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ABSTRACT

Infrastructure-as-a-Service (IaaS) cloud platforms have brought two
unprecedented changes to cluster provisioning practices. First, any
(nonexpert) user can provision a cluster of any size on the cloud
within minutes to run her data-processing jobs. The user can ter-
minate the cluster once her jobs complete, and she needs to pay
only for the resources used and duration of use. Second, cloud
platforms enable users to bypass the traditional middleman—the
system administrator—in the cluster-provisioning process. These
changes give tremendous power to the user, but place a major bur-
den on her shoulders. The user is now faced regularly with complex
cluster sizing problems that involve finding the cluster size, the type
of resources to use in the cluster from the large number of choices
offered by current IaaS cloud platforms, and the job configurations
that best meet the performance needs of her workload.

In this paper, we introduce the Elastisizer, a system to which
users can express cluster sizing problems as queries in a declarative
fashion. The Elastisizer provides reliable answers to these queries
using an automated technique that uses a mix of job profiling, esti-
mation using black-box and white-box models, and simulation. We
have prototyped the Elastisizer for the Hadoop MapReduce frame-
work, and present a comprehensive evaluation that shows the ben-
efits of the Elastisizer in common scenarios where cluster sizing
problems arise.
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1. INTRODUCTION

Timely and cost-effective analytics over large datasets is now a
crucial requirement in many businesses and scientific disciplines.
Web search engines and social networks log every user action. The
logs are analyzed at frequent intervals to detect fraudulent activity,
to find opportunities for personalized advertising, and to improve
the Web-site structure and content. Scientific fields like biology
and economics as well as traditional areas like journalism have fast
growing computational subareas.

The MapReduce framework—which consists of a programming
model and a scalable and fault-tolerant run-time system—is now
a popular platform for data analytics [10]. Hadoop is an open-
source implementation of MapReduce used in production deploy-
ments. Hadoop is used for applications like log file analysis, Web
indexing, report generation, machine learning research, financial
analysis, scientific simulation, and bioinformatics.

Cloud platforms make MapReduce an attractive proposition for
small organizations that need to process large datasets, but lack the
computing and human resources of a Google, Microsoft, or Ya-
hoo! to throw at the problem. Elastic MapReduce, for example,
is a hosted service on the Amazon cloud platform where a user
can instantly provision a Hadoop cluster running on any number of
Elastic Compute Cloud (EC2) nodes [1]. The cluster can be used to
run data-intensive MapReduce jobs, and then terminated after use.
The user has to pay (only) for the nodes provisioned to the cluster
for the duration of use.

The new and remarkable aspect here is that a nonexpert MapRe-
duce user can provision a cluster of any size on the cloud within
minutes to meet her data-processing needs. This feature of the
cloud gives tremendous power to the average user, while placing
a major burden on her shoulders. Previously, the same user would
have had to work with system administrators and management per-
sonnel to get a cluster provisioned for her needs. Many days to
months would have been needed to complete the provisioning pro-
cess. Furthermore, making changes to an already-provisioned clus-
ter was a hassle.

Cloud platforms make cluster provisioning almost instantaneous.
The elastic and pay-as-you-go nature of these platforms means that,
depending on how best to meet her needs, a user can allocate a 10-
node cluster today, a 100-node cluster tomorrow, and a 25-node
cluster the day after. However, removing the system administrator
and the traditional capacity-planning process from the loop shifts
the nontrivial responsibility of determining a good cluster configu-
ration to the nonexpert user.

As an illustrative example, consider provisioning a Hadoop clus-
ter on EC2 nodes to run a MapReduce workload on the cloud. Ser-
vices like Elastic MapReduce and Hadoop On Demand free the
user from having to install and maintain the Hadoop cluster. How-



EC2 Node CPU Memory | Storage 1/0 Cost Map Slots | Reduce Slots | Max Memory

Type (# EC2 Units) (GB) (GB) Performance | (U.S. $ per hour) | per Node per Node per slot (MB)
m1.small 1 1.7 160 moderate 0.085 2 1 300
ml.large 4 7.5 850 high 0.34 3 2 1024
ml.xlarge 8 15 1,690 high 0.68 4 4 1536
cl.medium 5 1.7 350 moderate 0.17 2 2 300
cl.xlarge 20 7 1,690 high 0.68 8 6 400

Table 1: Five representative EC2 node types, along with resources, costs, and cluster parameter settings for Hadoop.
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Figure 1: Performance Vs. pay-as-you-go costs for a workload that is run on different EC2 cluster resource configurations. (a) and
(b) show the actual values and the corresponding values as estimated by the Elastisizer.

ever, the burden of cluster provisioning is still on the user who is
likely not an expert system administrator. In particular, the user
has to specify the number of EC2 nodes to use in the cluster, as
well as the node type to use from among 10+ EC2 node types. Ta-
ble 1 shows the features and renting costs of some representative
EC2 node types. Notice that the CPU and I/O resources available
on these node types are quoted in abstract terms that an average
user will have trouble understanding. To complicate the space of
choices even further, the user has to specify what values to use for
a number of configuration parameters—e.g., the number of reduce
tasks or whether to compress map outputs—at the level of MapRe-
duce job execution on the cluster [2, 14].

In this paper, we refer to the general problem of determining
the cluster resources and MapReduce job-level configurations to
meet desired requirements on execution time and cost for a given
analytic workload as the cluster sizing problem. The main con-
tribution of this paper is a system called the Elastisizer to which
users can express cluster sizing problems as queries. The Elasti-
sizer will provide reliable answers to cluster sizing queries in an
automated fashion. In order to illustrate how the Elastisizer bene-
fits users and applications, we begin by discussing some common
scenarios where cluster sizing problems arise.

1.1 Use Cases for Cluster Sizing Queries

1. Tuning the cluster size for elastic workloads: Suppose a
MapReduce job takes three hours to finish on a 10-node Hadoop
cluster of EC2 nodes of the m1.large type. The application or the
user who controls the cluster may want to know by how much the
execution time of the job will reduce if five more m1.large nodes
are added to the cluster. Such questions arise routinely in practice,
and can be answered automatically by the Elastisizer.

2. Planning for workload transition from a development clus-
ter to production: Most enterprises maintain separate (and pos-
sibly multiple) clusters for application development compared to
the production clusters used for running mission-critical and time-
sensitive workloads. Elasticity and pay-as-you-go features have
simplified the task of maintaining multiple clusters. For example,
Facebook uses a Platinum cluster that only runs mission-critical
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Figure 2: Pay-as-you-go costs for a workload from Figure 1
when run using auction-based EC2 spot instances.

jobs [4]. Less critical jobs are run on a separate Gold or a Silver
cluster where data from the production cluster is replicated.

A developer will first test a new MapReduce job on the devel-
opment cluster, possibly using small representative samples of the
data from the production cluster. Before the job can be scheduled
on the production cluster—usually as part of an analytic workload
that is run periodically on new data—the developer will need to
identify a MapReduce job-level configuration that will give good
performance for the job when run on the production cluster (with-
out actually running the job on this cluster). The Elastisizer helps
the developer with this task. Based on how the job performs when
run on the development cluster, the Elastisizer can estimate how
the job will run under various hypothetical configurations on the
production cluster; and recommend a good configuration to use.

3. Cluster provisioning under multiple objectives: Infrastructure-
as-a-service (IaaS) cloud platforms like Amazon EC2 and Rackspace
offer multiple choices for the type of node to use in a cluster; see
Table 1. As the levels of compute, memory, and I/O resources on
the nodes increase, so does the cost of renting the nodes per hour.
Figure 1 shows the execution time as well as total cost incurred for
a MapReduce workload running on Hadoop under different cluster
configurations on EC2. The clusters in Figures 1(a) and (b) use six
nodes each of the EC2 node type shown, with a fixed per-hour rent-



ing cost, denoted cost_ph (shown in Table 1). The pricing model
used to compute the corresponding total cost of each workload ex-
ecution is:

total_cost = cost_ph x num_nodes X exec_time (1)

Here, num_nodes is the number nodes in the cluster. exec_time is
the execution time of the workload rounded up to the nearest hour
as done on most cloud platforms. The user could have multiple
preferences and constraints for the workload. For example, the goal
may be to minimize the monetary cost incurred to run the workload,
subject to a maximum tolerable workload execution time. Based on
Figure 1, if the user wants to minimize cost subject to an execution
time of under 45 minutes, then the Elastisizer should recommend a
cluster of six cl.xlarge EC2 nodes.

Notice from Figures 1(a) and (b) that the Elastisizer is able to
capture the execution trends of the workload correctly across the
different clusters. Some interesting tradeoffs between execution
time and cost can also be seen in Figure 1. For example, the cluster
of six m1.xlarge nodes runs the workload almost 2x faster than the
cluster of six cl.medium nodes; but at 1.7x times the cost.

4. Shifting workloads in time to lower execution costs: The pric-
ing model from Equation 1 charges a flat per-hour price based on
the node type used. Such nodes are called on-demand instances on
EC2. Amazon EC2 also offers spot instances whose prices can vary
with time, usually based on the supply and demand for resources
on the cloud [8, 12]. Other factors such as temporal and spatial
variations in electricity prices can also cause resource usage costs
to fluctuate on the cloud [25].

The vast majority of analytics workloads can tolerate some slack
in completion time. For example, data analysts in a company may
find it sufficient to have an overnight report-generation workload
complete before the company’s U.S. East Coast offices reopen for
business. (Such workloads are called “batch and non-user syn-
chronous workloads” in [12].) This observation gives rise to an on-
line scheduling problem where the slack is exploited to run a given
workload when, ideally, resource prices are the cheapest. Solv-
ing this online scheduling problem is beyond the scope of this pa-
per since our focus is on the cluster sizing problem. However, the
Elastisizer is indispensable in any solution to the scheduling prob-
lem since the solution would need estimates of workload execution
time and cost for both on-demand and spot instances in various
cluster configurations.

As an illustration, Figure 2 shows the total cost incurred for the
same MapReduce workload from Figure 1 when nodes of the EC2
spot instance type shown were used to run the workload around
6.00 AM Eastern Time. By comparing Figure 1(b) with Figure 2,
it is clear that execution costs for the same workload can differ
significantly across different choices for the cluster resources used.

1.2 Contributions and Roadmap

Dealing with such use cases for cluster sizing requires consid-
erable manual involvement today, which prevents nonexpert users
from taking full advantage of modern cloud platforms. The Elasti-
sizer aims to make timely contributions in this domain. To the best
of our knowledge, no other research prototype or commercial sys-
tem provides the same features as the Elastisizer towards automat-
ically addressing cluster sizing problems for analytic MapReduce
workloads on the cloud.

The Elastisizer has been developed as a subsystem of a larger
system called Starfish [15]. Starfish is a self-tuning system for an-
alytics on large datasets. Starfish builds on Hadoop while adapting
to user needs and system workloads to provide good performance
automatically, without any need for users to understand and manip-
ulate the many tuning knobs in Hadoop.
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Figure 3: Elastisizer in the Starfish architecture.

Figure 3 shows the architecture of the Elastisizer in the context
of Starfish. The shaded boxes in Figure 3 represent the new con-
tributions that we have made in order to develop the Elastisizer.
The Elastisizer handles cluster sizing problems by making use of
a What-if Engine and two Enumeration and Optimization Engines
(EOEs). The Resource EOE is responsible for the space of possi-
ble cluster resources, while the Configuration EOE is responsible
for the space of MapReduce job configuration parameter settings.

As indicated in Figure 3, the Elastisizer makes use of some other
subsystems in Starfish. The Profiler is used to instrument unmod-
ified MapReduce programs dynamically to generate concise statis-
tical summaries, called job profiles, of MapReduce job execution.
The What-if Engine uses the job profiles to reason about the im-
pact of hypothetical data properties, job configuration settings, and
cluster resource properties on MapReduce job execution. Estimat-
ing the impact of cluster resource properties on MapReduce job ex-
ecution is one of the new challenges addressed by the Elastisizer.!
The What-if Engine is invoked by the EOE:s to estimate job perfor-
mance when the EOEs search through the space of cluster resources
and MapReduce job configuration parameter settings to address a
given cluster sizing problem.

Roadmap: Section 2 discusses related work. Section 3 describes
how a user or application expresses a cluster sizing query to the
Elastisizer. Section 4 gives an overview of how the Elastisizer an-
swers a cluster sizing query, and Sections 5—7 describe the details
of each step in this process. Section 8 presents the results from a
comprehensive experimental evaluation of the Elastisizer. We con-
clude with a discussion in Section 9.

2. RELATED WORK

Cluster sizing queries are not unique to cloud platforms. How-
ever, what makes the cloud unique in this respect is that cluster
sizing problems arise much more frequently here due to the pay-
as-you-go and elastic nature. Furthermore, cloud platforms elimi-
nate the traditional system administrator as a necessary middleman
between the end-user and the provisioning of cluster resources.

These factors motivate automated approaches to answering clus-
ter sizing queries more strongly than ever. Such an approach has
to deal with performance predictions in a complex space of work-
loads, data properties, cluster resources, configuration settings, and
task scheduling policies. The main technical contribution of the
Elastisizer is in addressing this complex space using a carefully-
designed combination of profiling, black-box models, white-box
models, and simulation.

'As indicated in Figure 3, the What-if Engine described in this
paper is a significantly enhanced version of the What-if Engine de-
scribed in [14]. In particular, the What-if Engine described in [14]
did not have the ability to estimate the impact of changes in cluster
resource properties; see Section 6.1.



The Elastisizer addresses the complexities of MapReduce work-
loads by abstracting them in the form of profiles that can be mea-
sured or estimated. The Profiler subsystem of Starfish—discussed
in detail in [14]—is used to collect a job profile by measurement
during the execution of a MapReduce job. The Elastisizer requires
measured profiles to be given as input, and it then uses relative
models aggressively to estimate virtual profiles for the workloads
when run on hypothetical cluster resources, input data, or job con-
figurations. The complexity of modeling is reduced by considering
the discretized space of resource choices (e.g., EC2 node types)
offered by IaaS cloud platforms. Simulations using the virtual pro-
files are used to capture the impact of scheduling policies.

White-box models are created by human experts who have de-
tailed knowledge of how workload execution is affected by the
properties of cluster resources, input data, system configuration,
and scheduling policies. If the models are developed correctly, then
the predictions from them will be very accurate. However, white-
box models can quickly become inaccurate if they have to capture
the impact of evolving features such as hardware properties.

There has been considerable interest recently in using black-box
models like regression trees to build workload performance pre-
dictors [3]. These models can be trained automatically from sam-
ples of system behavior, and retrained when major changes hap-
pen. However, these models are only as good as the predictive
behavior of the independent variables they use and how well the
training samples cover the prediction space. As the number of inde-
pendent variables that affect workload performance increases (e.g.,
data properties, configuration parameter settings, and scheduling
policies), the number of training samples needed to learn effective
black-box models increases dramatically.

Relative (fitness) modeling is a black-box approach proposed
recently for complex storage devices [21]. Relative models are
trained to predict how the performance of workloads will change
from one device A to another device B. Training samples are gen-
erated by running a selected benchmark of workloads on both A
and B. These samples are used to learn a relative M4_, g model
that can predict how a workload W will perform on B given the
performance of W observed on A. Relative models drastically sim-
plify the model-learning process with the caveat that actual work-
load performance on one of the devices has to be measured before
predictions can be made. The Elastisizer borrows ideas from rela-
tive modeling and applies them to MapReduce clusters. For exam-
ple, A and B could respectively be the development and production
clusters for use case 2 in Section 1.1.

There have been recent proposals to eliminate modeling alto-
gether, relying instead on actual performance measurements through
planned experiments [11, 29]. While this promising approach can
give accurate predictions for some specific problems, representa-
tive experiments are nontrivial to set up and take time to run. Sim-
ulation is often a faster alternative to experiments, but developing
accurate simulators faces many of the same challenges as analytical
white-box models. Some discrete event simulators have been pro-
posed for Hadoop—e.g., Mumak [22] and MRPerf [26]—but none
of them meet the needs of the Elastisizer. Mumak needs a job exe-
cution trace as input, and cannot simulate job execution for cluster
sizes or job configurations that are different from those used dur-
ing trace collection. MRPerf needs many minutes per simulation,
which makes it very inefficient to address use cases like 2 and 3
from Section 1.1 that need 100-1000s of simulations done over dif-
ferent configuration parameter settings.

Our work shares some goals with a recent work on provisioning
Hadoop on cloud platforms [18]. The preliminary approach pro-
posed in [18] uses the following steps: (i) for a training workload

of MapReduce jobs, perform brute-force search over the resource
configuration space to find the best configuration; (ii) use the col-
lected data to build a signature database that maps resource utiliza-
tion signatures from the jobs to the optimal configuration; and (iii)
given a new job 7, run a scaled-down version of j to get j’s resource
utilization signature, and probe the signature database to find the
best match. Only two configuration parameters were considered in
[18], and no solution was proposed for finding the number of nodes
in the cluster. Furthermore, a brute-force approach will not scale to
the complex configuration space considered by our Elastisizer.

Given the growing number of commercial cloud platforms, re-
cent research has looked into benchmarking them [19]. Such bench-
marks complement our work on building relative models that can
predict the performance of a workload W on one provider A based
on the performance of W measured on another provider B.

3. ABSTRACTIONS AND QUERY INTER-
FACE

A MapReduce workload consists of MapReduce jobs of the form
j = {p,d,r,c). Here, p represents the MapReduce program that
runs as part of the job. d, r, and c represent respectively the input
data, cluster resources, and configuration parameter settings used
by the job. In this section, we first present how the Elastisizer cap-
tures and represents the properties of p, d, r, and ¢. We will then
describe how cluster sizing queries are expressed in a declarative
fashion for the Elastisizer to process.

3.1 MapReduce Jobs

Program: A program p in a MapReduce job j = (p,d,r,c) ex-
presses a computation over input data d through two functions:
map(ki1,v1) and reduce(kz,list(vz)). The map(ki,v1) function
is invoked for every key-value pair (k1,v1) in the input data d;
to output zero or more key-value pairs of the form (k2,v2). The
reduce(k2, list(v2)) function is invoked for every unique key ko
and corresponding values list(v2) in the map output; to output zero
or more key-value pairs of the form (ks, vs).

The map and reduce functions in a given program may be ex-
pressed in one among a variety of programming languages like
Java, C++, Python, or Ruby. The MapReduce programming model
also allows other functions like: (i) partition(kz), for controlling
how the map output key-value pairs are partitioned among the re-
duce tasks, and (ii) combine(k2,list(vz)), for performing partial
aggregation on the map side. The keys k1, k2, and k3 as well as the
values v1, v2, and vz can be of different and arbitrary types.

Data: The properties used by the Elastisizer to represent the input
data d in a MapReduce job include d’s size, the block layout of
files that comprise d in the distributed file-system, and whether d
is stored compressed or not. Since the MapReduce methodology
is to interpret data (lazily) at processing time, and not (eagerly) at
loading time, other properties such as the schema and data-level
distributions of d are unavailable by default.

Cluster resources: The properties used to represent the cluster re-
sources 7 include the number of nodes in the cluster, a label per
node representing the node type, the cluster’s network topology,
the number of map and reduce task execution slots per node, and
the maximum memory available per task execution slot.

Configuration parameter settings: Figure 4 illustrates the exe-
cution of a MapReduce job j = (p,d,r,c). A number of choices
have to be made in order to fully specify how the job should ex-
ecute. These choices, represented by ¢ in (p,d, r, c), come from
a high-dimensional space of configuration parameter settings that
includes (but is not limited to):
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1. The number of map tasks in job j. Each task processes one par-
tition (splif) of the input data d. These tasks may run in multi-
ple waves depending on the total number of map task execution
slots in 7.

2. The number of reduce tasks in 5 (which may also run in waves).

3. The amount of memory to allocate to each map (reduce) task to
buffer its outputs (inputs).

4. The settings for multiphase external sorting used by most MapRe-
duce frameworks to group map-output values by key.

5. Whether the output data from the map (reduce) tasks should be
compressed before being written to disk (and if so, then how).

6. Whether the program-specified combine function should be used
to preaggregate map outputs before their transfer to reduce tasks.

Hadoop has more than 190 configuration parameters out of which
the Elastisizer currently considers 14 parameters whose settings
can have significant impact on job performance [15].

3.2 Profile and Performance of a MapReduce
Job Execution

One of the goals of the Elastisizer, and the Starfish system in
general [15], is to support the wide and growing variety of MapRe-
duce programs and the programming languages in which they are
expressed. Thus, the Elastisizer does not depend on static analy-
sis of MapReduce programs. Instead, a MapReduce program p is
represented using one or more profiles that correspond to the execu-
tion of p as MapReduce jobs. A profile used for p by the Elastisizer
corresponds to the execution of p as a job j = (p, d, r, ¢) over some
input data d, cluster resources r, and configuration parameter set-
tings c. This profile is a concise summary of the dataflow and cost
information for job j’s execution (discussed in Section 5).

A profile is generated by one of two methods. The first method
is by direct measurement when job j is run. Section 5.2 describes
how profiles are generated by measurement. The second method
is by estimation, which does not require the job to be run. Pro-
files generated by this method are called virtual profiles. Section
6 describes how virtual profiles are estimated as part of the cluster
sizing process.

The performance of a job j = (p, d, r, ¢) is some function of the
properties of p, d, r, and c:

perf=F(p,d,r,c) @)

Here, perfis some performance metric of interest for analytic work-
loads. The two performance metrics currently supported by the
Elastisizer are execution time and execution cost. The pricing model
used by the cloud platform has to be known in order to estimate ex-
ecution costs.

3.3 Interface to Express Cluster Sizing Queries

A general cluster sizing problem involves determining the cluster
resources and MapReduce job-level configurations to meet desired
performance requirements on execution time and cost for a given
analytic workload. The Elastisizer provides a declarative interface

to express a range of cluster sizing queries including those aris-
ing in the four use cases discussed in Section 1.1. Applications
and users can also interact with this interface using a programmatic
API or using a graphical interface that forms part of the Starfish
system’s Visualizer [15].

A cluster sizing query specified using the Elastisizer’s declara-
tive query interface has four parts. We discuss each of these parts
in turn.

1. Specifying the workload: The workload specified in a clus-
ter sizing query consists of MapReduce jobs, including both single
jobs as well as jobs from multi-job workflows. Each job j runs
some MapReduce program p on input data d. A profile prof(p) has
to be given for p. If d is different from the input data used while
generating prof(p), then the properties of d have to be given. For
user convenience, when d is actual data on a live cluster, the Elasti-
sizer can collect the properties of d (and r) automatically from the
cluster. The cluster resources r and job configuration c to use in the
actual execution of j are part of separate specifications that involve
search spaces, discussed next.

2. Specifying the search space for cluster resources r: Recall
from Section 3.1 that the properties used to represent any cluster
resources r include the number of nodes, node type(s), and network
topology of r, the number of map and reduce task execution slots
per node, and the maximum memory available per task execution
slot. A search space over the number of nodes and the node type to
use in the cluster is specified for r. This search space is specified
as a nonempty set. It is the responsibility of the Elastisizer to find
a suitable cluster resource configuration from this search space that
meets all other requirements in the query.

The search space for r will be a singleton set if the user is ask-
ing for performance estimates for a specific (hypothetical or real)
cluster that she has in mind. Use cases 1 and 2 from Section 1.1
have this nature. For example, in use case 1, the user currently has
a cluster containing 10 EC2 nodes of the m1.large type. She wants
the Elastisizer to estimate what the job’s execution time will be on
a hypothetical cluster containing 15 nodes of the same type.

The search space is nonsingleton—i.e., it specifies a space that
contains more than one candidate resource configuration—when
the user wants the Elastisizer to search for a good configuration
that meets her needs. In such cases, the Elastisizer’s declarative
query interface gives the user considerable flexibility to define the
search space for cluster resources r. For example:

e A unsophisticated user can use the special “*” symbol to ask
the Elastisizer to use its default search space for one or both of
the node type and the number of nodes.

e The user can restrict the search space to nodes of one or more
selected types, but ask the Elastisizer to find the best number of
nodes in the cluster.

Our current implementation of the Resource Enumeration and Op-
timization Engine (see Resource EOE in Figure 3) in the Elastisizer



does not include the cluster’s network topology as part of the search
space for cluster resources. This limitation, which can be removed
in future, is driven partly by a practical consideration: most current
cloud providers hide the underlying network topology from clients.
The Hadoop clusters that we run on EC2 are configured as per the
single-rack network topology used as the default in Hadoop.

Note that the current cluster sizing query interface does not ex-
pose the other cluster configuration parameters—namely, the num-
ber of map and reduce task execution slots per node, and the maxi-
mum memory available per task execution slot—as part of the user-
specified search space for r. Our empirical studies indicate that
good settings for these parameters are determined primarily by the
CPU (number of cores) and memory resources available per node
in the cluster; so we use empirically-determined fixed values per
node type (these values are shown in Table 1).2

3. Specifying the search space for job configurations c: Recall
the space of configuration parameter settings for MapReduce jobs
discussed in Section 3.1. A cluster sizing query needs to specify
the search space for configuration parameters c that the Elastisizer
should consider for the given workload of MapReduce jobs. Sim-
ilar to the search space for cluster resources, the search space for
c will be a singleton set if the user is asking for performance esti-
mates for a specific configuration that she has in mind. Use case 1
from Section 1.1 has this nature.

It is much more common to specify a larger search space for c.
The best setting of configuration parameters depends strongly on
the cluster resource configuration. For the convenience of nonex-
pert users who often have no idea about the configuration parame-
ters, the special “*” symbol can be specified to ask the Elastisizer
to use its default search space for c.

The Configuration Enumeration and Optimization Engine (see
Configuration EOE in Figure 3) in the Elastisizer is responsible for
searching efficiently through the specified space of configuration
parameter settings. The Elastisizer uses the Resource EOE and the
Configuration EOE to enumerate and optimize the cluster resources
and job configuration parameter settings in tandem. Note that the
best job configuration will invariably change if the cluster resources
change. In this way, the Elastisizer extends our previous work on
optimizing configuration parameter settings for MapReduce jobs
for a given cluster [14].

4. Specifying performance requirements: Execution time and
cost are the two performance metrics supported by the Elastisizer.
As part of a cluster sizing query, a user can choose to:
e Have estimated values output for one or both of these metrics.
e Optimize one of these metrics, possibly subject to a constraint
on the other metric. For example, optimizing execution cost
subject to an execution time under 30 minutes.

4. OVERVIEW OF HOW THE ELASTISIZER

ANSWERS A CLUSTER SIZING QUERY

This section gives an overview of how the Elastisizer answers a
cluster sizing query posed by a user or application. Sections 5-7
will describe the individual steps in more detail.

Consider use case 1 from Section 1.1. A user can express this
use case as a cluster sizing query Q1 using the Elastisizer’s query
interface described in Section 3.3. The user will specify:

e The profile for the three-hour run of the job on 10 m1.large EC2
nodes. Section 5 describes how the profile can be generated by
measurement as part of an actual job execution.

2Anecdotal evidence from the industry suggests that memory-
related misconfigurations are a major cause of failures in Hadoop.

e The search space for cluster resources r is a singleton set that
specifies 15 EC2 nodes of the (same) m1.large type.

e The search space for the configuration parameter settings c is
also a singleton set that specifies the same job configuration as
for the 10 node cluster.

e The performance metric of interest is execution time.

The above specification of query (1 gives the Elastisizer a profile
for a job j = (p,d,r1,c). The desired answer is the estimate of
execution time for a hypothetical job j' = {p, d, 2, c). Job j’ runs
the same program p on the same data d and MapReduce configu-
ration c as job j. However, the cluster resources used are different
between j and j', i.e., r1 # 7a.

Query (1 maps directly to a what-if question. The What-if En-
gine used by the Elastisizer can answer any what-if question of the
following general form:

Given the profile of a job j = (p, d1, 71, c1) that runs a
MapReduce program p over input data d; and cluster
resources 1 using configuration c;, what will the per-
formance of program p be if p is run over input data d»
and cluster resources 72 using configuration c2? That
is, how will job j' = (p, d2, r2, c2) perform?

The What-if Engine uses the following two steps to answer a given
what-if question (note that job 5’ is never run in these steps):

1. The first step is to estimate a virtual job profile for the hypo-
thetical job j'. This step uses a careful mix of white-box and
black-box models. An important contribution we make in this
step is how to estimate the virtual profile as the type of node
in the cluster, and hence the resource availability per node, is
changed (recall Figure 1). Section 6 gives the details of this
step. Figure 5 provides an illustration.

2. The virtual profile is then used in a simulation step to estimate
how the hypothetical job j' will execute. The answer to the
what-if question is computed based on the estimated execution.
Section 7 gives the details of this step.

A what-if question can involve multiple jobs in a workload. In this
case, all the virtual job profiles are generated, and then input to the
simulation step.

Now consider use case 2 from Section 1.1. To express this use
case as a cluster sizing query @2, a user will specify the following:

1. A job profile collected on the development cluster for the pro-
gram p of interest. This profile may have been collected by
direct measurement when p was run on a (scaled down) sample
of the production data on which the program has to be run on
the production cluster. In this case, the properties of the pro-
duction data dj,roq Will have to be provided.

2. The search space for cluster resources 7 is a singleton set that
gives the properties of the production cluster, denoted 7p,04-

3. Note that the developer wants the Elastisizer to find the best job
configuration to run the job on the production cluster. Thus, the
search space for the configuration parameter settings c is speci-
fied as “*” so that the Elastisizer will consider the full space in
an efficient fashion.

4. The performance metric of interest is execution time.

To process query @2, the Elastisizer will invoke the Configura-
tion EOE to efficiently enumerate and search through the high-
dimensional space of configuration parameter settings. The Con-
figuration EOE will consider hypothetical configurations W, @),

D ™, making calls to the What-if Engine to get the
estimated execution time of each of the corresponding hypothetical
jobs 5D = (p, dprod, Tprod, ¢V). The configuration ¢!°P% found
in this process with the least execution time will be output as the



Profile Field (All fields, unless Depends On
otherwise stated, represent d r c
information at the level of tasks)
Setup phase time in a task

Cleanup phase time in a task

Read phase time in the map task
Map phase time in the map task
Collect phase time in the map task
Spill phase time in the map task
Merge phase time in map/reduce task
Shuffle phase time in the reduce task
Reduce phase time in the reduce task
Write phase time in the reduce task

A NN
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Table 2: Cost fields in the job profile.

Profile Field (All fields, unless Depends On
otherwise stated, represent d| r c
information at the level of tasks)

1/O cost for reading from HDFS per byte

/O cost for writing to HDFS per byte

1/O cost for reading from local disk per byte

1/O cost for writing to local disk per byte

Cost for network transfers per byte

CPU cost for executing the Mapper per record
CPU cost for executing the Reducer per record
CPU cost for executing the Combiner per record
CPU cost for partitioning per record

CPU cost for serializing/deserializing per record
CPU cost for sorting per record

CPU cost for merging per record

CPU cost for uncompressing the input per byte
CPU cost for uncompressing map output per byte
CPU cost for compressing map output per byte
CPU cost for compressing the output per byte
CPU cost of setting up a task

CPU cost of cleaning up a task

N N N N N N N N N NN NENENENEN
ENENEN

Table 3: Cost statistics fields in the job profile.

query result; the details of the efficient search process are given in
Section 7.

Finally, consider use case 3 from Section 1.1. This use case dif-
fers from the earlier use cases in two main ways. First, the search
space for cluster resources is not a singleton set any more. Second,
the performance requirements demand optimization of execution
cost, while specifying a constraint on the execution time.

The Resource EOE and the Configuration EOE will be used in
tandem to enumerate and search over the space of cluster resources
and job configurations; while making calls to the What-if Engine to
get estimates of execution time and cost for hypothetical jobs j (i.9)
=(p,d, ", c9)). The combination (r,c)°”*) found in this process
that gives the least execution cost while meeting the constraint on
execution time will be output as the query result.

S. PROFILE OF A MAPREDUCE JOB

A MapReduce job execution consists of the execution of map
tasks and reduce tasks. As illustrated in Figure 4, task execution
can be broken down further to the level of phases within tasks.

Map task execution is divided into the phases: Read (reading
map inputs), Map (map function processing), Collect (buffering
map outputs before spilling to local disk), Spill (sorting, combining,
compressing, and writing map outputs to local disk), and Merge
(merging sorted spill files). Reduce task execution is divided into
the phases: Shuffle (transferring map outputs to reduce tasks, with
decompression if needed), Merge (merging sorted map outputs),
Reduce (reduce function processing), and Write (writing reduce
outputs to the distributed file-system). Additionally, both map and
reduce tasks have Setup and Cleanup phases.

Profile Field (All fields, unless Depends On
otherwise stated, represent d|r c
information at the level of tasks)
Number of map tasks in the job
Number of reduce tasks in the job
Map input records

Map input bytes

Map output records

Map output bytes

Number of spills

Number of merge rounds

Number of records in buffer per spill
Buffer size per spill

Number of records in spill file

Spill file size

Shuffle size

Reduce input groups (unique keys)
Reduce input records

Reduce input bytes

Reduce output records

Reduce output bytes

Combiner input records

Combiner output records

Total spilled records

Bytes read from local file system
Bytes written to local file system
Bytes read from HDFS

Bytes written to HDFS

Table 4: Dataflow fields in the job profile.
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Profile Field (All fields, unless Depends On
otherwise stated, represent d]r]ec
information at the level of tasks)

Width of input key-value pairs

Number of records per reducer’s group
Map selectivity in terms of size

Map selectivity in terms of records
Reducer selectivity in terms of size
Reducer selectivity in terms of records
Combiner selectivity in terms of size
Combiner selectivity in terms of records
Input data compression ratio

Map output compression ratio

Output compression ratio

Startup memory per task

Setup memory per task

Memory per map’s record

Memory per reducer’s record

Cleanup memory per task

R N N N N N N N NN
NN

Table 5: Dataflow statistics fields in the job profile.

The profile of a MapReduce job consists of fields that together
form a concise summary of the job’s execution at the level of tasks
and phases. We partition the fields in a profile into four categories,
described next. The rationale for this categorization will become
clear in Section 6 when we describe how a virtual profile is esti-
mated for a hypothetical job without running the job.

5.1 Categorization of the Fields in a Profile

Cost fields: These fields capture information about execution time
at the level of tasks as well as phases within the tasks for a MapRe-
duce job execution. Table 2 lists all the cost fields in a profile.

Cost statistics fields: These fields capture statistical information
about execution time for a MapReduce job—e.g., the average time
to read a record from the distributed filesystem, or the average time
to execute the map function per input record—that is expected to
remain unchanged across different executions of the job unless the
CPU and/or I/O resources available per node change. Table 3 lists
all the cost statistics fields in a profile.



Dataflow fields: These fields capture information about the amount
of data, both in terms of bytes as well as records (key-value pairs),
flowing through the different tasks and phases of a MapReduce job
execution. An example field is the number of map output records.
Table 4 lists all the dataflow fields in a profile.

Dataflow statistics fields: These fields capture statistical informa-
tion about the dataflow—e.g., the average number of records out-
put by map tasks per input record (the Map selectivity)—that is
expected to remain unchanged across different executions of the
MapReduce job unless the data distribution in the input dataset
changes significantly across these executions. Table 5 lists all the
dataflow statistics fields in a profile.

5.2 Generating Profiles by Measurement

We now discuss how the Profiler in Starfish (Figure 3) generates
a new profile for a job by measurement when the job is run. The
Profiler uses dynamic instrumentation to collect run-time monitor-
ing information from unmodified MapReduce programs running on
the MapReduce framework. Dynamic instrumentation is a tech-
nique used to understand, debug, and optimize complex systems
[6]. The dynamic nature means that there is zero overhead when
monitoring is turned off; an appealing property in production de-
ployments. By supporting unmodified MapReduce programs, we
free users from any additional burden on their part for generating
profiles to use in cluster sizing queries (recall Section 3.3).

The Profiler specifies a set of event-condition-action rules. The
space of events corresponds to events arising during program exe-
cution such as entry or exit from specific functions and any system
calls to the operating system. If the condition associated with the
event holds when the event fires, then the associated action is in-
voked. An action can involve, for example, getting the duration of
a function call, examining the memory state, or logging the event.

Our current implementation of the Profiler for Hadoop uses the
BTrace dynamic instrumentation tool for Java [5]. Hadoop itself
is written in Java, but it can run MapReduce jobs written in many
other programming languages like C++, Python, and Ruby. When
Hadoop runs any MapReduce program, the Profiler can dynami-
cally instrument selected Java classes internal to Hadoop to col-
lect raw monitoring data. Under the covers, dynamic instrumenta-
tion intercepts the class bytecodes at run-time based on the event-
condition-action rules (also specified in Java), and injects byte-
codes for the associated actions. Raw monitoring data includes
record and byte counters, resource usage, and timings. For in-
stance, during each map-side Spill phase (see Figure 4(b)), the exit
point of the sort function is instrumented to collect the sort duration
as well as the number of records and bytes sorted.

The raw monitoring data collected through dynamic instrumen-
tation for each profiled map or reduce task is first processed to give
fields in a task profile. For example, the raw sort timings are added
as part of the overall spill time, whereas the Combiner selectivity
from each spill is averaged to get the task’s Combiner selectivity.
The map task profiles are further processed to give one representa-
tive map task profile for each logical input to the MapReduce pro-
gram. For example, a Sort program accepts a single logical input
(be it a single file, a directory, or a set of files), while a two-way Join
accepts two logical inputs. The reduce task profiles are processed
into one representative reduce task profile. The map task profile(s)
and the reduce task profile together constitute the job profile.

Since the Profiler instruments the MapReduce framework only,
not the user-written programs, profiling works irrespective of the
programming language in which the program is written. While dy-
namic instrumentation has zero impact when turned off, it causes
some task slowdown when enabled. To keep the additional over-
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Figure 5: Overall process for estimating virtual job profiles.

head on job execution as low as possible, the Profiler supports task-
level sampling in order to generate approximate job profiles [14].

6. ESTIMATING VIRTUAL JOB PROFILES

We will now describe how virtual profiles are estimated by the
What-if Engine as part of answering a what-if question. Specifi-
cally, given the profile of a job j = (p, d1,71, c1) and the properties
of input data da, cluster resources r2, and configuration parame-
ter settings co of a hypothetical job j' = (p, da, 2, c2), the virtual
profile of j' has to be estimated. This process of virtual profile es-
timation forms the foundation on which the Elastisizer’s ability to
answer cluster sizing queries is based.

Our solution for virtual profile estimation is based on a mix of
black-box and white-box models. The overall estimation process
has been broken down into smaller steps as shown in Figure 5,
and a suitable modeling technique was picked for each step. These
smaller steps correspond to the four categories of fields in a job pro-
file. We use relative black-box models to estimate the cost statistics
fields, conventional white-box models from database query opti-
mization to estimate dataflow statistics fields, and new white-box
models that we developed to estimate the dataflow fields, and in
turn, the cost fields. We describe each of these in turn.

6.1 Relative Black-box Models to Estimate
Cost Statistics Fields

Let us first consider the cost statistics fields shown in Table 3.
Clusters with identical resources will have the same CPU and 1I/0
(local and remote) costs. Thus, if the cluster resource properties of
r1 are the same as those of r2, then the cost statistics fields in the
hypothetical job j' virtual profile can be copied directly from the
profile of job j given as input. This copying cannot be used when
r1 # T2, in particular, when job 5’ will run on a target cluster con-
taining nodes with a different type from the source cluster where
job j was run to collect the profile that was given as input.

The technique we use when r1 # r5 is based on a relative black-
box model M. ¢4¢ that can predict the cost statistics fields CSyg¢
in the virtual profile for the target cluster from the cost statistics
fields CSs. in the job profile for the source cluster.

CStgt = Msrc%tgt(css'rc) (3)
Generating training samples for the M., :,; model: Let 7,
and r;4; denote the cluster resources respectively for the source and
target clusters. Suppose the MapReduce program p is run on input
data d and configuration parameter settings c on both the source and
target clusters. That is, we run the two jobs jsrc = (p, d, Tsrc, c) and
Jegt = (D, d, r¢gt, c). From these runs, we can generate the profiles
for these two jobs by direct measurement. Even further, recall from
Section 5.2 that we can generate a separate task profile for each



task run in each of these two jobs. Therefore, from the it" task in
these two jobs,” we get a training sample (CS&ZT)C,CSEZQ for the
Msrc—stge model.

The above training samples were generated by running a related
pair of jobs jsrc and jig¢ that have the same MapReduce program
p, input data d, and configuration parameter settings c. We can
generate a complete set of training samples by using a training
benchmark containing jobs with different (p, d, c) combinations.
Selecting an appropriate training benchmark is nontrivial because
the two main requirements of effective black-box modeling have
to be satisfied. First, for accurate prediction, the training samples
must have good coverage of the prediction space. Second, for ef-
ficiency, the time to generate the complete set of training samples
must be small.

Based on the coverage and efficiency considerations, we came up
with three methods to select the training benchmark in the Elasti-
sizer: Apriori, Fixed, and Custom. We will evaluate these three
benchmarks empirically in Section 8.

Apriori: This method assumes that the full workload of jobs that
will run on the provisioned clusters is known at model training
time. A sample of jobs is selected from this workload, either ran-
domly or from the top-k longest-running jobs. A similar approach
of sampling the SQL query workload is used by the index selection
and other wizards in most commercial database systems [7]. To im-
prove the training efficiency, it may be possible to run the jobs on a
scaled-down sample of their input data. However, this step requires
domain knowledge or user assistance. Apriori gives good coverage
of the prediction space as long as the assumption on the workload
holds. However, Apriori’s running time grows with the size of the
workload and the input data.

Fixed: This method assumes that a good coverage of the prediction
space can be obtained by selecting a predetermined set of existing
MapReduce jobs (e.g., Sort, WordCount) and executing them using
different configuration settings that will give different degrees of
resource usage. For example, the benchmark can consist of CPU-
intensive, CPU-light, I/O-intensive, and I/O-light jobs. The running
time of Fixed is independent of the size of the actual workload and
the input data.

Custom: The goal of this method is to execute a small, synthetic
workload to generate training samples for cost statistics efficiently
such that these samples will give good coverage of the prediction
space. Itis because of our abstraction of any MapReduce job execu-
tion as a job profile—where a profile can be represented as a point
in a high-dimensional space (see Section 5)—that we are able to
consider such a unique approach that is independent of the actual
MapReduce workload run on the cluster.

Our Custom training benchmark is composed of just two syn-
thetic MapReduce job templates: a data-generation template and a
data-processing template. These two templates are instantiated in
different ways for a total of six MapReduce job executions. Unlike
the Fixed benchmark that consists of existing MapReduce jobs, the
jobs generated by Custom have been designed such that the differ-
ent tasks within these jobs behave differently in terms of their CPU,
I/0, memory, and network usage.

While this approach may sound counterintuitive because the map
(reduce) tasks in a job are expected to behave similarly, it produces
more diverse training samples per job execution than Apriori or
Fixed. Custom provides two additional advantages: (i) lower and
more predictable running time for the training benchmark; and (ii)

Ensuring that the tasks have the same input data d and configura-
tion parameter settings c ensures that there is a one-to-one corre-
spondence between the tasks in these two jobs.

no knowledge or use of actual workloads and input data is needed
during the training phase.

Learning all the M,.._,+s: models needed: It is important to note
that the training benchmark has to be run only once (or with a few
repetitions) per target cluster resource; giving only a linear number
of benchmark runs, and not quadratic as one might expect from the
relative nature of the M,c—+4: models. The training samples for
each source-to-target cluster pair is available from these runs. For
example, to address use case 2 from Section 1.1, one run each of the
training benchmark on the development and the production cluster
will suffice. For a more complex scenario like use case 3 that in-
volves different types of Amazon EC2 nodes, one benchmark run
for each distinct node type and a representative number of cluster
nodes is usually sufficient. If the workload or data size is expected
to vary widely, then benchmark runs over a few different numbers
of nodes in the cluster can improve prediction accuracy.

Once the training samples are generated, there are many super-
vised learning techniques available for generating the black-box
model in Equation 3. Since cost statistics are real-valued, we se-
lected the M5 Tree Model [24]. An M5 Tree Model first builds
a regression-tree using a typical decision-tree induction algorithm.
Then, the tree goes through pruning and smoothing phases to gen-
erate a linear regression model for each leaf of the tree.

6.2 White-box Models to Estimate Dataflow
Statistics Fields

Database systems keep fine-grained statistics such as histograms
for input data. Database query optimizers use these statistics to
estimate the dataflow in execution plans for declarative queries.
MapReduce frameworks lack the declarative query semantics and
structured data representations of database systems. Thus, the com-
mon case in the What-if Engine is to not have detailed statistical
information about the input data do in the hypothetical job j'. By
default, the What-if Engine makes a dataflow proportionality as-
sumption which says that the logical dataflow sizes through the
job’s phases are proportional to the input data size. It follows from
this assumption that the dataflow statistics fields in the virtual pro-
file of j' will be the same as those in the profile of job j given as
input.

When additional information is available, the What-if Engine al-
lows the default assumption to be overridden by providing dataflow
statistics fields of the virtual profile directly as input. For example,
when higher semantic layers like Hive and Pig submit a MapRe-
duce job for a computation like filtering or join, they can estimate
dataflow statistics fields like Map and Reduce selectivity using con-
ventional statistics like histograms. Researchers are also devel-
oping tools to extract detailed information from MapReduce pro-
grams through program analysis [16, 17].

6.3 White-box Models to Estimate Dataflow
and Cost Fields

The What-if Engine uses a detailed set of analytical (white-box)
models to calculate the dataflow fields in the virtual profile given
(i) the dataflow statistics fields estimated above, and (ii) the con-
figuration parameter settings c2 in the hypothetical job j'. These
models give good accuracy by capturing the subtleties of MapRe-
duce job execution at the fine granularity of phases within map and
reduce tasks. The current models were developed for Hadoop, but
the overall approach applies to any MapReduce implementation. A
second set of analytical models combines the estimated cost statis-
tics and dataflow fields in order to estimate the cost fields in the
virtual profile. The full set of models is described in a technical
report that is available online [13].



Abbr. | MapReduce Program | Dataset Description
LG | LinkGraph 20GB compressed data from Wikipedia
JO | Join 60GB data from the TPC-H Benchmark
TF | TF-IDF 60GB of documents from Wikipedia
TS | Hadoop’s TeraSort 60GB data from Hadoop’s TeraGen
WC | WordCount 60GB of documents from Wikipedia
CO | Word Co-occurrence | 10GB of documents from Wikipedia

Table 6: MapReduce programs and corresponding datasets.

7. ANSWERING CLUSTER SIZING QUERIES

We saw in the previous section how a virtual job profile contain-
ing detailed dataflow and cost information at the task and phase
level is generated for the hypothetical job j’. The What-if Engine
then uses a Task Scheduler Simulator, along with the models and
information on the cluster resources 72, to simulate the scheduling
and execution of the map and reduce tasks of j'. The output is a
description of the complete (hypothetical) job execution in the clus-
ter. The Task Scheduler Simulator is a pluggable component with
a current implementation that mimics Hadoop’s default scheduler.
The answer to the what-if question, e.g., execution time and/or cost,
is derived from the job’s simulated execution.

As we showed in Section 4, the cluster sizing query Q1 for use
case 1 is answered by a single what-if question. More complex
queries, e.g., Q2 for use case 2 and Q3 for use case 3, require a
search over the space of configuration parameter settings and/or
cluster resources. These queries are answered by the EOEs in Fig-
ure 3 based on answers to a series of what-if questions generated
through a search process called Recursive Random Search (RRS).
RRS is a fairly recent technique developed to solve black-box op-
timization problems [28]. RRS first samples the search space ran-
domly to identify promising regions that contain the optimal setting
with high probability. It then samples recursively in these regions
which either move or shrink gradually to locally-optimal settings
based on the samples collected. RRS then restarts random sampling
to find a more promising region to repeat the recursive search. The
efficiency of the EOEs comes from how RRS is able to decrease the
number of what-if calls by many orders of magnitude compared to
exhaustive search, while still finding near-optimal settings [14].

8. EXPERIMENTAL EVALUATION

In our experimental evaluation, we used Hadoop clusters run-
ning on Amazon EC2 nodes of various sizes and node types. Table
1 lists the EC2 node types we used, along with the resources avail-
able for each node type. For each node type, we used empirically-
determined fixed values for the cluster-wide Hadoop configuration
parameters—namely, the number of map and reduce task execu-
tion slots per node, and the maximum memory available per task
slot (also shown on Table 1).

Table 6 lists the MapReduce programs and datasets used in our
evaluation. We selected representative MapReduce programs used
in different domains: text analytics (WordCount), natural language
processing (Word Co-occurrence), information retrieval (TE-IDF:
Term Frequency-Inverse Document Frequency®), creation of large
hyperlink graphs (LinkGraph), and business data processing (Join,
TeraSort) [20, 27]. The unoptimized MapReduce jobs are executed
using rules-of-thumb settings found in [9]. Unless otherwise noted,
we used the training samples produced by the Custom benchmark
to train the relative models for estimating cost statistics (recall Sec-
tion 6.1).

The goal of the experimental evaluation is to study the ability of
the Elastisizer to provide reliable answers to cluster sizing queries.

*TF-IDF is a workload consisting of three MapReduce jobs.

With this goal, we guide the evaluation using the common scenarios
where cluster sizing problems arise (discussed in Section 1.1). Our
evaluation methodology is as follows:

e We evaluate the predictive power of the Elastisizer for tuning
the cluster size for elastic MapReduce workloads.

e We evaluate the optimization capabilities of the Elastisizer in
finding a good configuration setting for a program p to be run
on the production cluster (r:4¢) based on a profile learned for p
on the development cluster (7).

e We evaluate the cluster provisioning capabilities of the Elasti-
sizer for a MapReduce workload under the dual objectives of
execution time and cost.

e We evaluate the accuracy of the relative models learned for pre-
dicting cost statistics for the three training benchmarks devel-
oped to generate training samples (Section 6.1).

Since our evaluation concentrates on the Elastisizer, we focus on
the job running times and monetary costs, and ignore any data load-
ing times.

8.1 Tuning the Cluster Size

Cluster sizing queries regarding the performance of MapReduce
jobs on clusters of different sizes arise routinely in practice. Hence,
the query we consider in this section is how will the performance
of a MapReduce job change if the number of nodes in the existing
cluster changes? We evaluate the ability of the Elastisizer to answer
such a query automatically.

Figure 6 shows the actual and predicted running times for all
MapReduce jobs as the number of nodes in the cluster is varied.
All Hadoop clusters for this experiment used m1.large EC2 nodes.
To make the predictions, we used job profiles that were obtained
on a 10-node Hadoop cluster of m1.large EC2 nodes. We observe
that the Elastisizer is able to capture the execution trends of all
jobs across the clusters with different sizes. That is, the Elastisizer
predicts correctly the sublinear speedup achieved for each job as
we increase the number of nodes in the cluster.

From the perspective of predicting absolute values, the Elasti-
sizer usually over-predicts job execution time (by 20.1% on average
and 58.6% worse case in Figure 6). The fairly uniform gap between
the actual and predicted execution times is due to overhead added
by BTrace while measuring function timings at nanosecond gran-
ularities. Since dynamic instrumentation mainly needs additional
CPU cycles, the gap is largest when the MapReduce job runs un-
der CPU contention (which is the case for TF-IDF and WordCount
in Figure 6). While the gap is fairly uniform for different settings
of the same MapReduce job, the gap among different jobs varies
significantly, making it difficult to correct for it during the predic-
tion process. We are hoping to close this gap using commercial
Java profilers that have demonstrated vastly lower overheads than
BTrace [23].

Because of its uniformity, the gap does not affect the accuracy
of optimization and provisioning decisions which are more about
predicting relative changes in performance correctly rather than
predicting absolute performance. Therefore, despite the gap, the
Elastisizer is able to find the best resource and configuration set-
tings, as we will see in Sections 8.2 and 8.3.

8.2 Transitioning from Development to
Production

The second common use case we consider in our evaluation is the
presence of a development cluster, and the need to stage jobs from
the development cluster to the production cluster. In our evaluation,
we used a 10-node Hadoop cluster with m1.large EC2 nodes as the
development cluster, and a 30-node Hadoop cluster with m1.xlarge
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Figure 6: Actual and predicted running times for MapReduce jobs as the number of nodes in the cluster is varied.
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Figure 7: Job execution times when run with rules-of-thumb
settings, and Elastisizer-suggested settings using job profiles
obtained from the development and production clusters.

EC2 nodes as the production one. We profiled all MapReduce pro-
grams listed in Table 6 on the development cluster. We then ex-
ecuted the MapReduce programs on the production cluster using
three times as much data as used in the development cluster (i.e.,
three times as much data as listed in Table 6).

Figure 7 shows the running time for each MapReduce job when
run on the production cluster with the Elastisizer-suggested config-
uration settings. In all cases, the suggested settings improved the
job performance by an average speedup of 1.4x and a maximum
speedup of 1.8x, compared to the rules-of-thumb settings obtained
from manually tuning each job. For comparison purposes, we also
profiled the MapReduce jobs when run on the production cluster,
and then asked the Elastisizer for the best configuration settings.
We observe from Figure 7 that, in most cases, the performance im-
provement achieved over the rules-of-thumb settings is almost the
same, irrespective of whether the Elastisizer used the job profiles
from the development cluster or the production cluster.

Apart from providing good configuration settings with which to
run the jobs on the production cluster, the Elastisizer will also pre-
dict the job behavior. Figure 8 shows the actual and predicted run-
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Figure 8: Actual and predicted running times for MapReduce
jobs when run on the production cluster. The predictions used
job profiles obtained from the development cluster.

ning times for each job when run with the settings suggested by
the Elastisizer. Apart from the overall running time, the Elastisizer
can also predict several other aspects of the job execution like the
amount of I/O and network traffic, the running time and scheduling
of individual tasks, and data and computational skew.

8.3 Multi-objective Cluster Provisioning

As discussed in Section 7, the Elastisizer can reason about the
Hadoop job parameter configuration space as well as about the re-
source space. The resource space includes the type of node and the
number of nodes in a cluster. For our evaluation, we used the 5 EC2
node types listed in Table 1. In this section, we evaluate the ability
of the Elastisizer to find good cluster and job configuration settings
to use for a MapReduce workload.

The workload we used consists of the MapReduce jobs listed in
Table 6 run one after the other. The job profiles were obtained by
running the workload on a 10-node cluster of m1.large EC2 nodes.
For cost predictions, the Elastisizer uses a pricing model containing
the hourly node costs listed in Table 1.

Figure 9 shows the running time of the workload when run with
the configuration settings suggested by the Elastisizer, across clus-
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ters each with a different type of node and number of nodes. The
Elastisizer was able to provide up to 1.7x speedup for the workload,
which translates into 42% cost savings. Since the Elastisizer is able
to reason about the combined resource and configuration space ac-
curately, the Elastisizer is also able to answer general provisioning
queries of the form: “What is the best combination of cluster re-
sources and configuration settings to use for running my workload
in a way that minimizes execution time (or monetary cost), sub-
ject to a maximum tolerable monetary cost (or execution time)?”
In our experiment, the Elastisizer was able to identify correctly
that using a 30-node cluster with m1.xlarge nodes would yield the
best workload execution time, whereas using a 20-node cluster with
cl.medium nodes would minimize the monetary cost.

It is interesting to note the complex interactions between execu-
tion times and monetary costs as we vary the number of nodes and
node type used in the clusters. As expected, increasing the number
of nodes and using more powerful machines lead to better running
times. However, the performance improvements are not necessarily
linear. Let us consider the 10-node cluster with m1.xlarge nodes.
If we use 3x more nodes, then we achieve only 2x performance im-
provement for the workload, but for only a 1.5x increase in cost.
On the other hand, the same 3x increase in the number of nodes for
a cluster with m1.large nodes leads to an almost 3x performance
improvement with only a 1.2x increase in cost.

The Elastisizer is able to capture these complex interactions with
a good degree of accuracys; so it can help users select the best cluster
resources to fit their needs and preferences.

8.4 Evaluation of Training Benchmarks

The ability of the Elastisizer to make accurate predictions across
clusters relies on the relative models employed to predict cost statis-
tics. The models we used, like all black-box models, require rep-
resentative training data in order to make accurate predictions. As
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Figure 10: Total running time for each training benchmark.

discussed in Section 6, we developed three training benchmarks
that employ different strategies to collect training samples.

Apriori benchmark: This benchmark includes all jobs listed in
Table 6, which also form our testing workload. Each job runs over
a 600MB random sample of the original input data.

Fixed benchmark: This benchmarks executes the MapReduce jobs
WordCount and TeraSort multiple times using different configura-
tion settings. We varied the settings for using intermediate data
compression, output compression, and the combiner function, since
these settings provide tradeoffs between CPU and I/O usage. Each
job processed 600MB of randomly generated text using Hadoop’s
RandomTextGenerator and TeraGen.

Custom benchmark: This benchmark consists of a data genera-
tion job template and a data processing job template as discussed
in Section 6. The data generation job template is run twice (with
output compression turned on and off) and the data processing job
template is run four times (corresponding to the four possible com-
binations of using compression and combiner).

All benchmarks were run on 10-node Hadoop clusters on EC2
nodes. Each job in each benchmark processed 600MB of data and
was run using rules-of-thumb settings. We tested the prediction
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Figure 11: Relative prediction error for the Fixed and Custom
benchmarks over the Apriori benchmark when asked to pre-
dict cost statistics for a test workload.

accuracy of the relative models trained by each benchmark on a
test workload consisting of all jobs listed in Table 6.

Figure 10 shows the running time of each benchmark for col-
lecting all the training data. The Apriori benchmark takes a signif-
icantly longer time to complete compared to the other two bench-
marks as it executes more MapReduce jobs. The Custom bench-
mark, on the other hand, completes fast due to its focused nature of
going after a spectrum of cost statistics within the same job.

In order to compare the prediction accuracy of the relative mod-
els when trained with the three benchmarks, we created a test work-
load consisting of all MapReduce jobs from Table 6. The test work-
load was executed on five 10-node Hadoop clusters—one for each
node type we considered in our evaluation (see Table 1). We then
used the job profiles obtained on the m1.large cluster to predict the
job profiles for the other four clusters (i.e., relative predictions). As
the Apriori benchmark assumes full knowledge of the test work-
load, we will use it as the baseline when comparing the prediction
accuracy of the three benchmarks.

Figure 11 shows the relative prediction error from using the Fixed
and Custom benchmarks against using the Apriori benchmark. Even
though the processing performed by the jobs in the Custom bench-
mark is completely independent from and unrelated to the test work-
load, the prediction errors we observed are relatively low, typically
less than 15%. The Fixed benchmark results in the highest predic-
tion errors: running a predefined set of jobs with various settings
does not seem to provide adequate coverage of the possible cost
statistics encountered during the execution of the test workload.

Even though the Apriori benchmark leads to good predictions
when the test workload contains the same or similar jobs with the
training workload, it can lead to poor predictions for new jobs. For
evaluation purposes, we excluded the TF-IDF job from the train-
ing workload of the Apriori benchmark. We then tested the rel-
ative models with the TF-IDF job profiles. We observed higher
prediction errors compared to predictions for the other jobs: Figure
12 shows how the Apriori benchmark is now outperformed by the
Custom benchmark.

Overall, when the workload is known a priori and the high time
to collect the training data is not a concern, using the Apriori bench-
mark is the best option. Otherwise, the Custom benchmark is a re-
liable and robust option for collecting training samples quickly that
lead to good predictions.

8.5 Approximate Profiles through Sampling

Profiling, when enabled, causes some slowdown in the running
time of a MapReduce job j. To minimize this overhead, the Pro-
filer can selectively profile a random fraction of the tasks in j. For
this experiment, we used a 16-node cluster with cl.medium nodes
to profile Word Co-occurrence (a CPU-intensive job) and TeraSort
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Figure 12: Relative prediction error for the Fixed and Cus-
tom benchmarks over the Apriori benchmark without TF-IDF
when asked to predict cost statistics for the TF-IDF job.

(an I/O-intensive job) while enabling profiling for only a sample
of the tasks in each job. As we vary the percentage of profiled
tasks in each job, Figure 13(a) shows the profiling overhead by
comparing against the same job run with profiling turned off. For
both MapReduce jobs, as the percentage of profiled tasks increases,
the overhead added to the job’s running time also increases (as ex-
pected). It is interesting to note that the profiling overhead varies
significantly between the two jobs. The magnitude of the profiling
overhead depends on whether the job is CPU-bound, uses a com-
biner, uses compression, as well as the job configuration settings.

Figure 13(b) shows the speedup achieved in job execution time
by the Elastisizer-suggested settings over the rules-of-thumb set-
tings as the percentage of profiled tasks used to generate the job
profile is varied. In most cases, the settings suggested by the Elasti-
sizer led to nearly the same job performance improvements; show-
ing that the Elastisizer’s effectiveness in finding good configuration
settings does not require that all tasks be profiled. Therefore, by
profiling only a small fraction of the tasks in a job, we can keep
the overhead low while achieving high degrees of accuracy in the
information collected.

9. DISCUSSION AND FUTURE WORK

TaaS cloud platforms allow nonexpert users to provision clus-
ters of any size on the cloud to run their MapReduce workloads,
and pay only for the resources used. However, these users are now
faced with complex cluster sizing problems that involve determin-
ing the cluster resources and MapReduce job-level parameter con-
figurations to meet desired requirements on execution time and cost
for a given analytic workload.

The Elastisizer is a novel system to which users can express their
cluster sizing problems as queries in a declarative fashion. As we
demonstrated in Section 8, the Elastisizer can provide reliable an-
swers to these queries using an automated technique; providing
nonexpert users with a good combination of cluster resource and
job configuration settings to meet their needs. The automated tech-
nique is based on a careful mix of job profiling, estimation using
black-box and white-box models, and simulation.

Multi-tenancy is a key characteristic of IaaS cloud platforms that
can cause variations in the performance of MapReduce workloads.
In other words, the execution time of a particular MapReduce job
J can vary based on what other MapReduce jobs and background
processes run concurrently with j in the cluster. We plan to study
the effects of multi-tenancy and to enable the Elastisizer to recom-
mend robust configuration settings for running a MapReduce work-
load under different conditions. This work will require extensions
to the simulation process used by the What-if Engine. Another in-
teresting avenue for future work is to add support for auction-based
resource provisioning, e.g., spot instances on Amazon EC2.
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