained partition ranges, leading to better
partition pruning and join execution. Looking into execution times
at the subplan level, we observed that PostgreSQL was more effec-
tive in our experimental settings when it accessed partitions in the
64MB range. It is worth noting that current partitioning scheme
recommenders [2, 18, 26] do not consider partition size tuning.

8.5 Effect of Data Size
We used the PS-C scheme with a partition size of 128 MB to

study the effects of the overall data size on query performance. Fig-
ure 13 shows the query execution times as the amount of data stored
in the database increases. For many queries, the plans selected by
the Basic optimizer lead to a quadratic or exponential increase in
execution time as data size increases linearly. We observed that
joins for large data sizes cause the Basic optimizer to frequently re-
sort to index nested loop joins (the system has 7.5GB RAM only).

On the other hand, the Advanced optimizer is able to generate
smaller partition-wise joins that use more efficient join methods
(like hash and merge joins); leading to the desired linear increase
in execution time as data size increases linearly. For the queries
where the Basic optimizer is also able to achieve a linear trend, the
slope is much higher compared to the Advanced optimizer. Fig-
ure 13 shows that the benefits from our approach become more
important for larger databases. Note that optimization times and
memory consumption are independent of the data size.

8.6 Stress Testing on a Synthetic Benchmark
There exist practical scenarios where multiple tables may share a

common joining key. In Web analytics, for example, customer data
may reside in multiple tables—storing information such as page
clicks, favorites, preferences, etc.—that have to be joined on the
customer key. However, in traditional star and snowflake schemas,
the fact tables join with the dimension tables on different attributes;
so it is hard to create n-way child joins for n ≥ 3. No TPC-H query
plan, regardless of the partitioning schema, contains n-way child
joins for n ≥ 4. To evaluate our approach in non-star schemas,
as well as to stress-test our approach, we came up with a synthetic

partitioning schema where the tables part and orders from TPC-H
are partitioned vertically into four tables each. Once again, we use
the PS-C scheme with a partition size of 128 MB.

We modified TPC-H queries 2 and 5 to join all the vertical tables
for part and orders respectively. Figure 14(a) shows the execution
times for the two queries with increasing number of joining tables.
We observe how the Advanced optimizer was again able to generate
plans that are up to an order of magnitude better compared to the
plans selected by the Basic optimizer. It is interesting to note that as
the number of joining tables in the query increases, the execution
times for the plans from the Advanced optimizer increase barely
(due to efficient use of child joins); unlike the Basic optimizer’s
plans whose execution times increase drastically.

Figures 14(b) and 14(c) show the optimization times and mem-
ory consumption, respectively, as the number of “same-key-joining”
tables in the query increases. Both metrics increase non-linearly
for both optimizers; but the increase is more profound for the Ad-
vanced optimizer. The increasing optimization overhead comes
from the non-linear complexity of the path selection process used
by the regular PostgreSQL query optimizer (which we believe can
be fixed through engineering effort unrelated to our work). With
optimization times still in milliseconds, the additional overhead is
certainly justified by the drastic reduction in execution times.

8.7 Effect of the Clustering Algorithm
Clustering (Section 5) is an essential phase in our overall partition-

aware optimization approach that is missing from the data localiza-
tion approach discussed in Section 2. When matching is applied
without clustering, our optimizer implements a rough equivalent
of the four-phase approach to distributed query optimization [16].
Figures 15(b) and 15(c) compare the optimization time and mem-
ory consumption of the optimizer when clustering is enabled and
disabled in a database with the PS-C scheme. Disabling clustering
causes high overhead—as seen in both figures—since the optimizer
must now generate join paths for each child join produced by the
matching phase. This issue shows why clustering is essential for



Figure 16: Estimated (and actual) number of records of TPC-H
queries over PS-C

our optimizer to perform well in the presence of hundreds of parti-
tions per table (e.g., daily partitions for a year).

Figure 15(a) shows the execution times for the plans generated
when enabling and disabling clustering. In all cases shown, the plan
generated without clustering is worse than the plan generated when
clustering is used, since the generated plans scan the same parti-
tions multiple times (in different joins). The queries that are not
shown failed to complete because the system runs out of memory
during plan execution. Note that with multidimensional partition-
ing and without clustering, literally thousands of child join paths
are created, each requiring a small amount of memory during their
initialization phase. We conclude that the use of clustering is cru-
cial for finding good execution plans.

8.8 Impact on Cardinality Estimation
An additional benefit that child joins bring is better cardinality

estimation for costing during path creation. Cardinality estimation
for filter and join conditions is based on data-level statistics kept
by the database system for each table (e.g., distribution histograms,
minimum and maximum values, number of distinct values). For
partitioned tables, databases like Oracle and PostgreSQL collect
statistics for each individual partition. When the optimizer consid-
ers joining unions of partitions, the cardinality estimates needed are
derived by aggregating statistics over partitions.

Figure 16 shows the estimated and actual number of records of
TPC-H queries over the PS-C scheme. For the Basic Optimizer, we
observe large cardinality errors. In contrast, partition-wise joins
provide much more accurate cardinality estimation because these
joins increase the chances of using partition-level statistics directly
for costing. The same pattern was observed with all the partitioning
schemes and queries used.

9. SUMMARY
Query optimization technology has not kept pace with the grow-

ing usage and user control of table partitioning. We addressed this
gap by developing novel partition-aware optimization techniques to
generate efficient plans for SQL queries over partitioned tables. We
extended the search space to include plans with multiway partition-
wise joins, and provided techniques to find the optimal plan effi-
ciently. Our techniques are designed for easy incorporation into
bottom-up query optimizers. An extensive experimental evaluation
showed that our optimizer, with low optimization-time overhead,
can generate plans that are an order of magnitude better than plans
generated by current optimizers.
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