
Automatic Tuning of Data-Intensive Analytical

Workloads

by

Herodotos Herodotou

Department of Computer Science
Duke University

Date:
Approved:

Shivnath Babu, Supervisor

Jun Yang

Jeffrey Chase

Christopher Olston

Dissertation submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in the Department of Computer Science

in the Graduate School of Duke University
2012

Abstract

Automatic Tuning of Data-Intensive Analytical

Workloads

by

Herodotos Herodotou

Department of Computer Science
Duke University

Date:
Approved:

Shivnath Babu, Supervisor

Jun Yang

Jeffrey Chase

Christopher Olston

An abstract of a dissertation submitted in partial fulfillment of the requirements for
the degree of Doctor of Philosophy in the Department of Computer Science

in the Graduate School of Duke University
2012

Copyright c© 2012 by Herodotos Herodotou
All rights reserved except the rights granted by the

Creative Commons Attribution-Noncommercial Licence

http://creativecommons.org/licenses/by-nc/3.0/us/

Abstract

Modern industrial, government, and academic organizations are collecting massive

amounts of data (“Big Data”) at an unprecedented scale and pace. The ability to

perform timely and cost-effective analytical processing of such large datasets in order

to extract deep insights is now a key ingredient for success. These insights can drive

automated processes for advertisement placement, improve customer relationship

management, and lead to major scientific breakthroughs.

Existing database systems are adapting to the new status quo while large-scale

dataflow systems (like Dryad and MapReduce) are becoming popular for executing

analytical workloads on Big Data. Ensuring good and robust performance auto-

matically on such systems poses several challenges. First, workloads often analyze

a hybrid mix of structured and unstructured datasets stored in nontraditional data

layouts. The structure and properties of the data may not be known upfront, and

will evolve over time. Complex analysis techniques and rapid development needs

necessitate the use of both declarative and procedural programming languages for

workload specification. Finally, the space of workload tuning choices is very large

and high-dimensional, spanning configuration parameter settings, cluster resource

provisioning (spurred by recent innovations in cloud computing), and data layouts.

We have developed a novel dynamic optimization approach that can form the

basis for tuning workload performance automatically across different tuning scenar-

ios and systems. Our solution is based on (i) collecting monitoring information in

iv

order to learn the run-time behavior of workloads, (ii) deploying appropriate mod-

els to predict the impact of hypothetical tuning choices on workload behavior, and

(iii) using efficient search strategies to find tuning choices that give good workload

performance. The dynamic nature enables our solution to overcome the new chal-

lenges posed by Big Data, and also makes our solution applicable to both MapReduce

and Database systems. We have developed the first cost-based optimization frame-

work for MapReduce systems for determining the cluster resources and configuration

parameter settings to meet desired requirements on execution time and cost for a

given analytic workload. We have also developed a novel tuning-based optimizer in

Database systems to collect targeted run-time information, perform optimization,

and repeat as needed to perform fine-grained tuning of SQL queries.

v

Contents

Abstract iv

List of Tables x

List of Figures xii

Acknowledgements xvii

1 Analytical Processing in the Big Data Era 1

1.1 MADDER Principles in Big Data Analytics 2

1.2 Two Approaches to Big Data Analytics 3

1.3 Big Data Analytics Systems are Becoming MADDER 6

1.4 Challenges in Tuning MADDER Systems 8

1.5 Contributions . 9

2 A Tuning Approach for MADDER Systems 14

2.1 Current Approaches to Optimization and Tuning 14

2.1.1 Self-tuning Database Systems 15

2.1.2 Optimizing Dataflow Systems 17

2.2 Overview of a MADDER Tuning Approach 19

2.2.1 Tuning MapReduce Workloads with Starfish 20

2.2.2 Tuning SQL Queries with Xplus 26

3 Primer on Tuning MapReduce Workloads 28

3.1 MapReduce Job Execution . 29

vi

3.2 Impact of Configuration Parameter Settings 35

3.3 MapReduce on the Cloud . 39

3.4 Use Cases for Tuning MapReduce Workloads 40

4 Dynamic Profiling of MapReduce Workloads 46

4.1 Job and Workflow Profiles . 47

4.2 Using Profiles to Analyze Execution Behavior 52

4.3 Generating Profiles via Measurement 54

4.4 Task-level Sampling to Generate Approximate Profiles 58

5 A Declarative Query Interface to Access Performance Predictors
and Optimizers 61

5.1 Declarative Interface to Express Workload Tuning Queries 63

5.2 Overview of How Starfish Answers a Workload Tuning Query 66

5.3 Starfish Visualizer . 70

6 Predicting MapReduce Workload Performance 78

6.1 Overview for Predicting MapReduce Workload Performance 82

6.2 Cardinality Models to Estimate Dataflow Statistics Fields 83

6.3 Relative Black-box Models to Estimate Cost Statistics Fields 84

6.4 Analytical Models to Estimate Dataflow and Cost Fields 88

6.4.1 Modeling the Read and Map Phases in the Map Task 91

6.4.2 Modeling the Collect and Spill Phases in the Map Task 92

6.4.3 Modeling the Merge Phase in the Map Task 94

6.4.4 Modeling the Shuffle Phase in the Reduce Task 98

6.4.5 Modeling the Merge Phase in the Reduce Task 103

6.4.6 Modeling the Reduce and Write Phases in the Reduce Task . . 108

6.5 Simulating the Execution of a MapReduce Workload 109

6.6 Estimating Derived Data Properties and Workflow Performance . . . 110

vii

6.7 Evaluating the Predictive Power of the What-if Engine 111

6.7.1 Accuracy of What-if Analysis 113

6.7.2 Tuning the Cluster Size . 115

6.7.3 Transitioning from Development to Production 116

6.7.4 Evaluating the Training Benchmarks 117

7 Cost-based Optimization for MapReduce Workloads 121

7.1 Current Approaches to MapReduce Optimization 124

7.2 Cost-based Optimization of MapReduce Jobs 129

7.2.1 Subspace Enumeration . 131

7.2.2 Search Strategy within a Subspace 132

7.2.3 Evaluating Cost-based Job Optimization 134

7.3 Cost-based Optimization of MapReduce Workflows 143

7.3.1 Dataflow and Resource Dependencies in Workflows 144

7.3.2 MapReduce Workflow Optimizers 150

7.3.3 Evaluating Cost-based Workflow Optimization 159

7.4 Cost-based Optimization of Cluster Resources 170

7.4.1 Cluster Resource Optimizer 171

7.4.2 Evaluating Cost-based Cluster Provisioning 172

8 An Experiment-driven Approach to Tuning Analytical Queries 175

8.1 New Representation of the Physical Plan Space 181

8.2 New Search Strategy over the Physical Plan Space 185

8.2.1 Enumerating Neighborhoods and Plans 185

8.2.2 Picking the Neighborhoods to Cover 188

8.2.3 Picking the Plan to Run in a Neighborhood 192

8.3 Implementation of Xplus . 193

viii

8.3.1 Architecture . 193

8.3.2 Extensibility Features . 194

8.3.3 Efficiency Features . 196

8.4 Comparing Xplus to Other SQL-tuning Approaches 198

8.5 Experimental Evaluation . 202

8.5.1 Overall Performance of Xplus 204

8.5.2 Comparison with Other SQL-tuning Approaches 205

8.5.3 Internal Comparisons for Xplus 207

9 Increasing Partition-awareness in Cost-based Query Optimization 210

9.1 Optimization Opportunities for Partitioned Tables 212

9.2 Related Work on Table Partitioning 217

9.3 Query Optimization Techniques for Partitioned Tables 219

9.3.1 Matching Phase . 222

9.3.2 Clustering Phase . 227

9.3.3 Path Creation and Selection 229

9.3.4 Extending our Techniques to Parallel Database Systems 235

9.4 Experimental Evaluation . 236

9.4.1 Results for Different Partitioning Schemes 237

9.4.2 Studying Optimization Factors on Table Partitioning 241

9.4.3 Impact on Cardinality Estimation 245

10 The Future of Big Data Analytics 247

10.1 Starfish: Present and Future . 248

10.2 Xplus: Present and Future . 251

Bibliography 253

Biography 265

ix

List of Tables

3.1 A subset of important job configuration parameters in Hadoop. . . . 33

3.2 Five representative Amazon EC2 node types, along with resources and
monetary costs. 40

4.1 Dataflow fields in the job profile. 48

4.2 Cost fields in the job profile. 49

4.3 Dataflow statistics fields in the job profile. 50

4.4 Cost statistics fields in the job profile. 51

4.5 A subset of job profile fields for two Word Co-occurrence jobs run with
different settings for io.sort.mb. 52

6.1 Example questions the What-if Engine can answer. 79

6.2 A subset of cluster-wide and job-level Hadoop parameters. 89

6.3 Cluster-wide Hadoop parameter settings for five EC2 node types. . . 111

6.4 MapReduce programs and corresponding datasets for the evaluation
of the What-if Engine. 111

7.1 MapReduce programs and corresponding datasets for the evaluation
of the Job Optimizer. 134

7.2 MapReduce job configuration settings in Hadoop suggested by Rules-
of-Thumb and the cost-based Job Optimizer for the Word Co-occurrence
program. 135

7.3 Number of reduce tasks chosen and speedup over Rules-of-Thumb set-
tings by the Workflow Optimizer for a workflow as we vary the total
input size. 150

x

7.4 MapReduce workflows and corresponding dataset sizes on two clusters
for the evaluation of the Workflow Optimizer. 160

8.1 Properties of the current experts in Xplus. 189

8.2 Comparison of Xplus, Leo, Pay-As-You-Go, and ATO. 199

8.3 Tuning scenarios created with TPC-H queries. 203

8.4 Overall tuning results of Xplus for TPC-H queries. 204

8.5 Tuning results of Xplus, Leo controller, and ATO controller when
asked to find a 5x better plan. 207

9.1 Uses of table partitioning in Database systems. 211

9.2 Optimizer categories considered in the experimental evaluation. . . . 237

9.3 Partitioning schemes for TPC-H databases. 238

xi

List of Figures

1.1 Typical architecture for Database systems. 4

1.2 Typical architecture for Dataflow systems. 5

1.3 Summary of contributions. 11

2.1 Starfish in the Hadoop ecosystem. 21

2.2 Components in the Starfish architecture. 23

3.1 Execution of a MapReduce job. 29

3.2 Execution of a map task showing the map-side phases. 30

3.3 Execution of a reduce task showing the reduce-side phases. 30

3.4 An example MapReduce workflow. 34

3.5 Response surfaces of WordCount MapReduce jobs in Hadoop. 36

3.6 Response surfaces of TeraSort MapReduce jobs in Hadoop. 36

3.7 Performance Vs. pay-as-you-go costs for a workload that is run on
different EC2 cluster resource configurations. 43

3.8 Pay-as-you-go costs for a workload run on Hadoop clusters using
auction-based EC2 spot instances. 44

4.1 Map and reduce time breakdown for two Word Co-occurrence jobs run
with different settings for io.sort.mb. 53

4.2 Total map execution time, Spill time, and Merge time for a represen-
tative Word Co-occurrence map task as we vary the setting of io.sort.mb. 54

4.3 (a) Overhead to measure the (approximate) profile, and (b) corre-
sponding speedup given by Starfish as the percentage of profiled tasks
is varied for Word Co-occurrence and TeraSort MapReduce jobs. . . . 59

xii

5.1 Screenshot from the Starfish Visualizer showing the execution timeline
of the map and reduce tasks of a MapReduce job running on a Hadoop
cluster. 71

5.2 Screenshot from the Starfish Visualizer showing a histogram of the
map output data size per map task. 72

5.3 Screenshot from the Starfish Visualizer showing a visual representation
of the data flow among the Hadoop nodes during a MapReduce job
execution. 73

5.4 Screenshot from the Starfish Visualizer showing the map and reduce
time breakdown from the virtual profile of a MapReduce job. 74

5.5 Screenshot from the Starfish Visualizer showing the optimal configura-
tion parameter settings found by the Job Optimizer, as well as cluster
and input data properties. 75

6.1 Overall process used by the What-if Engine to predict the performance
of a given MapReduce workflow. 82

6.2 Overall process used by the What-if Engine to estimate a virtual job
profile. 83

6.3 Map and reduce time breakdown for Word Co-occurrence jobs from
(A) an actual run and (B) as predicted by the What-if Engine. 113

6.4 Actual Vs. predicted running times for (a) Word Co-occurrence, (b)
WordCount, and (c) TeraSort jobs running with different configuration
parameter settings. 114

6.5 Actual and predicted running times for MapReduce jobs as the number
of nodes in the cluster is varied. 115

6.6 Actual and predicted running times for MapReduce jobs when run on
the production cluster. 116

6.7 Total running time for each training benchmark. 118

6.8 Relative prediction error for the Fixed and Custom benchmarks over
the Apriori benchmark when asked to predict cost statistics for a test
workload. 119

6.9 Relative prediction error for the Fixed and Custom benchmarks over
the Apriori benchmark without TF-IDF when asked to predict cost
statistics for the TF-IDF job. 120

xiii

7.1 Overall process for optimizing a MapReduce job. 131

7.2 Map and reduce time breakdown for two Word Co-occurrence jobs
run with configuration settings suggested by Rules-of-Thumb and the
cost-based Job Optimizer. 136

7.3 Running times for MapReduce jobs running with Hadoop’s Default,
Rules-of-Thumb, and CBO-suggested settings. 138

7.4 Optimization time for the six Cost-based Optimizers for various MapRe-
duce jobs. 139

7.5 Number of what-if calls made (unique configuration settings consid-
ered) by the six Cost-based Optimizers for various MapReduce jobs. . 139

7.6 The job execution times for TeraSort when run with (a) Rules-of-
Thumb settings, (b) CBO-suggested settings using a job profile ob-
tained from running the job on the corresponding data size, and (c)
CBO-suggested settings using a job profile obtained from running the
job on 5GB of data. 140

7.7 The job execution times for MapReduce programs when run with (a)
Rules-of-Thumb settings, (b) CBO-suggested settings using a job pro-
file obtained from running the job on the production cluster, and (c)
CBO-suggested settings using a job profile obtained from running the
job on the development cluster. 141

7.8 Percentage overhead of profiling on the execution time of MapReduce
jobs as the percentage of profiled tasks in a job is varied. 142

7.9 Speedup over the job run with Rules-of-Thumb settings as the per-
centage of profiled tasks used to generate the job profile is varied. . . 143

7.10 MapReduce workflows for (a) Query H4 from the Hive Performance
Benchmark; (b) Queries P1 and P7 from the PigMix Benchmark run
as one workflow; (c) Our custom example. 144

7.11 Execution times for jobs in a workflow when run with settings sug-
gested by (a) popular Rules of Thumb; (b) a Job-level Workflow Op-
timizer; (c) an Interaction-aware Workflow Optimizer. 146

7.12 Execution timeline for jobs in a workflow when run with settings sug-
gested by (a) popular Rules of Thumb; (b) an Interaction-aware Work-
flow Optimizer. 148

xiv

7.13 The optimization units (denoted with dotted boxes) for our example
MapReduce workflow for the three Workflow Optimizers. 153

7.14 Speedup achieved over the Rules-of-Thumb settings for workflows run-
ning on the Amazon cluster from (a) the TPC-H Benchmark, (b) the
PigMix Benchmark, and (c) the Hive Performance Benchmark. 162

7.15 Speedup achieved over the Rules-of-Thumb settings for workflows run-
ning on the Yahoo! cluster from (a) the TPC-H Benchmark, (b) the
PigMix Benchmark, and (c) the Hive Performance Benchmark. 163

7.16 Optimization overhead for all MapReduce workflows. 164

7.17 Running times of queries with settings based on Rules-of-Thumb, the
Job-level Workflow Optimizer, and the Interaction-aware Workflow
Optimizer. 165

7.18 Optimization times for the Job-level Workflow Optimizer and the
Interaction-aware Workflow Optimizer. 166

7.19 Running times of queries with settings based on Rules-of-Thumb, the
Single-configuration Workflow Optimizer, and the Interaction-aware
Workflow Optimizer. 167

7.20 Optimization times for the Single-configuration Workflow Optimizer
and the Interaction-aware Workflow Optimizer. 168

7.21 Running times of queries with settings based on Rules-of-Thumb, and
the Static and Dynamic Interaction-aware Workflow Optimizers. . . . 169

7.22 Running times of queries with settings based on Rules-of-Thumb, and
the Static and Dynamic Interaction-aware Workflow Optimizers, as
we vary the actual filter ratio of job j1. 170

7.23 Running time and monetary cost of the workload when run with (a)
Rules-of-Thumb settings and (b) Starfish-suggested settings, while
varying the number of nodes and node types in the clusters. 173

8.1 Neighborhoods and physical plans for our example star-join query. . . 179

8.2 Neighborhood and Cardinality Tables for our example star-join query. 183

8.3 System architecture of Xplus. 193

8.4 Progress of the execution time of the best plan in the covered space
as Xplus tunes TPC-H Query 7. 205

xv

8.5 Speedup from Xplus, Leo, and ATO controllers. 206

8.6 (a) Convergence times and (b) completion times for the expert-selection
policies. 208

8.7 Impact of the efficiency features in Xplus. 209

9.1 Partitioning of tables R, S, T , and U . Dotted lines show partitions
with potentially joining records. 212

9.2 P1 is a plan generated by current optimizers for the running example
query Q. P2 is a plan generated by our partition-aware optimizer. . . 214

9.3 A partition index tree containing intervals for all child tables (parti-
tions) of T from Figure 9.1. 223

9.4 Matching algorithm. 224

9.5 Clustering algorithm applied to the running example query Q. 227

9.6 Clustering algorithm. 228

9.7 Logical relations (with child relations) enumerated for query Q by our
partition-aware bottom-up optimizer. 233

9.8 (a) Execution times and (b) optimization times for TPC-H queries
over partitioning scheme PS-J. 239

9.9 (a) Execution times and (b) optimization times for TPC-H queries 5
and 8 over three partitioning schemes. 240

9.10 (a) Execution times and (b) optimization times for TPC-H queries
over partitioning scheme PS-C with partition size 128MB. 241

9.11 (a) Execution times and (b) optimization times as we vary the parti-
tion size for TPC-H queries 5 and 8. 242

9.12 Execution times as we vary the total data size. 243

9.13 (a) Execution times and (b) optimization times for enabling and dis-
abling clustering. 244

9.14 Estimated and actual number of records produced by TPC-H queries
over partitioning scheme PS-C. 245

xvi

Acknowledgements

I am sincerely and heartily grateful to my advisor, Shivnath Babu, for the support

and guidance he showed me throughout my graduate studies at Duke University. I

would also like to extend my gratitude to the rest of my committee members—Jun

Yang, Jeffrey S. Chase, and Christopher Olston—for their support and advice during

this work.

I would like to acknowledge and thank those who have contributed to my per-

sonal growth and the growth of my work: Benjamin Reed and Jianjun Chen of

Yahoo! Research for many valuable discussion on the workflow optimization prob-

lem; John Cieslewicz and Eric Friedman of Aster Data for introducing me to the

query optimization problem over partitioned tables; and my colleagues Fei Dong and

Nick Bodnar for helping develop the Starfish Visualizer.

I am also grateful to Amazon Web Services for awarding us multiple research

grants for the use of resources on the Amazon Elastic Compute Cloud (EC2), and

to Yahoo! for establishing a research collaboration for the use of Yahoo! resources.

Lastly, I offer my regards and blessings to my family and friends who supported

me during the development of this dissertation.

xvii

1

Analytical Processing in the Big Data Era

Modern industrial, government, and academic organizations are collecting massive

amounts of data (“Big Data”) at an unprecedented scale and pace. Companies like

Facebook, Yahoo!, and eBay maintain and process petabytes of data, including prod-

uct sales, customer interactions, web content, software logs, click streams, and other

types of information (Thusoo et al., 2009). On the scientific front, powerful telescopes

in astronomy, genome sequencers in biology, and particle accelerators in physics are

putting massive amounts of data into the hands of scientists. At the same time,

many basic and applied science disciplines now have computational subareas, e.g.,

computational biology, computational economics, and computational journalism, ex-

panding even further the need for versatile Big Data analytics.

Advanced analysis techniques (like data mining, statistical modeling, and infer-

ential statistics) are now applied routinely to Big Data. These techniques drive

automated processes for spam and fraud detection, advertisement placement, Web-

site optimization, and customer relationship management; and lead to cost savings

and higher revenue. Moreover, key scientific breakthroughs are expected to come

from computational analysis of the collected scientific data. However, success in the

1

Big Data era is about more than the ability to process large amounts of data; it is

about getting deep insights and learning from these huge datasets in a timely and

cost-effective way (Cohen et al., 2009).

1.1 MADDER Principles in Big Data Analytics

Large-scale data-intensive computation has recently attracted a tremendous amount

of attention both in the research community and in industry. Existing systems used

for Big Data analytics are constantly improving while new systems are emerging.

Regardless of the system used, data scientists now expect and need certain important

features from these systems. Cohen et al. (2009) recently coined the acronym MAD—

for Magnetism, Agility, and Depth—to express three such features:

• Magnetism: A magnetic system attracts all sources of data irrespective of

issues like possible presence of outliers, unknown schema or lack of structure,

and missing values that keep many useful data sources out of conventional data

warehouses.

• Agility: An agile system adapts in sync with rapid data evolution, instead of

retaining strict, predefined designs and planning decisions.

• Depth: A deep system supports analytics needs that go far beyond conven-

tional rollups and drilldowns to complex statistical and machine-learning anal-

ysis.

In addition to MAD, three more features are becoming important in today’s analytics

systems: Data-lifecycle-awareness, Elasticity, and Robustness. A system with all six

features would be MADDER than current analytics systems.

• Data-lifecycle-awareness: A data-lifecycle-aware system goes beyond query

execution to optimize the movement, storage, and processing of data during its

2

entire lifecycle. This feature can: (i) support terabyte-scale daily data cycles

that power the intelligence embedded in sites like Yahoo! and LinkedIn (Kreps,

2009); (ii) eliminate indiscriminate data copying that causes bloated storage

needs (Ratzesberger, 2010); and (iii) realize performance gains due to reuse of

intermediate data or learned metadata in workflows that are part of the cycle

(Gunda et al., 2010).

• Elasticity: An elastic system adjusts its resource usage and operational costs

to the user and workload requirements. Services like Amazon Elastic Compute

Cloud (EC2) have created a market for pay-as-you-go analytics hosted on the

cloud. Amazon EC2 provisions and releases clusters on demand, sparing users

the hassle of cluster setup and maintenance.

• Robustness: A robust system continues to provide service, possibly with

graceful degradation, in the face of undesired events like hardware failures,

software bugs, and data corruption (Kreps, 2009).

1.2 Two Approaches to Big Data Analytics

Systems for Big Data analytics can be divided into two main categories: Database

systems and Dataflow systems. Traditionally, Enterprise Data Warehouses (EDWs)

and Business Intelligence (BI) tools built on top of Database systems have been pro-

viding the means for retrieving and analyzing large amounts of data. Massive Parallel

Processing (MPP) database management systems that run on a cluster of commod-

ity servers (like Teradata (Teradata, 2012), Aster nCluster (AsterData, 2012), and

Greenplum (Greenplum, 2012)) provide support for Big Data analytics in the world

of EDWs. On the other hand, large-scale parallel Dataflow systems, like Google’s

MapReduce (Dean and Ghemawat, 2004), Hadoop (Hadoop, 2012), Pig (Gates et al.,

2009), Hive (Thusoo et al., 2009), and Dryad (Isard et al., 2007)), have emerged more

3

Figure 1.1: Typical architecture for Database systems.

recently and are becoming increasingly popular in the enterprise setting as well as

in scientific and academic settings.

The typical architectures for Database and Dataflow systems are respectively

shown in Figures 1.1 and 1.2. These two classes of systems make different choices in

several key areas:

Data storage and structure: Most Database Management Systems (DBMSs)

require that data conform to a well-defined schema and are stored in a specialized

data store. Typically, the data structure follows the relational model even though

other models, like XML or JSON, are supported. This well-defined structure of data

allows DBMSs to maintain detailed statistics about the data and to build auxiliary

index structures. On the other hand, Dataflow systems typically process data directly

from the file system, permitting data to be in any arbitrary format. Hence, Dataflow

systems are capable of processing unstructured, semi-structured, and structured data

alike.

Programming model and interfaces: Structured Query Language (SQL) is the

declarative language most widely used for accessing, managing, and analyzing data

in Relational DBMSs. Users can specify an analysis task using an SQL query, and

the DBMS will optimize and execute the query. In addition to SQL, most DBMSs

4

Figure 1.2: Typical architecture for Dataflow systems.

support (i) user-defined functions, user-defined aggregates, and stored procedures,

(ii) interfaces (e.g., JDBC, ODBC) for accessing data from higher-level programming

languages (e.g., Java, C), and (iii) XQuery, a query and functional programming

language that is designed to query collections of XML data (see Figure 1.1). Apart

from an execution engine, MapReduce is also a programming model inspired by

functional programming (presented in detail in Chapter 3). This model, although

highly flexible, has been found to be too low-level for routine use by practitioners

such as data analysts, statisticians, and scientists (Olston et al., 2008b; Thusoo et al.,

2009). As a result, the MapReduce framework has evolved rapidly over the past few

years into a MapReduce stack (see Figure 1.2) that includes a number of higher-

level layers added over the core MapReduce engine. Prominent examples of these

higher-level layers include Hive (with an SQL-like declarative interface), Pig (with

an interface that mixes declarative and procedural elements), Cascading (with a Java

interface for specifying workflows), Cascalog (with a Datalog-inspired interface), and

BigSheets (includes a spreadsheet interface).

Execution strategy: In a DBMS execution engine, input data are accessed and

processed using a query execution plan that specifies how a given query will actually

run in the system. The execution plan is composed of operators—e.g., index scan,

5

filter, sort, and hash join—from a known and fixed set. The input data are then

pushed through the execution plan in order to generate the final results. Typically,

the number of possible and valid execution plans is very large. It is the responsibility

of the query optimizer to choose the optimal execution plan based on available data

statistics, applicable operators, and cost models. In the Dataflow world, the typical

execution engine used is the MapReduce engine. MapReduce engines represent a

new data-processing framework that has emerged in recent years to deal with data

at massive scale (Dean and Ghemawat, 2004). Users specify computations over large

datasets in terms of Map and Reduce functions, and the underlying run-time system

automatically parallelizes the computation across large-scale clusters of machines,

handles machine failures, and schedules inter-machine communication to make effi-

cient use of the network and disk bandwidth. Similar to DBMSs, there is also a large

number of choices to be made in terms of configuration parameter settings that can

affect the performance of a MapReduce job. However, MapReduce engines are not

yet equipped with an optimizer that can make those choices automatically.

Though it may seem that Database and Dataflow systems target different applica-

tions, it is in fact possible to write almost any parallel processing task as either a set

of database queries (possibly using user defined functions and aggregates) or a set

of MapReduce jobs (Pavlo et al., 2009). Following this observation, we will argue

that a common approach can be taken for automatically tuning systems from both

categories, especially as the systems keep evolving and becoming MADDER.

1.3 Big Data Analytics Systems are Becoming MADDER

Existing systems are changing and new systems are being created to support the

MADDER principles. In particular, many DBMSs now offer support for analyz-

ing semi-structured data, for performing Extract-Transform-Load (ETL) operations

6

from various heterogeneous data sources, and for processing data directly from files;

making DBMSs more magnetic and agile. In addition, there is a growing interest

among database vendors in providing query interfaces that combine the best features

of SQL and MapReduce. SQL/MapReduce from Aster nCluster is a new framework

for user-defined functions (UDFs) that leverages ideas from the MapReduce pro-

gramming paradigm. UDFs in SQL/MapReduce are self-describing, polymorphic,

and inherently parallelizable (Friedman et al., 2009). In an attempt to become

MAD, Greenplum introduced a three-layered schema architecture as well as SQL

extensions for vector arithmetic and data partitioning (Cohen et al., 2009).

Hadoop, the most popular open-source implementation of MapReduce, is becom-

ing popular for Big Data analytics. Hadoop is already a MAD system. Hadoop

has two primary components: a MapReduce execution engine and a distributed file-

system. Analytics with Hadoop involves loading data as files into the distributed

file-system, and then running parallel MapReduce computations to interpret and

process the data. Working with (possibly) unstructured files as well as interpreting

data (lazily) at processing time instead of (eagerly) at loading time makes Hadoop a

magnetic and agile system. Furthermore, MapReduce computations in Hadoop can

be expressed directly in general-purpose programming languages like Java or Python,

domain-specific languages like R, or generated automatically from higher-level lan-

guages like HiveQL and Pig Latin. This coverage of the language spectrum makes

Hadoop well suited for deep analytics. Finally, an unheralded aspect of Hadoop is

its extensibility, i.e., the ease with which many of Hadoop’s core components like the

scheduler, storage subsystem, input/output data formats, data partitioner, compres-

sion algorithms, caching layer, and monitoring can be customized or replaced.

Hadoop has the core mechanisms to be MADDER than existing analytics sys-

tems. However, the use of most of these mechanisms has to be managed manually.

Take elasticity as an example. Hadoop supports dynamic node addition as well as

7

decommissioning of failed or surplus nodes. However, Hadoop lacks control modules

to decide (a) when to add new nodes or to drop surplus nodes, and (b) when and

how to re-balance the data layout in this process.

1.4 Challenges in Tuning MADDER Systems

The traditional data warehousing philosophy demands a tightly controlled environ-

ment that makes it easier to meet performance requirements; a luxury we cannot

afford any more (Cohen et al., 2009). The MADDER principles introduce new op-

timization challenges for ensuring good and robust performance across the different

types of data analytics systems:

Less control on data storage and structure: Magnetism and agility—that come

with supporting multiple (possibly heterogeneous) data sources and interpreting data

only at processing time—imply less control over the data structure and layouts. The

structure and properties of the data, like statistics and schema, may not be known

initially, and will evolve over time. The data may be generated in different formats

and stored as few large files, millions of small files, or anything in between. Such

uncontrolled data layouts are a marked contrast to the carefully-planned layouts in

Database systems. Hence, newer systems may have limited or no access to data

properties that are traditionally used to drive optimization and tuning.

Less control on workload specification: The MADDER principles also imply

less control on how workloads are given to the system. The increased need for deep

analytics by a very diverse user community—ranging from marketing analysts and

sales managers to scientists, statisticians, and systems researchers—fuels the use

of programming languages like Java and Python in place of the conventional SQL

queries. Even SQL queries are now laced commonly with user-defined functions and

aggregates, which are very hard to accurately account for in traditional cost models.

8

Intertwining optimization and provisioning decisions: The elastic and pay-as-

you-go nature of Infrastructure-as-a-Service (IaaS) cloud platforms are particularly

attractive for small to medium organizations that need to process large datasets. A

user can now provision clusters almost instantaneously and pay only for the resources

used and duration of use. These features give tremendous power to the user, but

they simultaneously place a major burden on her shoulders. The user is now faced

regularly with complex decisions that involve finding the cluster size, the type of

resources to use in the cluster from the large number of choices offered by current IaaS

cloud platforms, and the job execution plans that best meet the performance needs

of her workload. Hence, resource provisioning decisions are now intertwined with

job-level optimization decisions, which further increases the size and dimensionality

of the space of workload tuning choices.

As indicated by the aforementioned challenges, getting the desired performance from

a MADDER system can be a nontrivial exercise. The practitioners of Big Data

analytics like data analysts, computational scientists, and systems researchers usually

lack the expertise to tune system internals. Such users would rather use a system

that can tune itself and provide good performance automatically. However, the

high uncertainty regarding data and task specification resulting from the MADDER

principles renders traditional static optimization approaches ineffective.

1.5 Contributions

In this dissertation, we propose a novel dynamic optimization approach that can be

used for automatically tuning the workload and cluster performance in MADDER

systems. The approach is based on (i) collecting monitoring information (termed

dynamic profiling) in order to learn the run-time behavior of complex workloads

noninvasively, (ii) deploying appropriate models to predict the impact of hypothetical

9

tuning choices on workload behavior, and (iii) using efficient search strategies to find

tuning choices that give good workload performance. This profile-predict-optimize

approach forms the basis for automatically tuning a MADDER Database or Dataflow

system, and can be used as needed for a wide spectrum of tuning scenarios.

To illustrate the breadth of possible tuning scenarios, suppose we are given a

workload W to tune. Initially, the system has limited knowledge about the workload

and the data, and an initial execution plan P0 is selected. While P0 is running, the

system can profile the plan execution to learn the run-time behavior of W , and then

employ the profile-predict-optimize approach to find a better plan P1. When W gets

submitted again for execution, the improved plan P1 can be used instead of P0. The

system could then repeat the profile-predict-optimize approach to find an even better

plan P2 based on the profiled execution of P1. Therefore, the system learns over time

and executes better and better plans for W .

In another tuning scenario, suppose the user knows that W is an important,

repeatedly-run workload for which she is willing to invest some resources upfront

to find the optimal plan Popt. The system can employ the profile-predict-optimize

approach iteratively; that is, the system can collect some targeted profile information,

perform optimization, and iterate as needed to perform fine-grained tuning. The

main challenge here is to perform the minimum amount of profiling required to

reach the optimal plan as quickly as possible. In yet another tuning scenario, the

user can offload the tuning process to a backup or test system in order to minimize

the impact on the production system.

Therefore, the profile-predict-optimize approach can be used for a variety of tun-

ing scenarios, as well as for tuning workloads on different systems. (Note that the

above discussion applies to both Database and Dataflow systems alike.) Figure 1.3

summarizes the contributions as they relate to profiling, predicting, and optimizing

the performance of analytics workloads running on MADDER systems. Overall, our

10

Figure 1.3: Summary of contributions.

contributions are as follows:

1. Dynamic profiling: We introduce dynamic profiling for collecting fine-grained,

run-time monitoring information about a workload, which is needed for perfor-

mance visualization, prediction, and optimization. Profiling works regardless

of the amount of prior information the system has about the data processed or

the tasks performed by the workload.

2. Profile sampling: Apart from ensuring noninvasive and dynamic profiling,

another key challenge was keeping the run-time overhead low. For this purpose,

we make use of sampling techniques to collect profiling information quickly and

accurately.

3. MapReduce cost models: We have designed detailed cost models for pre-

dicting the performance of MapReduce workloads running on a cluster. These

models take into account complex issues that arise in distributed settings such

as task parallelism, scheduling, and interactions among concurrent or sequen-

tial tasks.

11

4. Relative black-box models: Common tuning scenarios require predicting

and optimizing the performance of workloads across different clusters. For

instance, it is typical to test the execution of workloads on a development

cluster before staging for execution on the production cluster. We employ

relative black-box models to accurately predict the execution behavior of a

workload on one cluster, given profiling information for the execution on a

different one.

5. MapReduce cost-based optimization: Optimization involves enumerating

and searching through a large and high-dimensional space of tuning choices.

We have developed, to the best of our knowledge, the first cost-based opti-

mizer for MapReduce systems that (given a set of optimization objectives and

constraints) can make optimization decisions ranging from finding the optimal

cluster size and the type of resources to use in the cluster, to determining good

workload configuration settings.

6. SQL-tuning-aware optimization: Employing the profile-predict-optimize

approach iteratively can be used for fine-grained tuning of workload perfor-

mance. We have implemented this approach within the realm of Database

systems to improve any suboptimal query execution plans picked by the query

optimizer for repeatedly-run SQL queries.

7. Partition-aware optimization: While Database systems include a cost-

based query optimizer, the optimization techniques used have not kept pace

with the rapid advances in usage and user control of new data layouts and

partitioning strategies introduced by the MADDER principles. We address

this gap by developing new techniques to generate efficient plans for queries

involving multiway joins over partitioned tables.

12

Impact: Using the above techniques, we have designed and developed two systems

for automatically tuning analytics workloads:

• Starfish is a MADDER and self-tuning system for Big Data analytics that em-

ploys the profile-predict-optimize approach for tuning MapReduce workloads.

Starfish builds on the Hadoop MapReduce platform while adapting to user

needs and system workloads to provide good performance automatically, with-

out any need for users to understand and manipulate the many tuning knobs

available. Starfish includes a declarative interface for specifying optimization

and provisioning requests as well as a graphical user interface to simplify the

user-interaction with the system. Starfish has been released publicly and has

gained several external users in both academia and industry.

• Xplus is a novel SQL-tuning-aware query optimizer capable of executing plans

proactively, collecting monitoring data from the runs, and iterating, in search

for a better query execution plan. Xplus has been prototyped using PostgreSQL

and has also been released publicly.

Chapter 2 presents the motivation and overview of our tuning approach, and guides

the remaining chapters of this work.

13

2

A Tuning Approach for MADDER Systems

The problem of optimizing and automatically tuning analytical workloads executing

on data-intensive systems has been the focus of a long line of commercial and research

work. However, the MADDER principles call for the development of new tuning

techniques in order to cope with the new challenges that arise in the era of Big

Data. In this chapter, we will first review work on self-tuning Database systems.

We will then discuss how the new analysis practices led us to the “profile-predict-

optimize” approach for automatic tuning introduced in Section 1.5. As the usage of

data-intensive workloads is growing beyond large Web companies to smaller groups

with few human tuning experts, automatic tuning has become particularly timely

and important.

2.1 Current Approaches to Optimization and Tuning

The Query Optimizer in a Database Management System (DBMS) is responsible for

ensuring the fast execution of queries in the system. For each query, the optimizer

will (a) consider a number of different execution plans, (b) use a cost model to predict

the execution time of each plan based on some data statistics (e.g., histograms) and

14

configuration parameters, and (c) use the plan with the minimum predicted execution

time to run the query to completion. Many query optimizers enumerate the execution

plans via a dynamic programming algorithm pioneered by IBM’s System R DBMS

(Astrahan et al., 1976).

The rapid evolution of storage systems, increased use of user-defined functions

(UDFs), and complicated data patterns resulting from the MADDER principles are

causing estimates from traditional cost models to be increasingly inaccurate, leading

to poorly performing execution plans (Babu et al., 2005). Even when the system

is well tuned, workloads and business needs change over time; thus, the production

database has to be kept in step. New optimizer statistics, configuration parameter

changes, software upgrades, and hardware changes are among a large number of

factors that stress the need for repeated database tuning.

2.1.1 Self-tuning Database Systems

There has been extensive work on providing database administrators (DBAs) and

users the tools to tune a Database system correctly and efficiently. Database system

tuning covers a broad area of research that involves problems such as performance

monitoring and diagnostics infrastructures, statistics management, and automating

physical database design.

Performance Monitoring and Diagnostics Infrastructures: Several tools like

HP OpenView (Sheers, 1996) and IBM Tivoli (Karjoth, 2003) provide performance

monitoring, whereas tools like DB2 SQL Performance Analyzer (IBM Corp., 2010)

and SQL Server Performance Tuning (Agrawal et al., 2005) provide extensive anal-

ysis of SQL queries without executing them. Oracle Databases 10g and 11g contain

automated tools that enable the database to monitor and diagnose itself on an on-

going basis, and alert the DBA when any problems are found (Dageville et al., 2004;

Belknap et al., 2009). In particular, the Automatic Tuning Optimizer is a new mode

15

of the optimizer that is specifically used during designated maintenance sessions for

generating additional information that can be used at run-time to speed performance

(Belknap et al., 2009). Based on predefined rules, performance tuning is invoked by

the Automatic Diagnostic Monitor, which is able to analyze the information in its

performance data warehouse. The tools mentioned above are designed to facilitate

the DBA in tuning and improving the performance of a Database system. Our goal

is the same, but our approach is based on run-time monitoring information, tries to

fully automate tuning, and generalizes to Dataflow systems.

Statistics Management and Execution Feedback: Query execution feedback

is a technique used to improve the quality of plans by correcting cardinality estima-

tion errors made by the query optimizer (Chen and Roussopoulos, 1994; Aboulnaga

and Chaudhuri, 1999). LEO’s approach (Stillger et al., 2001) extended and general-

ized this technique to provide a general mechanism for repairing incorrect statistics

and cardinality estimates of a query execution plan. The Pay-as-you-go framework

(Chaudhuri et al., 2008) proposed more proactive monitoring mechanisms and plan

modification techniques for gathering the necessary cardinality information from a

given query execution plan. Another related research direction focuses on dynamic

adjustment of query plans during their execution. Kabra and DeWitt (1998) in-

troduced a new operator to decide whether to continue or stop the execution and

re-optimize the remaining plan, based on statistics collected during the query execu-

tion. RIO (Babu et al., 2005) proposes proactive re-optimization techniques. RIO

uses intervals of uncertainty to pick execution plans that are robust to deviations of

the estimated values or to defer the choice of execution plan until the uncertainty in

estimates can be resolved.

Automated Physical Database Design: The efficiency by which a query is ex-

ecuted on a DBMS is determined by the capabilities of the execution engine and

16

the optimizer, as well as the physical database design. Automated physical database

design tuning focuses on identifying the right set of index structures (Bruno and

Chaudhuri, 2005; Agrawal et al., 2006), materialized views (Agrawal et al., 2000),

data partitioning (Agrawal et al., 2004), and table layouts (Papadomanolakis and

Ailamaki, 2004), which are crucial for efficient query execution over large databases.

Furthermore, several commercial tools were created to aid the DBAs in database

tuning, such as Microsoft’s Database Engine Tuning Advisor (Agrawal et al., 2005),

IBM’s DB2 Design Advisor (Zilio et al., 2004), and Oracle’s SQL Access Advisor

(Dageville et al., 2004). Since our optimization techniques focus on improving run-

time performance, they are complementary to the existing techniques for physical

database design tuning.

Traditional query processing techniques based on static query optimization are in-

effective in applications where statistics about the data are unavailable at the start

of query execution, or where the data characteristics are skewed and change dy-

namically (Chaudhuri and Narasayya, 2007; Urhan et al., 1998). Even though the

aforementioned adaptive query processing techniques can overcome some of the lim-

itations of static query optimizers, they cannot handle the increasing usage of UDFs

in analytical workloads or the need for analyzing unstructured and semi-structured

data. Therefore, the current tuning approaches are not sufficient for dealing with all

the new challenges arising in MADDER Database systems.

2.1.2 Optimizing Dataflow Systems

Being a much newer technology, MapReduce engines significantly lack principled

optimization techniques compared to Database systems. Hence, the MapReduce

stack (see Figure 1.2) is poorer in performance compared to a Database system

running on the same amount of cluster resources (Pavlo et al., 2009). A number of

ongoing efforts are addressing this issue through optimization opportunities arising

17

at different levels of the MapReduce stack. For higher levels of the MapReduce stack

that have access to declarative semantics, many optimization opportunities inspired

by database query optimization and workload tuning have been proposed. Hive and

Pig employ rule-based approaches for a variety of optimizations such as filter and

projection pushdown, shared scans of input datasets across multiple operators from

the same or different analysis tasks (Nykiel et al., 2010), reducing the number of

MapReduce jobs in a workflow (Lee et al., 2011), and handling data skew in sorts

and joins. The epiC system supports System-R-style join ordering (Wu et al., 2011).

Improved data layouts inspired by database storage have also been proposed (Jindal

et al., 2011).

Lower levels of the MapReduce stack deal with workflows of MapReduce jobs. A

MapReduce job may contain black-box map and reduce functions expressed in pro-

gramming languages like Java, Python, and R. Many heavy users of MapReduce,

ranging from large companies like Facebook and Yahoo! (Olston et al., 2008b) to

small startups (Macbeth, 2011), have observed that MapReduce jobs often contain

black-box UDFs to implement complex logic like statistical learning algorithms or

entity extraction from unstructured data. One of the optimization techniques pro-

posed for this level—exemplified by HadoopToSQL (Iu and Zwaenepoel, 2010) and

Manimal (Cafarella and Ré, 2010)—does static code analysis of MapReduce pro-

grams to extract declarative constructs like filters and projections. These constructs

are then used for database-style optimization such as projection pushdown, column-

based compression, and use of indexes. Finally, the performance of MapReduce jobs

is directly affected by various configuration parameter settings like degree of paral-

lelism and use of compression. Choosing such settings for good job performance is a

nontrivial problem and a heavy burden on users (Babu, 2010).

In addition, cloud platforms make MapReduce an attractive proposition for small

organizations that need to process large datasets, but lack the computing and human

18

resources of a Google, Microsoft, or Yahoo! to throw at the problem. A nonexpert

MapReduce user can now provision a cluster of any size on the cloud within minutes

to meet her data-processing needs; and pay (only) for the nodes provisioned to the

cluster for the duration of use (Amazon EMR, 2012). This feature of the cloud

gives tremendous power to the average user, while placing a major burden on her

shoulders. However, there has been very little work on integrating workload tuning

with provisioning decisions in the context of cloud platforms.

Overall, MapReduce systems lack cost-based optimization; a feature that has

been key to the historical success of Database systems. Hence, a significant por-

tion of this work focuses on building a new cost-based optimization framework for

MapReduce that is based on the collection of run-time monitoring information and

fine-grained cost models. Data analysis in MapReduce exhibits many of the MAD-

DER challenges as, typically, data resides in flat files and the jobs are specified using

languages ranging from declarative to general-purpose programming ones. Finally,

our approach deals with performance predictions in a complex space of workloads,

data properties, cluster resources, configuration settings, and scheduling policies.

2.2 Overview of a MADDER Tuning Approach

The MADDER principles—and the consequent challenges—motivate a dynamic and

automated approach for tuning data-intensive computing systems. Our solution is

based on the notion of “profile-predict-optimize”:

1. Profile: The system observes the actual run-time behavior of a workload exe-

cuting on the system.

2. Predict: The system understands and learns from these observations, and rea-

sons about hypothetical tuning choices.

19

3. Optimize: The system makes the appropriate optimization decisions to improve

workload performance along one or more dimensions (e.g., completion time,

resource utilization, pay-as-you-go monetary costs).

We have fully developed this approach for different tuning scenarios for both Dataflow

and Database systems. In particular, Starfish employs the profile-predict-optimize

approach for automatically tuning a MapReduce workload and cluster resources,

after observing the run-time behavior of the workload from a single execution. A

similar approach can be developed for Database systems, especially since several

mechanisms are already available (see Section 2.1). Instead, we employ the profile-

predict-optimize approach for the tuning scenario where the user or DBA is willing

to invest some resources upfront for tuning important, repeatedly-run SQL queries.

The Xplus optimizer profiles the execution of some query (sub)plans proactively,

optimizes the plan based on the collected monitoring data, and iterates, until it finds

the optimal query execution plan. We elaborate on these contributions below.

2.2.1 Tuning MapReduce Workloads with Starfish

Starfish is a MADDER and self-tuning system for analytics on Big Data (Herodotou

et al., 2011d). An important design decision we made was to build Starfish on

the Hadoop stack as shown in Figure 2.1. Hadoop, as observed in Chapter 1, has

useful primitives to help meet the new requirements of Big Data analytics (Hadoop,

2012). In addition, Hadoop’s adoption by academic, government, and industrial

organizations is growing at a fast pace (Gantz and Reinsel, 2011).

A number of ongoing projects aim to improve Hadoop’s peak performance, es-

pecially to match the query performance of parallel Database systems (Abouzeid

et al., 2009; Dittrich et al., 2010; Jiang et al., 2010). Starfish has a different goal.

The peak performance that a manually-tuned system can achieve is not our primary

concern, especially if this performance is for one of the many phases in a complete

20

Figure 2.1: Starfish in the Hadoop ecosystem.

data lifecycle that includes data loading, processing ad-hoc queries, running work-

flows repeatedly on newly arrived data, and data archival. Starfish’s goal is to enable

Hadoop users and applications to get good performance automatically throughout

the data lifecycle in analytics; without any need on their part to understand and

manipulate the many tuning knobs available.

The workload that a Hadoop deployment runs can be considered at different

levels. At the lowest level, Hadoop runs MapReduce jobs. A job can be generated

directly from a program written in a programming language like Java or Python;

or generated from a query in a higher-level language like HiveQL or Pig Latin; or

submitted as part of a MapReduce job workflow (i.e., a directed acyclic graph of

MapReduce jobs) by systems like Azkaban, Cascading, and Oozie (Azkaban, 2011;

Cascading, 2011; Oozie, 2010). The execution plan generated for a HiveQL or Pig

Latin query is usually a workflow of MapReduce jobs (Thusoo et al., 2009; Olston

et al., 2008b). Workflows may be ad-hoc, time-driven (e.g., run every hour), or data-

driven. Yahoo! uses data-driven workflows to generate a reconfigured preference

21

model and an updated home-page for any user within seven minutes of a home-page

click by the user.

Hadoop itself is typically run on a large cluster built of commodity hardware.

Clusters can now be easily provisioned by several cloud platforms like Amazon,

Rackspace, and Skytap. Elastic MapReduce, for example, is a hosted service on

the Amazon cloud platform where a user can instantly provision a Hadoop clus-

ter running on any number of Elastic Compute Cloud (EC2) nodes (Amazon EMR,

2012). The cluster can be used to run data-intensive MapReduce jobs, and then

terminated after use. The user has to pay (only) for the nodes provisioned to the

cluster for the duration of use.

Suppose a user wants to execute a given MapReduce workload on a Hadoop

cluster provisioned by the Amazon cloud platform. The user could have multiple

preferences and constraints for the workload. For example, the goal may be to mini-

mize the monetary cost incurred to run the workload, subject to a maximum tolerable

workload execution time of two hours. In order to satisfy these requirements, the

user must make a wide range of decisions. First, the user must decide the cluster

size and the type of resources to use in the cluster from the several choices offered by

the Amazon cloud platform. Next, the user must specify a large number of cluster-

wide Hadoop configuration parameters like the maximum number of map and reduce

tasks to execute per node and the maximum available memory per task execution.

To complicate the space of decisions even further, the user has to also specify what

values to use for a number of job-level Hadoop configuration parameters like the

number of reduce tasks and whether to compress job outputs. Chapter 3 includes

a primer on MapReduce execution and tuning, as well as multiple tuning scenarios

that arise routinely in practice.

As the above scenario illustrates, users are now faced with complex workload

tuning problems that involve determining the cluster resources as well as configuration

22

Figure 2.2: Components in the Starfish architecture.

settings to meet desired requirements on execution time and cost for a given analytic

workload. Starfish is a novel system to which users can express their tuning problems

as queries in a declarative fashion. Starfish can provide reliable answers to these

queries using an automated technique, and provide nonexpert users with a good

combination of cluster resource and configuration settings to meet their needs. The

automated technique is based on a careful mix of profiling, estimation using black-box

and white-box models, and simulation.

The Starfish architecture, shown in Figure 2.2, is motivated from the profile-

predict-optimize approach. Starfish includes a Profiler to collect detailed statistical

information from unmodified MapReduce programs, and a What-if Engine for fine-

grained cost estimation. The capabilities of the What-if Engine are utilized by a

number of Cost-based Optimizers that are responsible for enumerating and search-

ing efficiently through various spaces of tuning choices, in order to find the best

choices that meet the user requirements. Finally, the Tuning Query Interface and

the Visualizer provide the interfaces by which users interact with the Starfish system.

23

Profiler: The Profiler instruments unmodified MapReduce programs dynamically

to generate concise statistical summaries of MapReduce job execution, called job

profiles. A job profile consists of dataflow and cost estimates for a MapReduce job

j: dataflow estimates represent information regarding the number of bytes and key-

value pairs processed during j’s execution, while cost estimates represent resource

usage and execution time.

The Profiler makes two important contributions. First, job profiles capture in-

formation at the fine granularity of phases within the map and reduce tasks of a

MapReduce job execution. This feature is crucial to the accuracy of decisions made

by the What-if Engine and the Cost-based Optimizers. Second, the Profiler uses dy-

namic instrumentation to collect run-time monitoring information from unmodified

MapReduce programs. The dynamic nature means that monitoring can be turned

on or off on demand; an appealing property in production deployments. By support-

ing unmodified MapReduce programs, we free users from any additional burden on

their part to collect monitoring information. Dynamic profiling and the Profiler are

discussed in detail in Chapter 4.

What-if Engine: The What-if Engine1 is the heart of our approach to cost-based

optimization and automated tuning. Apart from being invoked by the Cost-based

Optimizers during program optimization, the What-if Engine can be invoked in stan-

dalone mode by users or applications to answer questions regarding the impact of

configuration parameter settings, as well as data and cluster resource properties, on

MapReduce workload performance.

The What-if Engine’s novelty and accuracy come from how it uses a mix of sim-

ulation and model-based estimation at the phase level of MapReduce job execution.

1 The term “what-if” also appears in the context of automated physical design in Database
systems (Chaudhuri and Narasayya, 2007), where the scope of the what-if questions consists of
physical design choices (e.g., indexes, materialized views) rather than tuning choices.

24

The What-if Engine uses a four-step process. First, a virtual job profile is estimated

for each hypothetical job j1 specified by the what-if question. The virtual profile

is then used to simulate the execution of j1 on the (perhaps hypothetical) cluster,

as well as to estimate the data properties for the derived dataset(s) produced by

j1. Finally, the answer to the what-if question is computed based on the estimated

execution of j1. All performance models and components of the What-if Engine are

presented in Chapter 6.

Cost-based Optimizers: For a given MapReduce workflow, input data, and clus-

ter resources, an optimizer’s role is to enumerate and search through the high-

dimensional space of tuning choices efficiently, making appropriate calls to the What-

if Engine, in order to find the (near) optimal choice. The space of possible tuning

choices consists of (i) the subspace of cluster resource settings—which includes the

number of nodes in the cluster as well as the type of each node in the cluster—and (ii)

the high-dimensional subspace of configuration parameter settings—which includes

parameters such as the degree of parallelism, memory settings, use of map-side and

reduce-side compression, and many others.

The search space is enumerated and traversed using three Optimizers (see Figure

2.2). The Job Optimizer is responsible for finding good configuration settings for

individual MapReduce jobs (Herodotou and Babu, 2011). The jobs in a workflow

exhibit dataflow dependencies because of producer-consumer relationships as well

as cluster resource dependencies because of concurrent scheduling. The Workflow

Optimizer carefully optimizes the workflow execution within and across jobs, while

accounting for these dependencies (Herodotou et al., 2012). Finally, the Cluster

Resource Optimizer is responsible for the subspace of cluster resource settings and

can help with making cluster provisioning decisions (Herodotou et al., 2011b).

The number of calls to the What-if Engine has to be minimized for efficiency,

25

without sacrificing the ability to find good tuning settings. Towards this end, all

optimizers divide the full space of tuning choices into lower-dimensional subspaces

such that the globally-optimal choices in the high-dimensional space can be generated

by composing the optimal choices found for the subspaces. The overall cost-based

optimization approach is discussed in Chapter 7.

Tuning Query Interface and Visualizer: A general tuning problem involves

determining the cluster resources and MapReduce job-level configuration settings

to meet desired performance requirements on execution time and cost for a given

analytic workload. Starfish provides a declarative interface to express a range of

tuning problems as queries in a declarative fashion. A query expressed using this

interface will specify (i) the MapReduce workload, (ii) the search space for cluster

resources, (iii) the search space for job configurations, and (iv) the performance

requirements in terms of time and monetary cost. Applications and users can also

interact with this interface using a programmatic API, or using a graphical interface

that forms part of the Starfish system’s Visualizer (Herodotou et al., 2011a). The

Tuning Query Interface and the Starfish Visualizer are presented in Chapter 5.

2.2.2 Tuning SQL Queries with Xplus

The profile-predict-optimize approach used currently in Starfish is just one cycle

of a more general self-tuning approach that learns repeatedly over time and re-

optimizes as needed. In this spirit, we propose experiment-driven tuning of im-

portant, repeatedly-run SQL queries in Database systems. The need to improve a

suboptimal execution plan picked by the query optimizer for a repeatedly-run SQL

query (e.g., by a business intelligence or report generation application) arises rou-

tinely in MADDER settings. Unknown or stale statistics, complex expressions, and

changing conditions can cause the optimizer to make mistakes. In Chapter 8, we

present a novel SQL-tuning-aware query optimizer, called Xplus (Herodotou and

26

Babu, 2010), that is capable of executing plans proactively, collecting monitoring

data from the runs, and iterating, in search for a better execution plan.

Finally, despite the recent advances in query optimization techniques, Database

and Dataflow systems still struggle with the decreased control over data storage and

data structure mandated by the MADDER principles. Careful data layouts and

partitioning strategies are powerful mechanisms for improving query performance

and system manageability in these systems. SQL extensions and MapReduce frame-

works now enable applications and user queries to specify how their results should

be partitioned for further use, decreasing the control that database administrators

had previously over partitioning. However, query optimization techniques have not

kept pace with the rapid advances in usage and user control of table partitioning.

We address this gap by developing new techniques to generate efficient plans for SQL

queries involving multiway joins over partitioned tables (Herodotou et al., 2011c).

These techniques are presented in Chapter 9.

27

3

Primer on Tuning MapReduce Workloads

MapReduce is a relatively young framework—both a programming model and an

associated run-time system—for large-scale data processing (Dean and Ghemawat,

2008). Hadoop is the most popular open-source implementation of a MapReduce

framework that follows the design laid out in the original paper (Dean and Ghe-

mawat, 2004). A number of companies use Hadoop in production deployments for

applications such as Web indexing, data mining, report generation, log file analy-

sis, machine learning, financial analysis, scientific simulation, and bioinformatics re-

search. Infrastructure-as-a-Service cloud platforms like Amazon and Rackspace have

made it easier than ever to run Hadoop workloads by allowing users to instantly

provision clusters and pay only for the time and resources used. A combination

of features contributes to Hadoop’s increasing popularity, including fault tolerance,

data-local scheduling, ability to operate in a heterogeneous environment, handling

of straggler tasks1, as well as a modular and customizable architecture.

In this chapter, we provide an overview of the MapReduce programming model

and describe how MapReduce programs execute on a Hadoop cluster. The behavior

1 A straggler is a task that performs poorly typically due to faulty hardware or misconfiguration.

28

Figure 3.1: Execution of a MapReduce job.

of MapReduce job execution is affected by a large number of configuration parameter

settings. We will provide empirical evidence of the significant impact that parameter

settings can have on the performance of a MapReduce job. Finally, we will list

various optimization and tuning scenarios that arise routinely in practice.

3.1 MapReduce Job Execution

The MapReduce programming model consists of two functions: mappk1, v1q and

reducepk2, listpv2qq. Users can implement their own processing logic by specifying

a customized mappq and reducepq function written in a general-purpose language like

Java or Python. The mappk1, v1q function is invoked for every key-value pair xk1, v1y

in the input data to output zero or more key-value pairs of the form xk2, v2y (see

Figure 3.1). The reducepk2, listpv2qq function is invoked for every unique key k2 and

corresponding values listpv2q in the map output. reducepk2, listpv2qq outputs zero or

more key-value pairs of the form xk3, v3y. The MapReduce programming model also

allows other functions such as (i) partitionpk2q, for controlling how the map output

key-value pairs are partitioned among the reduce tasks, and (ii) combinepk2, listpv2qq,

for performing partial aggregation on the map side. The keys k1, k2, and k3 as well

29

Figure 3.2: Execution of a map task
showing the map-side phases.

Figure 3.3: Execution of a reduce task
showing the reduce-side phases.

as the values v1, v2, and v3 can be of different and arbitrary types.

A Hadoop MapReduce cluster employs a master-slave architecture where one mas-

ter node (called JobTracker) manages a number of slave nodes (called TaskTrackers).

Figure 3.1 shows how a MapReduce job is executed on the cluster. Hadoop launches

a MapReduce job by first splitting (logically) the input dataset into data splits. Each

data split is then scheduled to one TaskTracker node and is processed by a map task.

A Task Scheduler is responsible for scheduling the execution of map tasks while tak-

ing data locality into account. Each TaskTracker has a predefined number of task

execution slots for running map (reduce) tasks. If the job will execute more map

(reduce) tasks than there are slots, then the map (reduce) tasks will run in multiple

waves. When map tasks complete, the run-time system groups all intermediate key-

value pairs using an external sort-merge algorithm. The intermediate data is then

shuffled (i.e., transferred) to the TaskTrackers scheduled to run the reduce tasks.

Finally, the reduce tasks will process the intermediate data to produce the results of

the job.

The MapReduce job execution can be decomposed further into phases within map

and reduce tasks. As illustrated in Figure 3.2, map task execution consists of the

following phases: Read (reading map inputs), Map (map function processing), Collect

30

(partitioning and buffering map outputs before spilling), Spill (sorting, combining,

compressing, and writing map outputs to local disk), and Merge (merging sorted spill

files). As illustrated in Figure 3.3, reduce task execution consists of the following

phases: Shuffle (transferring map outputs to reduce tasks, with decompression if

needed), Merge (merging sorted map outputs), Reduce (reduce function processing),

and Write (writing reduce outputs to the distributed file-system). Additionally, both

map and reduce tasks have Setup and Cleanup phases.

A MapReduce workload consists of MapReduce jobs of the form j = xp, d, r, cy.

Here, p represents the MapReduce program that is run as part of j to process input

data d on cluster resources r using configuration parameter settings c.

Program: A given MapReduce program p may be expressed in one among a variety

of programming languages like Java, C++, Python, or Ruby; and then connected to

form a workflow using a workflow scheduler like Oozie (Oozie, 2010). Alternatively,

the MapReduce jobs can be generated automatically using compilers for higher-level

languages like Pig Latin (Olston et al., 2008b), HiveQL (Thusoo et al., 2009), and

Cascading (Cascading, 2011).

Data: The properties of the input data d processed by a MapReduce job j include

d’s size, the block layout of files that comprise d in the distributed file-system, and

whether d is stored compressed or not. Since the MapReduce methodology is to

interpret data (lazily) at processing time, and not (eagerly) at loading time, other

properties such as the schema and data-level distributions of d are unavailable by

default.

Cluster resources: The properties of the cluster resources r that are available for a

job execution include the number of nodes in the cluster, the machine specifications

(or the node type when the cluster is provisioned by a cloud platform like Amazon

EC2), the cluster’s network topology, the number of map and reduce task execution

31

slots per node, and the maximum memory available per task execution slot.

Configuration parameter settings: A number of choices have to be made in

order to fully specify how the job should execute. These choices, represented by c in

xp, d, r, cy, come from a large and high-dimensional space of configuration parameter

settings that includes (but is not limited to):

1. The number of map tasks in job j. Each task processes one partition (split)

of the input data d. These tasks may run in multiple waves depending on the

total number of map task execution slots in r.

2. The number of reduce tasks in j (which may also run in waves).

3. The amount of memory to allocate to each map (reduce) task to buffer its

output (input) data.

4. The settings for the multiphase external sorting used by most MapReduce

frameworks to group map-output values by key.

5. Whether the output data from the map (reduce) tasks should be compressed

before being written to disk (and if so, then how).

6. Whether the program-specified combine function should be used to preaggre-

gate map outputs before their transfer to reduce tasks.

Hadoop has more than 190 configuration parameters out of which Starfish currently

considers 14 parameters whose settings can have significant impact on job perfor-

mance (Herodotou et al., 2011d). These parameters are listed on Table 3.1. If the

user does not specify parameter settings during job submission, then default values—

shipped with the system or specified by the system administrator—are used. Good

settings for these parameters depend on job, data, and cluster characteristics. While

32

Table 3.1: A subset of important job configuration parameters in Hadoop.

Parameter Name Brief Description and Use Default
Value

io.sort.mb Size (in MB) of map-side buffer for storing and sort-
ing key-value pairs produced by the map function

100

io.sort.record.percent Fraction of io.sort.mb dedicated to metadata stor-
age for every key-value pair stored in the map-side
buffer

0.05

io.sort.spill.percent Usage threshold of map-side memory buffer to trig-
ger a sort and spill of the stored key-value pairs

0.8

io.sort.factor Number of sorted streams to merge at once during
the multiphase external sorting

10

mapreduce.combine
.class

The (optional) combine function to preaggregate
map outputs before transferring to the reduce tasks

null

min.num.spills.for.com-
bine

Minimum number of spill files at which to use the
combine function during the merging of map output
data

3

mapred.compress.map
.output

Boolean flag to turn on the compression of map out-
put data

false

mapred.reduce.slowstart
.completed.maps

Proportion of map tasks that need to be completed
before any reduce tasks are scheduled

0.05

mapred.reduce.tasks Number of reduce tasks 1

mapred.job.shuffle.input
.buffer.percent

% of reduce task’s heap memory used to buffer out-
put data copied from map tasks during the shuffle

0.7

mapred.job.shuffle
.merge.percent

Usage threshold of reduce-side memory buffer to
trigger reduce-side merging during the shuffle

0.66

mapred.inmem.merge
.threshold

Threshold on the number of copied map outputs to
trigger reduce-side merging during the shuffle

1000

mapred.job.reduce.input
.buffer.percent

% of reduce task’s heap memory used to buffer map
output data while applying the reduce function

0

mapred.output.compress Boolean flag to turn on the compression of the job’s
output

false

only a fraction of the parameters can have significant performance impact, browsing

through the Hadoop, Hive, and Pig mailing lists reveals that users often run into

performance problems caused by lack of knowledge of these parameters.

MapReduce workflow: A MapReduce workflow W is a directed acyclic graph

(DAG) GW that represents a set of MapReduce jobs and their dataflow dependencies.

Each vertex in GW is either a MapReduce job j or a dataset d. An edge in GW can

only exist between a job (vertex) j and a dataset (vertex) d. A directed edge (d

Ñ j) denotes d as an input dataset of job j; and a directed edge (j Ñ d) denotes

33

Figure 3.4: An example MapReduce workflow with four MapReduce jobs (j1-j4),
two base datasets (b1, b2), and four derived datasets (d1-d4).

d as an output dataset of j. The datasets processed by a given workflow W are

categorized into base and derived datasets. Base datasets (basepW q) represent the

existing data consumed by W , whereas derived datasets (derivedpW q) represent the

data generated by the MapReduce programs in W .

Figure 3.4 shows an example workflow with four MapReduce jobs (j1-j4), two

base datasets (b1, b2), and four derived datasets (d1-d4). The distinction between

base and derived data will become important in Chapter 6 where we discuss how we

can answer hypothetical questions regarding the execution of a MapReduce workflow.

Abstractions in Starfish: In order to support the wide and growing variety of

MapReduce programs and the programming languages in which they are expressed,

Starfish represents the execution of a MapReduce job j using a job profile. This profile

is a concise summary of the dataflow and cost information for job j’s execution

Similar to a job profile, a workflow profile is used to represent the execution of a

MapReduce workflow W on the cluster. Chapter 4 discusses the content of the job

and workflow profiles, as well as how these profiles are generated.

34

3.2 Impact of Configuration Parameter Settings

The Hadoop configuration parameters control various aspects of job behavior during

execution, such as memory allocation and usage, concurrency, I/O optimization, and

network bandwidth usage. To illustrate the impact of job configuration parameters

in Hadoop, we study the effects of several parameter settings on the performance

of two MapReduce programs. The experimental setup used is a single-rack Hadoop

cluster running on 16 nodes, with 1 master and 15 slave nodes, provisioned from

Amazon Elastic Compute Cloud (EC2). Each node has 1.7 GB of memory, 5 EC2

compute units, 350 GB of storage, and is set to run at most 3 map tasks and 2 reduce

tasks concurrently. Thus, the cluster can run at most 45 map tasks in a concurrent

map wave, and at most 30 reduce tasks in a concurrent reduce wave. Table 3.1 lists

the subset of job configuration parameters that we considered in our experiments.

The MapReduce jobs we consider are WordCount and TeraSort2; two simple,

yet representative, text processing jobs with well-understood characteristics. Word-

Count processes 30GB of data generated using Hadoop’s RandomTextWriter, while

TeraSort processes 50GB of data generated using Hadoop’s TeraGen. Figures 3.5

and 3.6 show the response surfaces that were generated by measuring the execution

time of the WordCount and TeraSort jobs respectively. The three parameters varied

in these figures are io.sort.mb, io.sort.record.percent, and mapred.reduce.tasks, while

all other job configuration parameters are kept constant.

The effects of the parameter settings on the performance of a MapReduce job

depend on job, data, and cluster characteristics:

Effect of job characteristics: Figures 3.5(a) and 3.6(a) show how the setting of

the mapred.reduce.tasks parameter (i.e., the number of reducers) affect WordCount

and TeraSort in different ways. Increasing the number of reducers has no impact on

2 TeraSort was used on a Hadoop cluster at Yahoo! to win the TeraByte Sort Benchmark in 2008.

35

(a) mapred.reduce.tasks P r2, 50s and
io.sort.record.percent P r0.05, 0.5s

(b) io.sort.record.percent P r0.05, 0.5s

and io.sort.mb P r50, 200s

Figure 3.5: Response surfaces of WordCount MapReduce jobs in Hadoop.

(a) mapred.reduce.tasks P r27, 400s and
io.sort.record.percent P r0.05, 0.5s

(b) io.sort.record.percent P r0.05, 0.5s

and io.sort.mb P r50, 200s

Figure 3.6: Response surfaces of TeraSort MapReduce jobs in Hadoop.

performance for WordCount across all settings of io.sort.record.percent, whereas it

improves the performance for TeraSort significantly. The job execution of WordCount

is dominated by the execution of the map tasks. Computation in the map tasks

includes the parsing of the input files, as well as applying a combine function, whereas

the reduce tasks are simply summing the word counts.

On the other hand, the map and reduce functions in TeraSort process the same

36

amount of data overall and perform the same task of simply writing all input values

directly to output. Increasing the number of reduce tasks improves performance due

to: (i) the increase in effective concurrency by utilizing more of the reduce slots in the

cluster (recall that our cluster has 30 reducer slots across 15 worker nodes), and (ii)

the processing of less data by each reduce task, since the overall data size processed

is fixed (which in turn can reduce I/O in nonlinear ways).

Effect of data characteristics: Data characteristics—like number of unique key

values, key-value distributions, as well as input and intermediate record sizes—can

effect the running time of job executions of the same MapReduce program, running

with the same parameter settings. The surface area of Figure 3.6(a) contains a

“valley” when the value for io.sort.record.percent is set to 0.15. io.sort.record.percent

represents the fraction of the map’s heap size that is dedicated to metadata storage

for the map’s output. Each record produced by the mapper requires 16 bytes of

metadata in addition to its serialized size. Given any value for this parameter, the

average map output record size will determine whether a spill to disk is caused by

exhaustion of the serialization buffer or by exhaustion of the metadata buffer.

Based on the current data characteristics, setting io.sort.record.percent to 0.15

maximizes the use of both buffers, leading to good job performance (see Figure

3.6(a)). Suppose we were to run TeraSort with the same parameter settings on a

new data set, where the average input record size is half the current size. Then,

the metadata buffer would become full when only half the serialization buffer is full,

causing a larger number of spills than necessary; thereby increasing the execution

time of the map tasks and the job. In other words, the valley in the surface area of

Figure 3.6(a) would shift to a larger value for io.sort.record.percent compared to the

current surface area.

Effect of cluster characteristics: The number of nodes in a cluster, the number

37

of map and reduce slots per node, the memory available for each task execution, and

the network setup are the prime cluster characteristics that can affect the impact

of parameter settings in job performance. For example, the number of reduce slots

determines the effective concurrency of the reduce computations. When the total

number of reduce tasks T is lower than the number of slots S, all reduce tasks

will run concurrently. Changing the number of reducers while T ď S will have a

significant effect on job performance, assuming the reduce task’s execution time is

comparable to the map task’s execution time. When T ą S, the reducers will run in

waves. In Figure 3.6(a), we observe that as the number of reduce tasks increases, the

performance improves but the rate of improvement decreases because of the bound

on effective concurrency per wave, as well as task setup overheads.

Interaction among parameters: A fairly large subset of the configuration pa-

rameters in Hadoop display strong performance interactions with one or more other

parameters. An interaction exists between parameters p1 and p2 when the mag-

nitude of impact that varying p1 has on job performance depends on the specific

setting of p2. Stated otherwise, the performance impact of varying p1 is different

across different settings of p2. For example, Figure 3.5(b) shows that for low settings

of io.sort.record.percent, the job performance is not affected significantly by vary-

ing io.sort.mb. However, for high settings of io.sort.record.percent, the performance

changes drastically while varying io.sort.mb. Figure 3.6(b) shows stronger and more

complicated interactions between io.sort.record.percent and io.sort.mb. Across dif-

ferent values of io.sort.record.percent, even the pattern of change in performance is

different as io.sort.mb is varied.

38

3.3 MapReduce on the Cloud

Infrastructure-as-a-Service (IaaS) cloud platforms provide computation, software,

data access, and storage resources to a number of users, while the details of the

underlying infrastructure are completely transparent. This computing paradigm is

attracting increasing interest from both academic researchers and industry data prac-

titioners because it enables MapReduce users to scale their applications up and down

seamlessly in a pay-as-you-go manner. Elastic MapReduce, for example, is a hosted

service on the Amazon cloud platform where a user can instantly provision a Hadoop

cluster running on any number of Elastic Compute Cloud (EC2) nodes (Amazon

EMR, 2012). The cluster can be used to run data-intensive MapReduce jobs, and

then terminated after use. The user has to pay (only) for the nodes provisioned to

the cluster for the duration of use.

The new and remarkable aspect here is that a nonexpert MapReduce user can

provision a cluster of any size on the cloud within minutes to meet her data-processing

needs. This feature of the cloud gives tremendous power to the average user, while

placing a major burden on her shoulders. Previously, the same user would have

had to work with system administrators and management personnel to get a cluster

provisioned for her needs. Many days to months would have been needed to complete

the provisioning process. Furthermore, making changes to an already-provisioned

cluster was a hassle.

Cloud platforms make cluster provisioning almost instantaneous. The elastic and

pay-as-you-go nature of these platforms means that, depending on how best to meet

her needs, a user can allocate a 10-node cluster today, a 100-node cluster tomorrow,

and a 25-node cluster the day after. However, removing the system administrator

and the traditional capacity-planning process from the loop shifts the nontrivial

responsibility of determining a good cluster configuration to the nonexpert user.

39

Table 3.2: Five representative Amazon EC2 node types, along with resources and
monetary costs.

EC2 Node CPU Memory Storage I/O Cost
Type (# EC2 Units) (GB) (GB) Performance (U.S. $ per hour)

m1.small 1 1.7 160 moderate 0.085
m1.large 4 7.5 850 high 0.34
m1.xlarge 8 15 1,690 high 0.68
c1.medium 5 1.7 350 moderate 0.17
c1.xlarge 20 7 1,690 high 0.68

As an illustrative example, consider provisioning a Hadoop cluster on Amazon

EC2 nodes to run a MapReduce workload on the cloud. Services like Elastic MapRe-

duce and Hadoop On Demand free the user from having to install and maintain the

Hadoop cluster. However, the burden of cluster provisioning is still on the user, who

is likely not an expert system administrator. In particular, the user has to specify

the number of EC2 nodes to use in the cluster, as well as the node type to use from

among 10+ EC2 node types. Table 3.2 shows the features and renting costs of some

representative EC2 node types. Notice that the CPU and I/O resources available on

these node types are quoted in abstract terms that an average user will have trouble

understanding. To complicate the space of choices even further, the user has to spec-

ify what values to use for a number of configuration parameters—e.g., the number of

reduce tasks or whether to compress map outputs—at the level of MapReduce job

execution on the cluster (Babu, 2010; Herodotou and Babu, 2011).

3.4 Use Cases for Tuning MapReduce Workloads

In this work, we refer to the general problem of determining the cluster resources and

MapReduce job-level configuration parameter settings to meet desired requirements

on execution time and cost for a given analytic workload as the tuning problem. Users

can express tuning problems as declarative queries to Starfish, for which Starfish will

provide reliable answers in an automated fashion. In order to illustrate how Starfish

40

benefits users and applications, we begin by discussing some common scenarios where

tuning problems arise.

1. Tuning job-level configuration parameter settings: Even to run a single

job in a MapReduce framework, a number of configuration parameters have to be

set by users or system administrators. Users often run into performance problems

because they do not know how to set these parameters, or because they do not even

know these parameters exist. In other cases, the performance of a MapReduce job or

workflow simply does not meet the Service Level Objectives (SLOs) on response time

or workload completion time. Hence, the need for understanding the job behavior

as well as diagnosing bottlenecks during job execution for the parameter settings

used arises frequently. Even when users understand how a program behaved dur-

ing a specific run, they still cannot predict how the execution of the program will

be affected when parameter settings change, or which parameters should they use

to improve performance. Nonexpert users can now employ Starfish to (a) get a

deep understanding of a MapReduce program’s behavior during execution, (b) ask

hypothetical questions on how the program’s behavior will change when parame-

ter settings, cluster resources, or input data properties change, and (c) ultimately

optimize the program.

2. Tuning the cluster size for elastic workloads: Suppose a MapReduce job

takes three hours to finish on a 10-node Hadoop cluster of EC2 nodes of the m1.large

type. The application or the user who controls the cluster may want to know by

how much the execution time of the job will reduce if five more m1.large nodes are

added to the cluster. Alternatively, the user might want to know how many m1.large

nodes must be added to the cluster to reduce the running time down to two hours.

Such questions also arise routinely in practice, and can be answered automatically

by Starfish.

41

3. Planning for workload transition from a development cluster to produc-

tion: Most enterprises maintain separate (and possibly multiple) clusters for appli-

cation development compared to the production clusters used for running mission-

critical and time-sensitive workloads. Elasticity and pay-as-you-go features have

simplified the task of maintaining multiple clusters. For example, Facebook uses a

Platinum cluster that only runs mission-critical jobs (Bodkin, 2010). Less critical

jobs are run on a separate Gold or a Silver cluster where data from the production

cluster is replicated.

A developer will first test a new MapReduce job on the development cluster,

possibly using small representative samples of the data from the production cluster.

Before the job can be scheduled on the production cluster—usually as part of an

analytic workload that is run periodically on new data—the developer will need to

identify a MapReduce job-level configuration that will give good performance for

the job when run on the production cluster (without actually running the job on

this cluster). Starfish helps the developer with this task. Based on how the job

performs when run on the development cluster, Starfish can estimate how the job

will run under various hypothetical configurations on the production cluster; and

recommend a good configuration to use.

4. Cluster provisioning under multiple objectives: Infrastructure-as-a-Service

(IaaS) cloud platforms like Amazon EC2 and Rackspace offer multiple choices for the

type of node to use in a cluster (see Table 3.2). As the levels of compute, memory, and

I/O resources on the nodes increase, so does the cost of renting the nodes per hour.

Figure 3.7 shows the execution time as well as total cost incurred for a MapReduce

workload running on Hadoop under different cluster configurations on EC2. The

clusters in Figures 3.7(a) and (b) use six nodes each of the EC2 node type shown,

with a fixed per-hour renting cost, denoted cost ph (shown in Table 3.2). The pricing

42

Figure 3.7: Performance Vs. pay-as-you-go costs for a workload that is run on
different EC2 cluster resource configurations.

model used to compute the corresponding total cost of each workload execution is:

total cost “ cost phˆ num nodesˆ exec time (3.1)

Here, num nodes is the number of nodes in the cluster and exec time is the execu-

tion time of the workload rounded up to the nearest hour as done on most cloud

platforms. The user could have multiple preferences and constraints for the work-

load. For example, the goal may be to minimize the monetary cost incurred to run

the workload, subject to a maximum tolerable workload execution time. Based on

Figure 3.7, if the user wants to minimize cost subject to an execution time of under

45 minutes, then Starfish should recommend a cluster of six c1.xlarge EC2 nodes.

Notice from Figures 3.7(a) and (b) that Starfish is able to capture the execution

trends of the workload correctly across the different clusters. Some interesting trade-

offs between execution time and cost can also be seen in Figure 3.7. For example, the

cluster of six m1.xlarge nodes runs the workload almost 2x faster than the cluster of

six c1.medium nodes; but at 1.7x times the cost.

5. Shifting workloads in time to lower execution costs: The pricing model

from Equation 3.1 that was used to compute costs in Figure 3.7(b) charges a flat

per-hour price based on the node type used. Such nodes are called on-demand

43

Figure 3.8: Pay-as-you-go costs for a workload from Figure 3.7 when run using
auction-based EC2 spot instances.

instances on EC2. Amazon EC2 also offers spot instances whose prices can vary with

time, usually based on the supply and demand for resources on the cloud (Chohan

et al., 2010; Hamilton, 2008). Other factors such as temporal and spatial variations

in electricity prices can also cause resource usage costs to fluctuate on the cloud

(Qureshi et al., 2009).

The vast majority of analytics workloads can tolerate some slack in completion

time. For example, data analysts in a company may find it sufficient to have an

overnight report-generation workload complete before the company’s U.S. East Coast

offices reopen for business. (Such workloads are called “batch and non-user syn-

chronous workloads” in Hamilton (2008).) This observation gives rise to an online

scheduling problem where the slack is exploited to run a given workload when, ideally,

resource prices are the cheapest. Solving this online scheduling problem is beyond

the scope of this work since our focus is on the tuning problem. However, Starfish

is indispensable in any solution to the scheduling problem since the solution would

need estimates of workload execution time and cost for both on-demand and spot

instances in various cluster configurations.

As an illustration, Figure 3.8 shows the total cost incurred for the same MapRe-

44

duce workload from Figure 3.7 when nodes of the EC2 spot instance type shown

were used to run the workload around 6.00 AM Eastern Time. The pricing model

used to compute the total cost in this case is:

total cost “
num hours

ÿ

i“0

cost phpiq ˆ num nodes (3.2)

The summation here is over the number of hours of execution, with cost phpiq rep-

resenting the price charged per node type used in the cluster for the ith hour. By

comparing Figure 3.7(b) with Figure 3.8, it is clear that execution costs for the same

workload can differ significantly across different choices for the cluster resources used.

45

4

Dynamic Profiling of MapReduce Workloads

The high-level goal of dynamic profiling in Starfish is to collect run-time monitoring

information efficiently during the execution of a MapReduce job (recall Section 2.2.1).

Starfish uses dynamic profiling to build a job profile, which is a concise representation

of the job’s execution. There are some key challenges that Starfish needs to address

with respect to what, how, and when to profile.

First, we need to collect both dataflow and cost information during job execution.

Little knowledge about the input data may be available before the job is submitted.

Keys and values are often extracted dynamically from the input data by the map

function, so schema and statistics about the data may be unknown. In addition,

map and reduce functions are usually written in programming languages like Java,

Python, and C++ that are not restrictive or declarative like SQL. Hence, we need

to carefully observe the run-time cost of these functions, as well as how they process

the data.

Collecting fine-grained monitoring information efficiently and noninvasively is an-

other key challenge. We have chosen to use dynamic instrumentation to collect this

information from unmodified MapReduce programs. The dynamic nature means

46

that monitoring can be turned on or off on demand; an appealing property in pro-

duction deployments. Dynamic instrumentation has the added advantage that no

changes are needed to the MapReduce system’s source code (the Hadoop system in

our specific case). As a result, we leverage all past investments as well as potential

future enhancements to the MapReduce system.

Finally, the dynamic nature of profiling creates a need for investing some re-

sources upfront—i.e., before the actual job execution starts—to collect the neces-

sary information. However, many MapReduce programs are written once and run

many times over their lifetime (usually on different datasets). Programs for Extract-

Transform-Load (ETL) and report generation are good examples. Properties of such

programs as well as good configuration settings for them can be learned over time in

the spirit of learning optimizers like Leo (Stillger et al., 2001). For ad-hoc MapRe-

duce programs, we employ sampling techniques for collecting approximate profiling

information quickly.

4.1 Job and Workflow Profiles

A MapReduce job profile is a vector of fields where each field captures some unique

aspect of dataflow or cost during a MapReduce job execution at the task level or

the phase1 level within tasks. Including information at the fine granularity of phases

within tasks is crucial to the accuracy of decisions made by the What-if Engine and

the Cost-based Optimizers. We partition the fields in a profile into four categories,

described next. The rationale for this categorization will become clear in Chapter 6

when we describe how a virtual profile is estimated for a hypothetical job (without

actually running the job).

1 Recall the phases of MapReduce job execution discussed in Section 3.1

47

Table 4.1: Dataflow fields in the job profile. d, r, and c denote respectively input
data properties, cluster resource properties, and configuration parameter settings.

Abbreviation Profile Field (All fields, unless Depends On
otherwise stated, represent d r c
information at the level of tasks)

dNumMappers Number of map tasks in the job X X
dNumReducers Number of reduce tasks in the job X
dMapInRecs Map input records X X
dMapInBytes Map input bytes X X
dMapOutRecs Map output records X X
dMapOutBytes Map output bytes X X
dNumSpills Number of spills X X
dSpillBufferRecs Number of records in buffer per spill X X
dSpillBufferSize Total size of records in buffer per spill X X
dSpillFileRecs Number of records in spill file X X
dSpillFileSize Size of a spill file X X
dNumRecsSpilled Total spilled records X X
dNumMergePasses Number of merge rounds X X
dShuffleSize Total shuffle size X X
dReduceInGroups Reduce input groups (unique keys) X X
dReduceInRecs Reduce input records X X
dReduceInBytes Reduce input bytes X X
dReduceOutRecs Reduce output records X X
dReduceOutBytes Reduce output bytes X X
dCombineInRecs Combine input records X X
dCombineOutRecs Combine output records X X
dLocalBytesRead Bytes read from local file system X X
dLocalBytesWritten Bytes written to local file system X X
dHdfsBytesRead Bytes read from HDFS X X
dHdfsBytesWritten Bytes written to HDFS X X

• Dataflow fields capture information about the amount of data, both in terms

of bytes as well as records (key-value pairs), flowing through the different tasks

and phases of a MapReduce job execution. Some example fields are the number

of map output records and the amount of bytes shuffled among the map and

reduce tasks. Table 4.1 lists all the dataflow fields in a profile.

• Cost fields capture information about execution time at the level of tasks and

phases within the tasks for a MapReduce job execution. Some example fields

48

Table 4.2: Cost fields in the job profile. d, r, and c denote respectively input data
properties, cluster resource properties, and configuration parameter settings.

Abbreviation Profile Field (All fields represent Depends On
information at the level of tasks) d r c

cSetupPhaseTime Setup phase time in a task X X X
cCleanupPhaseTime Cleanup phase time in a task X X X
cReadPhaseTime Read phase time in the map task X X X
cMapPhaseTime Map phase time in the map task X X X
cCollectPhaseTime Collect phase time in the map task X X X
cSpillPhaseTime Spill phase time in the map task X X X
cMergePhaseTime Merge phase time in map/reduce task X X X
cShufflePhaseTime Shuffle phase time in the reduce task X X X
cReducePhaseTime Reduce phase time in the reduce task X X X
cWritePhaseTime Write phase time in the reduce task X X X

are the execution time of the Collect and Spill phases of a map task. Table 4.2

lists all the cost fields in a profile.

• Dataflow Statistics fields capture statistical information about the dataflow—

e.g., the average number of records output by map tasks per input record (the

Map selectivity) or the compression ratio of the map output—that is expected

to remain unchanged across different executions of the MapReduce job unless

the data distribution in the input dataset changes significantly across these

executions. Table 4.3 lists all the dataflow statistics fields in a profile.

• Cost Statistics fields capture statistical information about execution time for a

MapReduce job—e.g., the average time to read a record from the distributed

file-system, or the average time to execute the map function per input record—

that is expected to remain unchanged across different executions of the job

unless the cluster resources (e.g., CPU, I/O) available per node change. Table

4.4 lists all the cost statistics fields in a profile.

Intuitively, the Dataflow and Cost fields in the profile of a job j help in understanding

j’s behavior. On the other hand, the Dataflow Statistics and Cost Statistics fields

49

Table 4.3: Dataflow statistics fields in the job profile. d, r, and c denote respectively
input data properties, cluster resource properties, and configuration parameter set-
tings.

Abbreviation Profile Field (All fields represent Depends On
information at the level of tasks) d r c

dsInputPairWidth Width of input key-value pairs X
dsRecsPerRedGroup Number of records per reducer’s group X
dsMapSizeSel Map selectivity in terms of size X
dsMapRecsSel Map selectivity in terms of records X
dsReduceSizeSel Reduce selectivity in terms of size X
dsReduceRecsSel Reduce selectivity in terms of records X
dsCombineSizeSel Combine selectivity in terms of size X X
dsCombineRecsSel Combine selectivity in terms of records X X
dsInputCompressRatio Input data compression ratio X
dsIntermCompressRatio Map output compression ratio X X
dsOutCompressRatio Output compression ratio X X
dsStartupMem Startup memory per task X
dsSetupMem Setup memory per task X
dsCleanupMem Cleanup memory per task X
dsMemPerMapRec Memory per map’s record X
dsMemPerRedRec Memory per reduce’s record X

in j’s profile are used by the What-if Engine to predict the behavior of hypothetical

jobs that run the same MapReduce program as j.

Workflow Profiles: As discussed in Section 3.1, a MapReduce workflow W is a

directed acyclic graph (DAG) GW that represents a set of MapReduce jobs and their

dataflow dependencies. Equivalently, a workflow profile is a DAG of job profiles

connected based on the dataflow dependencies among the corresponding jobs in the

workflow. Each job profile in the workflow profile is generated as soon as a job

completes execution. The dataflow dependencies among the jobs are determined in

one of two ways. When the workflow is automatically generated by a higher-level

system like Pig or Hive, the dataflow dependencies can be obtained directly from

the system itself, as it already tracks such dependencies. When this information is

not available, Starfish will deduce the dependencies from the paths of the input and

50

Table 4.4: Cost statistics fields in the job profile. d, r, and c denote respectively input
data properties, cluster resource properties, and configuration parameter settings.

Abbreviation Profile Field (All fields represent information Depends On
at the level of tasks) d r c

csHdfsReadCost I/O cost for reading from HDFS per byte X
csHdfsWriteCost I/O cost for writing to HDFS per byte X
csLocalIOReadCost I/O cost for reading from local disk per byte X
csLocalIOWriteCost I/O cost for writing to local disk per byte X
csNetworkCost Cost for network transfer per byte X
csMapCPUCost CPU cost for executing the Mapper per record X
csReduceCPUCost CPU cost for executing the Reducer per record X
csCombineCPUCost CPU cost for executing the Combiner per record X
csPartitionCPUCost CPU cost for partitioning per record X
csSerdeCPUCost CPU cost for serializing/deserializing per record X
csSortCPUCost CPU cost for sorting per record X
csMergeCPUCost CPU cost for merging per record X
csInUncomprCPUCost CPU cost for uncompr/ing the input per byte X
csIntermUncomCPUCost CPU cost for uncompr/ing map output per byte X X
csIntermComCPUCost CPU cost for compressing map output per byte X X
csOutComprCPUCost CPU cost for compressing the output per byte X X
csSetupCPUCost CPU cost of setting up a task X
csCleanupCPUCost CPU cost of cleaning up a task X

output data processed and generated by each job in the workflow.

Information contained in a workflow profile can be used to reconstruct the entire

execution of the MapReduce jobs after their completion, in order to better under-

stand and analyze their overall behavior as well as the various dependencies among

them. In addition, as we will see in Chapter 6, the workflow profile is utilized to

answer hypothetical what-if questions regarding the behavior of the workflow under

different scenarios.

Job and workflow profiles are a very powerful abstraction for representing the

execution of any arbitrary MapReduce program or any query expressed in a higher-

level language like Pig Latin or HiveQL. Apart from using profiles in answering

what-if questions and automatically recommending configuration parameter settings,

the profiles also help in understanding the job behavior as well as in diagnosing

bottlenecks during job execution.

51

Table 4.5: A subset of job profile fields for two Word Co-occurrence jobs run with
different settings for io.sort.mb.

Information in Job Profile io.sort.mb
120 200

Number of spills 12 8

Number of merge rounds 2 1

Combine selectivity in terms of size 0.70 0.67

Combine selectivity in terms of records 0.59 0.56

Map output compression ratio 0.39 0.39

File bytes read in map task 133 MB 102 MB

File bytes written in map task 216 MB 185 MB

4.2 Using Profiles to Analyze Execution Behavior

The job profiles allow for an in-depth analysis of the task behavior in terms of

resource allocation and usage, concurrency control, I/O optimization, and network

bandwidth usage. We will illustrate the benefits of the job profiles and give insights

into the complex nature of parameter impact and interactions through an example

based on actual experiments.

Suppose a company runs a Word Co-occurrence MapReduce job periodically on

around 10GB of data. This program is popular in Natural Language Processing

(NLP) to compute the word co-occurrence matrix of a large text collection (Lin and

Dyer, 2010). A data analyst at the company notices that the job runs in around

1400 seconds on the company’s production Hadoop cluster. Based on the stan-

dard monitoring information provided by Hadoop, the analyst also notices that map

tasks in the job take a large amount of time and do a lot of local I/O. Her natural

inclination—which is also what rule-based tools for Hadoop would suggest (discussed

later in Section 7.1)—is to increase the map-side buffer size (namely, the io.sort.mb

parameter in Hadoop). However, when she increases the buffer size from the current

120MB to 200MB, the job’s running time degrades by 15% as shown in Table 4.5.

The analyst may be puzzled and frustrated.

52

Figure 4.1: Map and reduce time breakdown for two Word Co-occurrence jobs run
with different settings for io.sort.mb.

By using our Profiler to collect job profiles, the data analyst can visualize the

task-level and phase-level Cost (timing) fields as shown in Figure 4.1. It is obvious

immediately that the performance degradation is due to a change in map perfor-

mance; and the biggest contributor is the change in the Spill phase’s cost. The

analyst can drill down to the values of the relevant profile fields, which we show in

Figure 4.1. The values shown report the average across all map tasks.

The interesting observation from Figure 4.1 is that changing the map-side buffer

size from 120MB to 200MB improves all aspects of local I/O in map task execution:

the number of spills reduced from 12 to 8, the number of merges reduced from 2 to

1, and the Combine function became more selective. Overall, the amount of local

I/O (reads and writes combined) per map task went down from 349MB to 287MB.

However, the overall performance still degraded.

To further understand the job behavior, we run the Word Co-occurrence job with

different settings of the map-side buffer size (io.sort.mb). Figure 4.2 shows the overall

map execution time, and the time spent in the map-side Spill and Merge phases, from

our runs. The input data and cluster resources are identical for the runs. Notice

the map-side buffer size’s nonlinear effect on cost, which comes from an interesting

tradeoff: a larger buffer lowers overall I/O size and cost (Figure 4.1), but increases

53

Figure 4.2: Total map execution time, Spill time, and Merge time for a represen-
tative Word Co-occurrence map task as we vary the setting of io.sort.mb.

the computational cost nonlinearly because of sorting.

Figure 4.2 also shows the corresponding execution times as predicted by Starfish’s

What-if Engine. We observe that the What-if Engine correctly captures the un-

derlying nonlinear effect that caused this performance degradation; enabling the

Cost-based Optimizer to find the optimal setting of the map-side buffer size. The

fairly uniform gap between the actual and predicted costs is due to overhead added

by BTrace (our profiling tool discussed below) while measuring function timings at

nanosecond granularities.2 Because of its uniformity, the gap does not affect the ac-

curacy of what-if analysis which, by design, is about relative changes in performance.

4.3 Generating Profiles via Measurement

A job profile (and, by extension, a workflow profile) is generated by one of two

methods. We will first describe how the Profiler generates profiles from scratch by

collecting monitoring data during full or partial job execution. The second method

is by estimation, which does not require the job to be run. Profiles generated by this

method are called virtual profiles. The What-if Engine is responsible for generating

2 We expect to close this gap using commercial Java profilers that have demonstrated vastly lower
overheads than BTrace (Louth, 2009).

54

virtual profiles as part of answering a what-if question (discussed in Chapter 6).

Monitoring through dynamic instrumentation: When a user-specified MapRe-

duce program p is run, the MapReduce framework is responsible for invoking the map,

reduce, and other functions in p. This property is used by the Profiler to collect run-

time monitoring data from unmodified programs running on the MapReduce frame-

work, using dynamic instrumentation. Dynamic instrumentation is now a popular

technique used to understand, debug, and optimize complex systems (Cantrill et al.,

2004). The Profiler applies dynamic instrumentation to the MapReduce framework—

not to the MapReduce program p—by specifying a set of event-condition-action

(ECA) rules.

The space of possible events in the ECA rules corresponds to events arising during

program execution, such as entry or exit from functions, memory allocation, and

system calls to the operating system. If the condition associated with the event

holds when the event fires, then the associated action is invoked. An action can

involve, for example, getting the duration of a function call, examining the memory

state, or counting the number of bytes transferred.

The current implementation of the Profiler for the Hadoop MapReduce framework

uses the BTrace dynamic instrumentation tool for Java (BTrace, 2012). To collect

raw monitoring data for a program being run by Hadoop, the Profiler uses ECA rules

(also specified in Java) to dynamically instrument the execution of selected Java

classes internal to Hadoop. Under the covers, dynamic instrumentation intercepts

the corresponding Java class bytecodes as they are executed, and injects additional

bytecodes to run the associated actions in the ECA rules.

Apart from Java, Hadoop can run a MapReduce program written in various

programming languages such as Python, R, or Ruby using Streaming, or C++ using

Pipes (White, 2010). Hadoop executes Streaming and Pipes jobs through special map

55

and reduce tasks that each communicate with an external process to run the user-

specified map and reduce functions (White, 2010). Since the Profiler instruments

only the MapReduce framework, not the user-written programs, profiling works ir-

respective of the programming language in which the program is written.

From raw monitoring data to profile fields: The raw monitoring data collected

through dynamic instrumentation of job execution at the task and phase levels in-

cludes record and byte counters, timings, and resource usage information. For ex-

ample, during each spill, the exit point of the sort function is instrumented to collect

the sort duration as well as the number of bytes and records sorted. A series of

post-processing steps involving aggregation and extraction of statistical properties

is applied to the raw data in order to generate the various fields in the job profile

(recall Section 4.1).

The raw monitoring data collected from each profiled map or reduce task is first

processed to generate the fields in a task profile. For example, the raw sort timings are

added as part of the overall spill time, whereas the Combine selectivity from each spill

is averaged to get the task’s Combine selectivity. The map task profiles are further

processed to give one representative map task profile for each logical input to the

MapReduce program. For example, a Sort program accepts a single logical input (be

it a single file, a directory, or a set of files), while a two-way Join accepts two logical

inputs. The reduce task profiles are processed into one representative reduce task

profile. The representative map task profile(s) and the reduce task profile together

constitute the job profile.

The aggregated dataflow and cost fields in the profiles provide a global view

of the job execution, whereas the aggregated dataflow and cost statistics fields are

essential for estimating the profile fields for hypothetical jobs (discussed in Chapter

6. Apart from point-value fields, the Profiler can potentially be used to collect all

56

individual key-value flows across tasks to compute key-value distributions for input,

intermediate, and output data. Such information opens up new tuning possibilities,

especially for higher-level systems like Pig and Hive. For example, Pig could use

information about intermediate data distributions for automatically selecting the

partitioning function or appropriate join algorithm.

Current approaches to profiling in Hadoop: Monitoring facilities in Hadoop—

which include logging, counters, and metrics—provide historical data that can be

used to monitor whether the cluster is providing the expected level of performance,

and to help with debugging and performance tuning (White, 2010).

Hadoop counters are a useful channel for gathering statistics about a job for

quality control, application-level statistics, and problem diagnosis. Hadoop contains

a set of built-in counters measuring task-level statistics, like the number of input

and output records for each task, and the number of bytes read and written to the

file-systems. Counters are collected for MapReduce tasks and aggregated for the

whole job. In addition, Hadoop offers support for user-defined counters. Counters

are similar to the Dataflow fields in a job profile, and can be useful in setting some job

configuration parameters. For example, the total number of records spilled to disk

may indicate that some memory-related parameters in the map task need adjustment;

but the user cannot automatically know which parameters to adjust or how to adjust

them to improve the job’s performance.

The HDFS and MapReduce daemons in Hadoop expose runtime metrics about

events and measurements (White, 2010). For example, HDFS Datanodes3 collect

metrics recording the number of bytes written, the number of blocks replicated,

and the number of read requests in a node. Even though metrics have similar uses

to counters, they represent cluster-level information and their target audience is

3 Datanodes are HDFS entities run on each slave node in the cluster and are responsible for storing
and retrieving file blocks from each node.

57

system administrators, not regular users. In addition, Hadoop metrics have a lot of

dependencies on third party software and libraries as they have to be analyzed by

cluster monitoring systems like Ganglia or Nagios.

Information similar to counters and metrics forms only a fraction of the infor-

mation in the job profiles collected by the Profiler. Apart from an extensive list

of counters, the job profile contains (i) statistical information like map and reduce

selectivities, (ii) quantitative costs for executing user-provided functions like maps,

reduces, and combiners, and (iii) time spent in the various task phases.

4.4 Task-level Sampling to Generate Approximate Profiles

Another valuable feature of dynamic instrumentation is that it can be turned on

or off seamlessly at run-time, incurring zero overhead when turned off. However, it

does cause some task slowdown when turned on. We have implemented two tech-

niques that use task-level sampling in order to generate approximate job profiles

while keeping the run-time overhead low:

1. If the intent is to profile a job j during a regular run of j on the production

cluster, then the Profiler can collect task profiles for only a sample of j’s tasks.

2. If the intent is to collect a job profile for j as quickly as possible, then the

Profiler can selectively execute (and profile) only a sample of j’s tasks.

Consider a job with 100 map tasks. With the first approach and a sampling per-

centage of 10%, all 100 tasks will be run, but only 10 of them will have dynamic

instrumentation turned on. In contrast, the second approach will run (and profile)

only 10 of the 100 tasks.

In order to examine the relationship between task-level sampling and the ability

to generate job profiles based on which Starfish can make fairly accurate decisions,

58

Figure 4.3: (a) Overhead to measure the (approximate) profile, and (b) corre-
sponding speedup given by Starfish as the percentage of profiled tasks is varied for
Word Co-occurrence and TeraSort MapReduce jobs.

we performed the following experiment. We ran and profiled Word Co-occurrence

(a CPU-intensive job) and TeraSort (an I/O-intensive job) on a 16-node Hadoop

cluster with c1.medium EC2 nodes, while enabling profiling for only a sample of the

tasks in each job. We then used the generated (approximate) job profiles to get

recommendations for parameter settings from Starfish. (Understanding the details

of how Starfish works at this point is not needed for appreciating the results.)

As we vary the percentage of profiled tasks in each job, Figure 4.3(a) shows the

profiling overhead compared against the same job run with profiling turned off. For

59

both MapReduce jobs, as the percentage of profiled tasks increases, the overhead

added to the job’s running time also increases (as expected). Profiling all the map

and reduce tasks in each job adds around 15% to 20% overhead to the job’s execution

time. It is interesting to note that the profiling overhead varies significantly between

the two jobs. The magnitude of the profiling overhead depends on whether the job

is CPU-bound, uses a combine function, or uses compression, as well as on the job

configuration settings.

Figure 4.3(b) shows the speedup achieved in job execution time by the Starfish-

suggested settings over rule-based settings as the percentage of profiled tasks used to

generate the job profile is varied. In most cases, the settings suggested by Starfish

led to nearly the same job performance improvements; showing that the Starfish’s

effectiveness in finding good configuration settings does not require that all tasks be

profiled. In fact, by profiling just 10% of the tasks, Starfish can often achieve the

same speedup as by profiling 100% of the tasks.

It is particularly encouraging to note that by profiling just 1% of the tasks—in this

specific cases, profiling only one map and one reduce task—with near-zero overhead

on job execution, Starfish finds configuration settings that still provide a speedup over

the jobs run with rule-based settings. We have repeated this experiment with a large

number of different MapReduce programs and, in most cases, the settings suggested

by Starfish using sampling led to nearly the same job performance improvements like

above. Therefore, by profiling only a small fraction of the tasks, we can keep the

overhead low while achieving high degrees of accuracy in the collected information.

60

5

A Declarative Query Interface to Access
Performance Predictors and Optimizers

Starfish is a self-tuning system for running analytics workloads on Big Data. As

described in Section 2.2.1 and illustrated in Figure 2.1, Starfish is built on the Hadoop

platform. Starfish interposes itself between Hadoop and higher-level clients (e.g.,

Pig, Hive, Oozie, and command-line interfaces) to submit MapReduce jobs. These

Hadoop clients will now submit workloads—which can vary from a single MapReduce

job, to a workflow of MapReduce jobs, and to a collection of multiple workflows—

directly to Starfish. Starfish provides a wide range of features to the users, including,

but not limited to, the following:

1. The user has the option to either execute the MapReduce workload on the

Hadoop cluster as is or to enable the collection of profiling information during

execution. In the former case, the workload will execute with zero overhead and

Starfish will get access to Hadoop’s default logs and counters; whereas in the

latter case, Starfish will generate fine-grained job and workflow profiles. This

61

information is organized, stored, and managed by Starfish’s Data Manager1.

2. The information collected by the Profiler helps in understanding the job behav-

ior as well as in diagnosing bottlenecks during job execution. For this purpose,

Starfish provides both a command-line and a graphical user interface for ex-

ploring and analyzing the collected data. The profiles are also required for

Starfish to predict and optimize the performance of MapReduce workloads.

3. The What-if Engine can predict the performance of a MapReduce job j (or

workflow W), allowing the user to study the effects of configuration parameters,

cluster resources, and input data on the performance of j (or W); without

actually running j (or W).

4. The Job and Workflow Optimizers can find the optimal configuration settings

for j (or W), and can also help understand why the current settings are (pos-

sibly) suboptimal.

5. The Cluster Resource Optimizer can find the optimal number of nodes and

node types to use for a MapReduce workload given objectives and constraints

on execution time and/or cost.

At the same time, we want Starfish to be usable in environments where workloads are

run directly on Hadoop without going through Starfish. For this purpose, Starfish

can be run in a special recommendation mode. In this mode, Starfish uses its tuning

features to only recommend good configurations instead of running the workload

with these configurations as Starfish would do in its normal usage mode.

Predicting the performance of MapReduce workloads, finding MapReduce pa-

rameter settings, and determining the best cluster resources to use are instances of

workload tuning problems Starfish can solve. We have developed a declarative query

1 Recall the components in the Starfish architecture shown in Figure 2.2 in Section 2.2.1.

62

interface through which the users can express workload tuning queries. Starfish will

then provide reliable answers to these queries using an automated technique; provid-

ing nonexpert users with a good combination of cluster resource and job configuration

settings to meet their needs. The automated technique is based on a careful mix of

job profiling, estimation using black-box and white-box models, and simulation. Ap-

plications and users can also interact with this interface using a programmatic API

or using a graphical interface that forms part of the Starfish system’s Visualizer.

5.1 Declarative Interface to Express Workload Tuning Queries

A general tuning problem involves determining the cluster resources and MapReduce

job-level configuration settings to meet desired performance requirements on execu-

tion time and cost for a given analytic workload. Starfish provides a declarative

interface to express a range of tuning queries including those arising in the use cases

discussed in Section 3.4.

A tuning query specified using Starfish’s declarative query interface has four parts.

We discuss each of these parts in turn.

1. Specifying the workload: The workload specified in a tuning query consists of

MapReduce jobs, including both single jobs as well as jobs from multi-job workflows.

Each job j runs some MapReduce program p on input data d. A profile profppq has

to be given for p. profppq need not, and usually will not, correspond to the actual

job j = xp, d, r, cy that eventually runs p as part of the workload. If d is different

from the input data used while generating profppq, then the properties of d have

to be given. For user convenience, when d is actual data on a live cluster, Starfish

can collect the properties of d (and r) automatically from the cluster. The cluster

resources r and job configuration c to use in the actual execution of j are part of

separate specifications that involve search spaces, discussed next.

63

2. Specifying the search space for cluster resources r: Recall from Section 3.1

that the properties used to represent any cluster resources r include the number of

nodes, node type(s), and network topology of r, the number of map and reduce task

execution slots per node, and the maximum memory available per task execution

slot. A search space over the number of nodes and the node type to use in the

cluster is specified for r. This search space is specified as a nonempty set. It is the

responsibility of Starfish to find a suitable cluster resource configuration from this

search space that meets all other requirements in the query.

The search space for r will be a singleton set if the user is asking for performance

estimates for a specific (hypothetical or real) cluster that she has in mind. Use cases

1, 2, and 3 from Section 3.4 have this nature. For example, in use case 2, the user

currently has a cluster containing 10 EC2 nodes of the m1.large type. She wants

Starfish to estimate what the job’s execution time will be on a hypothetical cluster

containing 15 nodes of the same type.

The search space is nonsingleton—i.e., it specifies a space that contains more

than one candidate resource configuration—when the user wants Starfish to search

for a good configuration that meets her needs. In such cases, Starfish’s declarative

query interface gives the user considerable flexibility to define the search space for

cluster resources r. For example:

• An unsophisticated user can use the special “*” symbol to ask Starfish to use

its default search space for one or both of the node type and the number of

nodes.

• The user can restrict the search space to nodes of one or more selected types,

but ask Starfish to find the best number of nodes in the cluster.

Our current implementation of the Cluster Resource Optimizer does not include

the cluster’s network topology in the search space. This limitation, which can be

64

removed in the future, is driven partly by a practical consideration: most current

cloud providers hide the underlying network topology from clients. The Hadoop

clusters that we run on EC2 are configured as per the single-rack network topology

used by default in Hadoop.

The Hadoop cluster-wide configuration parameters—namely, the number of map

and reduce task execution slots per node, and the maximum memory available per

task execution slot—are also not included in the search space. Our empirical studies

indicate that good settings for these parameters are determined primarily by the

CPU (number of cores) and memory resources available per node in the cluster; so

we use empirically-determined fixed values per node type (these values are shown in

Table 6.3).2

3. Specifying the search space for job configurations c: Recall the space

of configuration parameter settings for MapReduce jobs presented in Section 3.1

and Table 3.1. A tuning query needs to specify the search space for configuration

parameters c that Starfish should consider for the given workload of MapReduce

jobs. Similar to the search space for cluster resources, the search space for c will be a

singleton set if the user is asking for performance estimates for a specific configuration

that she has in mind. Use case 2 from Section 3.4 has this nature.

It is much more common to specify a larger search space for c. The best setting of

configuration parameters depends strongly on the cluster resource configuration. For

the convenience of nonexpert users who often have no idea about the configuration

parameters, the special “*” symbol can be specified to ask Starfish to use its default

search space for c.

The Job and Workflow Optimizers in Starfish are responsible for searching effi-

ciently through the specified space of configuration parameter settings. Starfish uses

2 Anecdotal evidence from the industry suggests that memory-related misconfigurations are a
major cause of failures in Hadoop.

65

the Job and Workflow Optimizers in tandem with the Cluster Resource Optimizer

since the best job configuration will invariably change if the cluster resources change.

4. Specifying performance requirements: Execution time and cost are the two

performance metrics supported by Starfish. As part of a tuning query, a user can

choose to:

• Have estimated values output for one or both of these metrics.

• Optimize one of these metrics, possibly subject to a constraint on the other

metric. For example, optimizing monetary cost subject to an execution time

under 30 minutes.

5.2 Overview of How Starfish Answers a Workload Tuning Query

This section gives an overview of how Starfish answers a tuning query posed by a user

or application. Chapters 6 and 7 will describe the individual steps in more detail.

To simplify the discussion, we will use concrete examples arising from the use cases

described in Section 3.4.

1. Tuning job-level configuration parameter settings: Consider a MapReduce

job j = xp, d, r, cy that run on a 10-node Hadoop cluster using 20 reduce tasks. The

user is interested in the affect of the number of reduce tasks (one of the configuration

parameters) on the performance of the job. In this scenario, the user can ask for an

estimate of the execution time of job j1 = xp, d, r, c1y whose configuration c1 is the

same as c except that c1 specifies using 40 reduce tasks. The MapReduce program p,

input data d, and cluster resources r remain unchanged. A user can express this use

case as a tuning query Q1 using Starfish’s query interface described in Section 5.1.

The user will specify the following:

• The profile for the run of job j on the current Hadoop cluster. Chapter 4

66

described how the profile can be generated by measurement as part of an actual

job execution.

• The search space for cluster resources r is a singleton set that specifies the

current Hadoop cluster.

• The search space for the configuration parameter settings is also a singleton

set that specifies c1.

• The performance metric of interest is execution time.

Query Q1 maps directly to a what-if question that can be answered by the What-if

Engine. The What-if Engine will first estimate a virtual job profile for the hypothet-

ical job j1. This step uses a careful mix of white-box and black-box models. The

virtual profile is then used in a simulation step to estimate how the hypothetical

job j1 will execute. The answer to the what-if question is computed based on the

estimated execution. Note that job j1 is never run during this process. Chapter 6

explains the overall prediction process in detail.

A what-if question can involve multiple jobs in a workload. In this case, all the

virtual job profiles are generated, and then input to the simulation step.

2. Tuning the cluster size for elastic workloads: Suppose a MapReduce job j

takes three hours to finish on a 10-node Hadoop cluster of EC2 nodes of the m1.large

type. The user who controls the cluster wants to know by how much the execution

time of the job will reduce if five more m1.large nodes are added to the cluster. This

use case is expressed as a tuning query Q2 by specifying the following:

• The profile for the run of j on 10 m1.large EC2 nodes.

• The search space for cluster resources r is a singleton set that specifies 15 EC2

nodes of the (same) m1.large type.

67

• The search space for the configuration parameter settings c is also a singleton

set that specifies the same job configuration as for the 10-node cluster.

• The performance metric of interest is execution time.

The above specification of query Q2 gives Starfish a profile for a job j = xp, d, r1, cy.

The desired answer is the estimate of execution time for a hypothetical job j1 =

xp, d, r2, cy. Job j1 runs the same program p on the same data d and MapReduce

configuration c as job j. However, the cluster resources used are different between

j and j1, i.e., r1 ‰ r2. Similar to Query Q1, Query Q2 maps directly to a what-if

question. However, the answer to Q2 involves estimating the performance of j1 on a

hypothetical cluster instead of a real one.

3. Planning for workload transition from a development cluster to pro-

duction: To express this use case as a tuning query Q3, a user will specify the

following:

• A job profile collected on the development cluster for the program p of interest.

This profile may have been collected by direct measurement when p was run

on a (scaled down) sample of the production data on which the program has to

be run on the production cluster. In this case, the properties of the production

data dprod will have to be provided.

• The search space for cluster resources r is a singleton set that gives the prop-

erties of the production cluster, denoted rprod.

• Note that the developer wants Starfish to find the best job configuration to run

the job on the production cluster. Thus, the search space for the configuration

parameter settings c is specified as “*” so that Starfish will consider the full

space in an efficient fashion.

68

• The performance metric of interest is execution time.

To process query Q3, Starfish will invoke the cost-based Job Optimizer to efficiently

enumerate and search through the high-dimensional space of configuration parameter

settings. The Job Optimizer will consider hypothetical configurations cp1q, cp2q, . . .

cpiq, . . ., cpnq, making calls to the What-if Engine to get the estimated execution

time of each of the corresponding hypothetical jobs jpiq = xp, dprod, rprod, c
piqy. The

configuration cpoptq found in this process with the least execution time will be output

as the query result; the details of the efficient search process are given in Chapter 7.

4. Cluster provisioning under multiple objectives: This use case differs from

the earlier use cases in two main ways. First, the search space for cluster resources

is not a singleton set any more. Second, the performance requirements demand

optimization of monetary cost, while specifying a constraint on the execution time.

(Note that optimizing the execution time with a constraint on monetary cost is also

supported.) A user will specify the following:

• A job profile collected on a Hadoop cluster with 6 nodes of m1.large EC2 type

for the program p of interest.

• The search space for cluster resources r specifies “*” so that Starfish will con-

sider all available instance types and cluster sizes.

• The search space for the configuration parameter settings c is also specified as

“*” so that Starfish will consider the full space in an efficient fashion.

• The objective is to minimize the monetary cost while the job runs in less than

2 hours.

The Cluster Resource Optimizer and the Job Optimizer will be used in tandem to

enumerate and search over the space of cluster resources and job configurations;

69

while making calls to the What-if Engine to get estimates of execution time and cost

for hypothetical jobs jpi,jq = xp, d, rpiq, cpjqy. The combination xr,cy poptq found in this

process that gives the least monetory cost while meeting the constraint on execution

time will be output as the query result.

5.3 Starfish Visualizer

The Visualizer forms the graphical user interface to Starfish. Users employ the

Visualizer to (a) get a deep understanding of a MapReduce job’s behavior dur-

ing execution, (b) ask hypothetical questions on how the job behavior will change

when parameter settings, cluster resources, or input data properties change, and

(c) ultimately optimize the job. Hence, we categorize the core functionalities of

the Visualizer into Job Analysis, What-if Analysis, and Job Optimization. For each

functionality, the Visualizer offers five different views:

1. Timeline views, used to visualize the progress of job execution at the task level.

2. Data Skew views, used to identify the presence of data skew in the input and

output data of map and reduce tasks.

3. Data Flow views, used to visualize the flow of data among the nodes of a

Hadoop cluster, and between the map and reduce tasks of a job.

4. Profile views, used to show the detailed information exposed by the job profiles,

including the phase timings within the tasks.

5. Settings views, used to list the configuration parameter settings, cluster re-

sources, and the input data properties during job execution.

We will demonstrate the Visualizer’s functionalities in order, and show how the user

can obtain deep insights into a job’s performance from each view in each case.

70

Figure 5.1: Screenshot from the Starfish Visualizer showing the execution timeline
of the map and reduce tasks of a MapReduce job running on a Hadoop cluster. A
user can quickly get useful information such as the number of map and reduce waves
or the presence of variance in the task execution times.

Job Analysis: Recall from Section 4.3 that when a MapReduce job executes on a

Hadoop cluster, the Profiler collects a wealth of information including logs, counters,

and profiling data. Figure 5.13 shows the execution timeline of map and reduce tasks

that ran during a MapReduce job execution. The user can get information such as

how many tasks were running at any point in time on each node, when each task

started and ended, or how many map or reduce waves occurred during job execution.

The user is able to quickly spot any high variance in the task execution times, and

discover potential load-balancing issues. Moreover, Timeline views can be used to

compare different executions of the same job run at different times or with different

3 All figures are actual screenshots from the Starfish Visualizer.

71

Figure 5.2: Screenshot from the Starfish Visualizer showing a histogram of the
map output data size per map task that can be used to identify data skew. This
particular histogram shows that 33% of the map tasks output about 2x more data
than the other map tasks.

parameter settings. Comparison of timelines shows whether the job behavior changed

over time and helps understand the impact of changing parameter settings on job

execution.

While the Timeline views are useful in identifying computational skew, the Data

Skew views (shown in Figure 5.2) can readily help identify the presence of skew in

the data consumed and produced by the map and reduce tasks. Data skew in the

reduce tasks usually indicates a strong need for a better partitioning function in the

current MapReduce job. Data skew in the map tasks corresponds to properties of

the input data, and may indicate the need for a better partitioning function in the

producer job that generates the input data.

72

Figure 5.3: Screenshot from the Starfish Visualizer showing a visual representation
of the data flow among the Hadoop nodes during a MapReduce job execution. The
provided Video mode allows a user to inspect how data was transfered among the
nodes of the cluster as time went by.

The Data Skew views are complemented by the Data Flow views used to identify

data skew across the Hadoop nodes caused during the Shuffle phase of the MapRe-

duce job execution. Figure 5.3 presents the data flow among some cluster nodes

during the execution of a MapReduce job. The thickness of each line is proportional

to the amount of data that was shuffled between the corresponding nodes. The user

also has the ability to specify a set of filter conditions (see the left side of Figure

5.3) that allows her to zoom in on a subset of nodes or on the large data transfers.

An important feature of the Visualizer is the Video mode that allows users to play

back a job execution from the past. Using the Video mode, the user can inspect how

data was processed and transfered between the map and reduce tasks of the job, and

73

Figure 5.4: Screenshot from the Starfish Visualizer showing the map and reduce
time breakdown from the virtual profile of a MapReduce job. A user here can quickly
spot that the time spent shuffling the map output data to the reduce tasks contributes
the most to the total execution time.

among nodes and racks of the cluster, as time went by.

The Profile views help visualize the job profiles, namely, the information exposed

by the profile fields at the fine granularity of phases within the map and reduce tasks

of a job; allowing for an in-depth analysis of task behavior during execution. For ex-

ample, Figure 5.4 displays the breakdown of time spent on average in each map and

reduce task. The Profile views also form an excellent way of diagnosing bottlenecks

during task execution. From the visualization shown in Figure 5.4, even a nonex-

pert user can spot that the time spent shuffling the map output data to the reduce

tasks contributes the most to the total execution time; indicating that the corre-

sponding configuration parameters (e.g., mapred.job.shuffle.input.buffer.percent and

74

Figure 5.5: Screenshot from the Starfish Visualizer showing the optimal configu-
ration parameter settings found by the Job Optimizer, as well as cluster and input
data properties. The user also has the option of importing or exporting any of the
above settings and properties in XML format.

mapred.job.shuffle.merge.percent from Table 3.1) have settings that are potentially

suboptimal.

Finally, the Settings view (see Figure 5.5) lists the most important Hadoop con-

figuration parameters used during the execution of a MapReduce job, as well as the

cluster setup and input data properties. The cluster setup is summarized as the

number of nodes, the average number of map and reduce slots per node, and the

memory available for each task execution. The input data properties include the size

and compression of each input split processed by a single map task. The user also

has the option of importing or exporting any of the above settings in XML format.

75

What-if Analysis: The second core functionality provided by the Starfish Visual-

izer is the ability to answer hypothetical questions about the behavior of a MapRe-

duce job when run under different settings. This functionality allows users to study

and understand the impact of configuration parameter settings, cluster resources,

and input data properties on the performance of a MapReduce job.

For instance, the user can ask a what-if question of the form: “How will the

execution time of a job change if the number of reduce tasks is doubled?” The

user can then use the Timeline view to visualize what the execution of the job will

look like under the new settings, and compare it to the current job execution. By

varying the number of reducers (or any other configuration parameter), the user can

determine the impact of changing that parameter on the job execution. Under the

hood, the Visualizer invokes the What-if Engine to generate a virtual job profile for

the job in the hypothetical setting.

Furthermore, the user can investigate the behavior of MapReduce jobs when

changing the cluster setup or the input specification. This functionality is useful in

two scenarios. First, many organizations run the same MapReduce programs over

multiple datasets with similar data distribution, but different sizes. For example, the

same report-generation MapReduce program may be used to generate daily, weekly,

and monthly reports. Or, the daily log data collected and processed may be larger

for a weekday than the data for the weekend. By modifying the input specification,

the user can ask what-if questions on the job behavior when the job is run using

datasets of different sizes.

Another common use-case is the presence of a development cluster for generating

job profiles. In many companies, developers use a small development cluster for

testing and debugging MapReduce programs over small (representative) datasets

before running the programs, possibly multiple times, on the production cluster.

Again, the user can modify the cluster setup in order to determine in advance how

76

the jobs will behave on the production cluster. These novel capabilities are immensely

useful in Hadoop deployments.

Job Optimization: Perhaps the most important functionality of the Visualizer

comes from how it enables a user to invoke the cost-based Job Optimizer to find good

configuration settings for executing a MapReduce job on a (possibly hypothetical)

Hadoop cluster. The user can then export the configuration settings as an XML file

that is used when the same program has to be run in future. At the same time, the

user can examine the behavior of the optimal job through the other views provided

by the Visualizer.

Similar to the What-if Analysis functionality, the user can modify the cluster and

input specifications before optimizing a MapReduce job. Hence, the user can obtain

good configuration settings for the same MapReduce program executed over different

input datasets and different clusters (per the two usage scenarios presented above).

In addition, the user can take advantage of the sampling capabilities of the Profiler

to quickly collect a job profile on a sample of the input data. The user can then

modify the input specifications in the Settings View of the Visualizer (see Figure

5.5), and find the optimal settings to use when executing the MapReduce program

over the full (or a different) dataset.

77

6

Predicting MapReduce Workload Performance

The ability to accurately predict the performance of a MapReduce workload running

on a MapReduce cluster is key for answering questions regarding the impact of

configuration parameter settings, as well as data and cluster resource properties, on

MapReduce workload performance. This chapter will present the overall approach

and the detailed performance models we use to overcome the many challenges that

arise in distributed settings, such as task parallelism, scheduling, and interactions

among tasks. To simplify the presentation, we first focus the discussion on how

to predict the performance of individual MapReduce jobs. We then extend the

discussion to MapReduce workflows and overall workloads.

MapReduce jobs: Consider a MapReduce job j = xp, d, r, cy that runs program

p on input data d and cluster resources r using configuration parameter settings c.

Job j’s performance can be represented as:

perf “ F pp, d, r, cq (6.1)

78

Table 6.1: Example questions the What-if Engine can answer.

What-if Questions on MapReduce Job Execution

WIF1 How will the execution time of job j change if I increase the number of
reduce tasks from the current value of 20 to 40?

WIF2 What is the new estimated execution time of job j if 5 more nodes are
added to the cluster, bringing the total to 20 nodes?

WIF3 How will the execution time of job j change when I execute j on the
production cluster instead of the development cluster, and the input data
size increases by 60%?

WIF4 What is the estimated execution time of job j if I execute j on a new
cluster with 10 EC2 nodes of type m1.large rather than the current in-
house cluster?

Here, perf is some performance metric (e.g., execution time) of interest for jobs that

is captured by the performance model F . The response surfaces shown in Figures

3.5 and 3.6 in Section 3.2 are partial projections of Equation 6.1 for the WordCount

and TeraSort MapReduce programs, respectively, when run on a Hadoop cluster. In

Starfish, function F from Equation 6.1 is implemented by the What-if Engine using

a careful mix of analytical, black-box, and simulation models.

Section 3.4 presented various tuning use cases that arise routinely in practice.

These use cases give rise to several interesting what-if questions that users or appli-

cations can express directly to the What-if Engine using Starfish’s declarative query

interface (recall Chapter 5). For example, consider question WIF1 from Table 6.1.

Here, the performance of a MapReduce job j = xp, d, r, cy is known when 20 reduce

tasks are used. The number of reduce tasks is one of the job configuration parame-

ters. WIF1 asks for an estimate of the execution time of job j1 = xp, d, r, c1y whose

configuration c1 is the same as c except that c1 specifies using 40 reduce tasks. The

MapReduce program p, input data d, and cluster resources r remain unchanged.

The What-if Engine can answer any what-if question of the following general

form:

Given the profile of a job j = xp, d1, r1, c1y that runs a MapReduce pro-

79

gram p over input data d1 and cluster resources r1 using configuration c1,

what will the performance of program p be if p is run over input data d2

and cluster resources r2 using configuration c2? That is, how will job j1

= xp, d2, r2, c2y perform?

To estimate the performance of j1 and answer the what-if question, the What-if

Engine requires four inputs:

• The job profile generated for p by the Profiler, which captures various aspects

of the job’s map and reduce task executions (see Chapter 4).

• Information regarding the input dataset d2, which includes d2’s size, the block

layout of files that comprise d2 in the distributed file-system, and whether d2 is

stored compressed. Note that d2 may be different from the dataset used while

generating the job profile.

• Information regarding the cluster resources r2, which includes the number of

nodes and node types of r2, the number of map and reduce task execution slots

per node, and the maximum memory available per task slot.

• The new settings of the job configuration parameters c2 to run the job with.

The parameters may include the number of map and reduce tasks, the partition-

ing function, settings for memory-related parameters, the use of compression,

and the use of the combine function.

As indicated in Table 6.1, the What-if Engine can answer questions on real and

hypothetical input data as well as cluster resources. For questions involving real

data and a live Hadoop cluster, the user does not need to provide the information

for d2 and r2; the What-if Engine can collect this information automatically from

the live cluster.

80

MapReduce workflows: Predicting the performance of individual MapReduce

jobs naturally extends to MapReduce workflows. Recall from Section 3.1 that a

MapReduce workflow W is a directed acyclic graph (DAG) GW that represents a

set of MapReduce jobs and their dataflow dependencies. Consider a MapReduce

workflow W that runs the programs tpiu from the corresponding jobs ji in GW

on input base datasets tbiu and cluster resources r using configuration parameter

settings tciu. W ’s performance can be represented as:

perf “ F ptpiu, tbiu, r, tciuq (6.2)

In order to support workflows, the What-if Engine has the ability to simulate the

execution of multiple jobs that exhibit producer-consumer relationships or are run

concurrently, as well as to estimate properties of derived datasets. Predicting the

performance of a single MapReduce job is simply the limiting case for predicting

the performance of a MapReduce workflow that consists of a single job. Hence, in

reality, the What-if Engine implements function F from Equation 6.2.

A What-if Engine is an indispensable component of any optimizer, just like a cost-

ing engine is for a query optimizer in a Database system. However, the uses of a

What-if Engine go beyond optimization: it may be used by physical design tools for

deciding data layouts and partitioning schemes; it may be used as part of a simu-

lator that helps make critical design decisions during a Hadoop setup—like the size

of the cluster, the network topology, and the node compute capacity; or it may help

make administrative decisions—like how to allocate resources effectively or which

scheduling algorithm to use.

81

Algorithm for predicting MapReduce workflow performance

Input: Workflow profile, Cluster resources, Base dataset properties,
Configuration settings

Output: Prediction for the MapReduce workflow performance

For each (job profile in workflow profile in topological sort order) {
Estimate the virtual job profile for the hypothetical job (Sections 6.2, 6.3, and 6.4);
Simulate the job execution on the cluster resources (Section 6.5);
Estimate the data properties of the hypothetical derived dataset(s) and the overall

job performance (Section 6.6);
}

Figure 6.1: Overall process used by the What-if Engine to predict the performance
of a given MapReduce workflow.

6.1 Overview for Predicting MapReduce Workload Performance

Figure 6.1 shows the overall process for predicting the performance of a MapReduce

workflow. The DAG of job profiles in the workflow profile is traversed in topological

sort order to ensure that the What-if Engine respects the dataflow dependencies

among the jobs. For each job profile, the virtual job profile is estimated for the new

hypothetical job j1 based on the new configuration settings, the cluster resources, and

the properties of the data processed by j1 (Sections 6.2, 6.3, and 6.4). The virtual

profile is then used to simulate the execution of j1 on the (perhaps hypothetical)

cluster (Section 6.5). Finally, the simulated execution is used to estimate the data

properties for the derived dataset(s) produced by j1 as well as the overall performance

of j1 (Section 6.6). The overall workflow performance is predicted by combining the

performance predictions for each job in the workflow.

The virtual job profile contains the predicted timings and data-flow information

of the job when run with the new parameter settings, similar to what a job profile

generated by the Profiler contains. The purpose of the virtual profile is to provide the

user with more insights on how each job will behave when using the new parameter

settings, as well as to expand the uses of the What-if Engine.

82

Figure 6.2: Overall process used by the What-if Engine to estimate a virtual job
profile.

The process of virtual profile estimation forms the foundation on which Starfish’s

ability to answer tuning queries is based. Specifically, given the profile of a job j =

xp, d1, r1, c1y and the properties of input data d2, cluster resources r2, and configura-

tion parameter settings c2 of a hypothetical job j1 = xp, d2, r2, c2y, the virtual profile

of j1 has to be estimated. Our solution for virtual profile estimation is based on a

mix of black-box and white-box models. The overall estimation process has been

broken down into smaller steps as shown in Figure 6.2, and a suitable modeling tech-

nique was picked for each step. These smaller steps correspond to the four categories

of fields in a job profile. We use conventional cardinality (white-box) models from

database query optimization to estimate dataflow statistics fields (described in Sec-

tion 6.2), relative black-box models to estimate the cost statistics fields (described in

Section 6.3), and new analytical (white-box) models that we developed to estimate

the dataflow fields, and in turn, the cost fields (described in Section 6.4).

6.2 Cardinality Models to Estimate Dataflow Statistics Fields

Database query optimizers keep fine-grained, data-level statistics such as histograms

to estimate the dataflow in execution plans for declarative queries. However, MapRe-

83

duce frameworks lack the declarative query semantics and structured data represen-

tations of Database systems. Thus, the common case in the What-if Engine is to

not have detailed statistical information about the input data d2 in the hypothetical

job j1. By default, the What-if Engine makes a dataflow proportionality assumption

which says that the logical dataflow sizes through the job’s phases are proportional

to the input data size. It follows from this assumption that the dataflow statistics

fields (Table 4.3) in the virtual profile of j1 will be the same as those in the profile

of job j given as input.

When additional information is available, the What-if Engine allows the default

assumption to be overridden by providing dataflow statistics fields of the virtual

profile directly as input. For example, when higher semantic layers like Hive and Pig

submit a MapReduce job for a computation like filtering or join, they can estimate

dataflow statistics fields like Map and Reduce selectivity using conventional statistics

like histograms. Researchers are also developing tools to extract detailed information

from MapReduce programs through program analysis (Iu and Zwaenepoel, 2010;

Cafarella and Ré, 2010).

6.3 Relative Black-box Models to Estimate Cost Statistics Fields

Consider the cost statistics fields shown in Table 4.4. Clusters with identical resources

will have the same CPU and I/O (local and remote) costs. Thus, if the cluster

resource properties of r1 are the same as those of r2, then the cost statistics fields in

the hypothetical job j1 virtual profile can be copied directly from the profile of job j

given as input. This copying cannot be used when r1 ‰ r2, in particular, when job

j1 will run on a target cluster containing nodes with a different type from the source

cluster where job j was run to collect the profile that was given as input.

The technique we use when r1 ‰ r2 is based on a relative black-box model MsrcÑtgt

that can predict the cost statistics fields CStgt in the virtual profile for the target

84

cluster from the cost statistics fields CSsrc in the job profile for the source cluster.

CStgt “MsrcÑtgtpCSsrcq (6.3)

Generating training samples for the MsrcÑtgt model: Let rsrc and rtgt denote

the cluster resources respectively for the source and target clusters. Suppose the

MapReduce program p is run on input data d and configuration parameter settings c

on both the source and target clusters. That is, we run the two jobs jsrc = xp, d, rsrc, cy

and jtgt = xp, d, rtgt, cy. From these runs, we can generate the profiles for these

two jobs by direct measurement. Even further, recall from Section 4.3 that we can

generate a separate task profile for each task run in each of these two jobs. Therefore,

from the ith task in these two jobs,1 we get a training sample xCS
piq
src,CS

piq
tgt,y for the

MsrcÑtgt model.

The above training samples were generated by running a related pair of jobs jsrc

and jtgt that have the same MapReduce program p, input data d, and configuration

parameter settings c. We can generate a complete set of training samples by using

a training benchmark containing jobs with different xp, d, cy combinations. Selecting

an appropriate training benchmark is nontrivial because the two main requirements

of effective black-box modeling have to be satisfied. First, for accurate prediction,

the training samples must have good coverage of the prediction space. Second, for

efficiency, the time to generate the complete set of training samples must be small.

Based on the coverage and efficiency considerations, we came up with three meth-

ods to select the training benchmark in Starfish: Apriori, Fixed, and Custom. We

will evaluate these three benchmarks empirically in Section 6.7.

Apriori: This method assumes that the full workload of jobs that will run on the

provisioned clusters is known at model training time. A sample of jobs is selected

1 Ensuring that the tasks have the same input data d and configuration parameter settings c
ensures that there is a one-to-one correspondence between the tasks in these two jobs.

85

from this workload, either randomly or from the top-k longest-running jobs. A

similar approach of sampling the SQL query workload is used by the index selection

and other wizards in most commercial Database systems (Chaudhuri et al., 2003).

To improve the training efficiency, it may be possible to run the jobs on a scaled-

down sample of their input data. However, this step requires domain knowledge or

user assistance. Apriori gives good coverage of the prediction space as long as the

assumption on the workload holds. However, Apriori’s running time grows with the

size of the workload and the input data.

Fixed: This method assumes that a good coverage of the prediction space can be

obtained by selecting a predetermined set of existing MapReduce jobs (e.g., Sort,

WordCount) and executing them using different configuration settings that will give

different degrees of resource usage. For example, the benchmark can consist of CPU-

intensive, CPU-light, I/O-intensive, and I/O-light jobs. The running time of Fixed

is independent of the size of the actual workload and the input data.

Custom: The goal of this method is to execute a small, synthetic workload to generate

training samples for cost statistics efficiently such that these samples will give good

coverage of the prediction space. It is because of our abstraction of any MapReduce

job execution as a job profile—where a profile can be represented as a point in a

high-dimensional space (see Chapter 4)—that we are able to consider such a unique

approach that is independent of the actual MapReduce workload run on the cluster.

Our Custom training benchmark is composed of just two synthetic MapReduce

job templates: a data-generation template and a data-processing template. These

two templates are instantiated in different ways for a total of six MapReduce job

executions. Unlike the Fixed benchmark that consists of existing MapReduce jobs,

the jobs generated by Custom have been designed such that the different tasks within

these jobs behave differently in terms of their CPU, I/O, memory, and network usage.

86

While this approach may sound counterintuitive because the map (reduce) tasks

in a job are expected to behave similarly, it produces more diverse training samples

per job execution than Apriori or Fixed. Custom provides two additional advantages:

(i) lower and more predictable running time for the training benchmark; and (ii) no

knowledge or use of actual workloads and input data is needed during the training

phase.

Learning all the MsrcÑtgt models needed: It is important to note that the train-

ing benchmark has to be run only once (or with a few repetitions) per target cluster

resource; giving only a linear number of benchmark runs, and not quadratic as one

might expect from the relative nature of the MsrcÑtgt models. The training samples

for each source-to-target cluster pair is available from these runs. For example, to

address use case 3 from Section 3.4 (i.e., planning for workload transition from a

development cluster to production), one run each of the training benchmark on the

development and the production cluster will suffice. For a more complex scenario

like use case 4 (i.e., provisioning a cluster under multiple objectives) that involves

different types of Amazon EC2 nodes, one benchmark run for each distinct node type

and a representative number of cluster nodes is usually sufficient. If the workload

or data size is expected to vary widely, then benchmark runs over a few different

numbers of nodes in the cluster can improve prediction accuracy.

Once the training samples are generated, there are many supervised learning

techniques available for generating the black-box model in Equation 6.3. Since cost

statistics are real-valued, we selected the M5 Tree Model (Quinlan, 1992). An M5

Tree Model first builds a regression-tree using a typical decision-tree induction al-

gorithm. Then, the tree goes through pruning and smoothing phases to generate a

linear regression model for each leaf of the tree.

In summary, given the cost statistics fields CSsrc in the job profile for the source

87

cluster rsrc, the relative black-box model MsrcÑtgt is used to predict the cost statistics

fields CStgt in the virtual profile for the target cluster rtgt when rsrc ‰ rtgt.

6.4 Analytical Models to Estimate Dataflow and Cost Fields

The What-if Engine uses a detailed set of analytical (white-box) models that de-

scribes the execution of a MapReduce job on a Hadoop cluster. The models calculate

the dataflow fields (Table 4.1) and cost fields (Table 4.2) in a virtual job profile. The

inputs required by the models are (i) the estimated dataflow statistics fields in the

virtual job profile (Table 4.3), (ii) the estimated cost statistics fields in the virtual

job profile (Table 4.4), and (iii) cluster-wide and job-level configuration parameter

settings (Table 6.2). These models give good accuracy by capturing the subtleties of

MapReduce job execution at the fine granularity of phases within map and reduce

tasks. The current models were developed for Hadoop, but the overall approach

applies to any MapReduce implementation.

Preliminaries: To simplify the notation, we use the abbreviations contained in

Tables 4.1, 4.2, 4.3, 4.4, and 6.2. Note the prefixes in all abbreviations used to

distinguish where each abbreviation belongs to: d for dataset fields, c for cost fields,

ds for data statistics fields, cs for cost statistics fields, p for Hadoop parameters, and

t for temporary information not stored in the profile.

In an effort to present concise formulas and avoid the use of conditionals as much

as possible, we make the following definitions and initializations:

Identity Function I px q “

#

1 , if x exists or equals true

0 , otherwise
(6.4)

88

Table 6.2: A subset of cluster-wide and job-level Hadoop parameters.

Abbreviation Hadoop Parameter Default
Value

pNumNodes Number of Nodes
pTaskMem mapred.child.java.opts -Xmx200m
pMaxMapsPerNode mapred.tasktracker.map.tasks.max 2
pMaxRedsPerNode mapred.tasktracker.reduce.tasks.max 2

pNumMappers mapred.map.tasks
pSortMB io.sort.mb 100 MB
pSpillPerc io.sort.spill.percent 0.8
pSortRecPerc io.sort.record.percent 0.05
pSortFactor io.sort.factor 10
pNumSpillsForComb min.num.spills.for.combine 3

pNumReducers mapred.reduce.tasks
pReduceSlowstart mapred.reduce.slowstart.completed.maps 0.05
pInMemMergeThr mapred.inmem.merge.threshold 1000
pShuffleInBufPerc mapred.job.shuffle.input.buffer.percent 0.7
pShuffleMergePerc mapred.job.shuffle.merge.percent 0.66
pReducerInBufPerc mapred.job.reduce.input.buffer.percent 0

pUseCombine mapred.combine.class or mapreduce.combine.class null
pIsIntermCompressed mapred.compress.map.output false
pIsOutCompressed mapred.output.compress false

pIsInCompressed Whether the input is compressed or not
pSplitSize The size of the input split

If ppUseCombine ““ FALSEq

dsCombineSizeSel “ 1

dsCombineRecsSel “ 1

csCombineCPUCost “ 0

If ppIsInCompressed ““ FALSEq

dsInputCompressRatio “ 1

csInUncomprCPUCost “ 0

89

If ppIsIntermCompressed ““ FALSEq

dsIntermCompressRatio “ 1

csIntermUncomCPUCost “ 0

csIntermComCPUCost “ 0

If ppIsOutCompressed ““ FALSEq

dsOutCompressRatio “ 1

csOutComprCPUCost “ 0

MapReduce job execution phases: The Map task execution is divided into five

phases:

1. Read: Reading the input split from HDFS and creating the input key-value

pairs (records).

2. Map: Executing the user-defined map function to generate the map-output

data.

3. Collect: Partitioning and collecting the intermediate (map-output) data into a

buffer before spilling.

4. Spill: Sorting, using the combine function if any, performing compression if

specified, and finally writing to local disk to create file spills.

5. Merge: Merging the file spills into a single map output file. Merging might be

performed in multiple rounds.

The Reduce Task is divided into four phases:

1. Shuffle: Transferring the intermediate data from the mapper nodes to a re-

ducer’s node and decompressing if needed. Partial merging may also occur

during this phase.

90

2. Merge: Merging the sorted fragments from the different mappers to form the

input to the reduce function.

3. Reduce: Executing the user-defined reduce function to produce the final output

data.

4. Write: Compressing, if specified, and writing the final output to HDFS.

We model all task phases in order to accurately calculate the dataflow and cost

information for the new (hypothetical) MapReduce job execution. For a map task,

we model the Read and Map phases in Section 6.4.1, the Collect and Spill phases in

Section 6.4.2, and the Merge phase in Section 6.4.3. For a reduce task, we model the

Shuffle phase in Section 6.4.4, the Merge phase in Section 6.4.5, and the Reduce and

Write phases in Section 6.4.6.

6.4.1 Modeling the Read and Map Phases in the Map Task

During this phase, the input split is read (and uncompressed if necessary) and the

key-value pairs are created and passed as input to the user-defined map function.

dMapInBytes “
pSplitSize

dsInputCompressRatio
(6.5)

dMapInRecs “
dMapInBytes

dsInputPairWidth
(6.6)

The cost of the Map Read phase is:

cReadPhaseTime “ pSplitSize ˆ csHdfsReadCost

` pSplitSize ˆ csInUncomprCPUCost (6.7)

The cost of the Map phase is:

cMapPhaseTime “ dMapInRecs ˆ csMapCPUCost (6.8)

91

If the MapReduce job consists only of mappers (i.e., pNumReducers “ 0), then the

spilling and merging phases will not be executed and the map output will be written

directly to HDFS.

dMapOutBytes “ dMapInBytes ˆ dsMapSizeSel (6.9)

dMapOutRecs “ dMapInRecs ˆ dsMapRecsSel (6.10)

The cost of the Map Write phase is:

cWritePhaseTime “

dMapOutBytes ˆ csOutComprCPUCost

`dMapOutBytes ˆ dsOutCompressRatio ˆ csHdfsWriteCost (6.11)

6.4.2 Modeling the Collect and Spill Phases in the Map Task

The map function generates output key-value pairs (records) that are placed in the

map-side memory buffer of size pSortMB . The amount of data output by the map

function is calculated as follows:

dMapOutBytes “ dMapInBytes ˆ dsMapSizeSel (6.12)

dMapOutRecs “ dMapInRecs ˆ dsMapRecsSel (6.13)

tMapOutRecWidth “
dMapOutBytes

dMapOutRecs
(6.14)

The map-side buffer consists of two disjoint parts: the serialization part that stores

the serialized map-output records, and the accounting part that stores 16 bytes of

metadata per record. When either of these two parts fills up to the threshold deter-

mined by pSpillPerc, the spill process begins. The maximum number of records in

the serialization buffer before a spill is triggered is:

92

tMaxSerRecs “

Z

pSortMB ˆ 2 20 ˆ p1 ´ pSortRecPercq ˆ pSpillPerc

tMapOutRecWidth

^

(6.15)

The maximum number of records in the accounting buffer before a spill is triggered

is:

tMaxAccRecs “

Z

pSortMB ˆ 2 20 ˆ pSortRecPerc ˆ pSpillPerc

16

^

(6.16)

Hence, the number of records in the buffer before a spill is:

dSpillBufferRecs “ Mint tMaxSerRecs , tMaxAccRecs , dMapOutRecs u (6.17)

The size of the buffer included in a spill is:

dSpillBufferSize “ dSpillBufferRecs ˆ tMapOutRecWidth (6.18)

The overall number of spills is:

dNumSpills “

R

dMapOutRecs

dSpillBufferRecs

V

(6.19)

The number of pairs and size of each spill file (i.e., the amount of data that will be

written to disk) depend on the width of each record, the possible use of the Combiner,

and the possible use of compression. The Combiner’s pair and size selectivities as

well as the compression ratio are part of the Dataflow Statistics fields of the job

profile. If a Combiner is not used, then the corresponding selectivities are set to 1

by default. If map output compression is disabled, then the compression ratio is set

to 1.

Hence, the number of records and size of a spill file are:

dSpillFileRecs “ dSpillBufferRecs ˆ dsCombineRecsSel (6.20)

93

dSpillFileSize “dSpillBufferSize ˆ dsCombineSizeSel

ˆdsIntermCompressRatio (6.21)

The total cost of the Map’s Collect and Spill phases are:

cCollectPhaseTime “dMapOutRecs ˆ csPartitionCPUCost

` dMapOutRecs ˆ csSerdeCPUCost (6.22)

cSpillPhaseTime “ dNumSpillsˆ

r dSpillBufferRecs ˆ log2 p
dSpillBufferRecs

pNumReducers
q ˆ csSortCPUCost

` dSpillBufferRecs ˆ csCombineCPUCost

` dSpillBufferSize ˆ dsCombineSizeSel ˆ csIntermComCPUCost

` dSpillFileSize ˆ csLocalIOWriteCost s (6.23)

6.4.3 Modeling the Merge Phase in the Map Task

The goal of the Merge phase is to merge all the spill files into a single output file,

which is written to local disk. The Merge phase will occur only if more than one spill

file is created. Multiple merge passes might occur, depending on the pSortFactor pa-

rameter. pSortFactor defines the maximum number of spill files that can be merged

together to form a new single file. We define a merge pass to be the merging of at

most pSortFactor spill files. We define a merge round to be one or more merge passes

that merge only spills produced by the spill phase or a previous merge round. For

example, suppose dNumSpills “ 28 and pSortFactor “ 10 . Then, 2 merge passes

will be performed (merging 10 files each) to create 2 new files. This constitutes the

first merge round. Then, the 2 new files will be merged together with the 8 original

spill files to create the final output file, forming the 2nd and final merge round.

The first merge pass is unique because Hadoop will calculate the optimal number

of spill files to merge so that all other merge passes will merge exactly pSortFactor

94

files. Notice how, in the example above, the final merge round merged exactly 10

files.

The final merge pass is also unique in the sense that if the number of spills to be

merged is greater than or equal to pNumSpillsForComb, the combiner will be used

again. Hence, we treat the intermediate merge rounds and the final merge round

separately. For the intermediate merge passes, we calculate how many times (on

average) a single spill will be read.

Note that the remaining section assumes numSpils ď pSortFactor2 . In the oppo-

site case, we must use a simulation-based approach in order to calculate the number

of spill files merged during the intermediate merge rounds as well as the total num-

ber of merge passes. Since the Reduce task also contains a similar Merge Phase, we

define the following three methods to reuse later:

calcNumSpillsFirstPasspN ,F q “

$

’

&

’

%

N , if N ď F

F , if pN ´ 1q MOD pF ´ 1q “ 0

pN ´ 1q MOD pF ´ 1q ` 1 , otherwise

(6.24)

calcNumSpillsIntermMergepN ,F q “

#

0 , if N ď F

P `
X

N´P
F

\

˚ F , if N ď F 2

, where P “ calcNumSpillsFirstPasspN ,F q (6.25)

calcNumSpillsFinalMergepN ,F q “

#

N , if N ď F

1`
X

N´P
F

\

` pN ´ Sq , if N ď F 2

, where P “ calcNumSpillsFirstPasspN ,F q

, where S “ calcNumSpillsIntermMergepN ,F q (6.26)

95

The number of spills read during the first merge pass is:

tNumSpillsFirstPass “ calcNumSpillsFirstPasspdNumSpills , pSortFactorq (6.27)

The number of spills read during intermediate merging is:

tNumSpillsIntermMerge “ calcNumSpillsIntermMergepdNumSpills , pSortFactorq

(6.28)

The total number of merge passes is:

dNumMergePasses “

$

’

’

&

’

’

%

0 , if dNumSpills “ 1

1 , if dNumSpills ď pSortFactor

2`
Y

dNumSpills´tNumSpillsF irstPass
pSortFactor

]

, if dNumSpills ď pSortFactor2

(6.29)

The number of spill files for the final merge round is:

tNumSpillsFinalMerge “ calcNumSpillsFinalMergepdNumSpills , pSortFactorq

(6.30)

As discussed earlier, the Combiner might be used during the final merge round. In

this case, the size and record Combiner selectivities are:

tUseCombInMerge “pdNumSpills ą 1 q AND ppUseCombineq

AND ptNumSpillsFinalMerge ě pNumSpillsForCombq
(6.31)

tMergeCombSizeSel “

#

dsCombineSizeSel , if tUseCombInMerge

1 , otherwise
(6.32)

96

tMergeCombRecsSel “

#

dsCombineRecsSel , if tUseCombInMerge

1 , otherwise
(6.33)

The total number of records spilled equals the sum of (i) the records spilled during

the Spill phase, (ii) the number of records that participated in the intermediate merge

rounds, and (iii) the number of records spilled during the final merge round.

dNumRecsSpilled “dSpillFileRecs ˆ dNumSpills

`dSpillFileRecs ˆ tNumSpillsIntermMerge

`dSpillFileRecs ˆ dNumSpills ˆ tMergeCombRecsSel
(6.34)

The final size and number of records for the final map output data are:

tIntermDataSize “dNumSpills ˆ dSpillFileSize ˆ tMergeCombSizeSel (6.35)

tIntermDataRecs “dNumSpills ˆ dSpillFileRecs ˆ tMergeCombRecsSel (6.36)

The total cost of the Merge phase is divided into the cost for performing the inter-

mediate merge rounds and the cost for performing the final merge round.

tIntermMergeTime “tNumSpillsIntermMerge ˆ

r dSpillFileSize ˆ csLocalIOReadCost

`dSpillFileSize ˆ csIntermUncomCPUCost

`dSpillFileRecs ˆ csMergeCPUCost

`
dSpillFileSize

dsIntermCompressRatio
ˆ csIntermComCPUCost

`dSpillFileSize ˆ csLocalIOWriteCost s (6.37)

97

tFinalMergeTime “dNumSpills ˆ

r dSpillFileSize ˆ csLocalIOReadCost

`dSpillFileSize ˆ csIntermUncomCPUCost

`dSpillFileRecs ˆ csMergeCPUCost

`dSpillFileRecs ˆ csCombineCPUCost s

`
tIntermDataSize

dsIntermCompressRatio
ˆ csIntermComCPUCost

`tIntermDataSize ˆ csLocalIOWriteCost (6.38)

cMergePhaseTime “ tIntermMergeTime ` tFinalMergeTime (6.39)

6.4.4 Modeling the Shuffle Phase in the Reduce Task

In the Shuffle phase, the framework fetches the relevant map output partition from

each mapper (called a map segment) and copies it to the reducer’s node. If the map

output is compressed, Hadoop will uncompress it after the transfer as part of the

shuffling process. Assuming a uniform distribution of the map output to all reducers,

the size and number of records for each map segment that reaches the reduce side

are:

tSegmentComprSize “
tIntermDataSize

pNumReducers
(6.40)

tSegmentUncomprSize “
tSegmentComprSize

dsIntermCompressRatio
(6.41)

tSegmentRecs “
tIntermDataRecs

pNumReducers
(6.42)

98

where tIntermDataSize and tIntermDataRecs are the size and number of records

produced as intermediate output by a single mapper (see Section 6.4.3). A more

complex model can be used to account for the presence of skew. The data fetched

to a single reducer will be:

dShuffleSize “ pNumMappers ˚ tSegmentComprSize (6.43)

dShuffleRecs “ pNumMappers ˚ tSegmentRecs (6.44)

The intermediate data is transfered and placed in an in-memory shuffle buffer with

a size proportional to the parameter pShuffleInBufPerc:

tShuffleBufferSize “ pShuffleInBufPerc ˆ pTaskMem (6.45)

However, when the segment size is greater than 25% times the tShuffleBufferSize,

the segment will get copied directly to local disk instead of the in-memory shuffle

buffer. We consider these two cases separately.

Case 1: tSegmentUncomprSize ă 0 .25 ˆ tShuffleBufferSize

The map segments are transfered, uncompressed if needed, and placed into the shuffle

buffer. When either (a) the amount of data placed in the shuffle buffer reaches a

threshold size determined by the pShuffleMergePerc parameter or (b) the number

of segments becomes greater than the pInMemMergeThr parameter, the segments

are merged and spilled to disk creating a new local file (called shuffle file). The size

threshold to begin merging is:

tMergeSizeThr “ pShuffleMergePerc ˆ tShuffleBufferSize (6.46)

The number of map segments merged into a single shuffle file is:

tNumSegInShuffleFile “
tMergeSizeThr

tSegmentUncomprSize
(6.47)

99

If prtNumSegInShuffleFilesˆ tSegmentUncomprSize ď tShuffleBufferSizeq

tNumSegInShuffleFile “ rtNumSegInShuffleFiles

else

tNumSegInShuffleFile “ ttNumSegInShuffleFileu

If ptNumSegInShuffleFile ą pInMemMergeThrq

tNumSegInShuffleFile “ pInMemMergeThr (6.48)

If a Combiner is specified, then it is applied during the merging. If compression is

enabled, then the (uncompressed) map segments are compressed after merging and

before written to disk. Note also that if numMappers ă tNumSegInShuffleFile, then

merging will not happen. The size and number of records in a single shuffle file is:

tShuffleFileSize “

tNumSegInShuffleFile ˆ tSegmentComprSize ˆ dsCombineSizeSel (6.49)

tShuffleFileRecs “

tNumSegInShuffleFile ˆ tSegmentRecs ˆ dsCombineRecsSel (6.50)

tNumShuffleFiles “

Z

pNumMappers

tNumSegInShuffleFile

^

(6.51)

At the end of the merging process, some segments might remain in memory.

tNumSegmentsInMem “ pNumMappers MOD tNumSegInShuffleFile (6.52)

Case 2: tSegmentUncomprSize ě 0 .25 ˆ tShuffleBufferSize

When a map segment is transfered directly to local disk, it becomes equivalent to

a shuffle file. Hence, the corresponding temporary variables introduced in Case 1

above are:

100

tNumSegInShuffleFile “ 1 (6.53)

tShuffleFileSize “ tSegmentComprSize (6.54)

tShuffleFileRecs “ tSegmentRecs (6.55)

tNumShuffleFiles “ pNumMappers (6.56)

tNumSegmentsInMem “ 0 (6.57)

Either case can create a set of shuffle files on disk. When the number of shuffle files

on disk increases above a certain threshold (which equals 2 ˆ pSortFactor ´ 1), a

new merge thread is triggered and pSortFactor shuffle files are merged into a new

and larger sorted shuffle file. The Combiner is not used during this so-called disk

merging. The total number of such disk merges are:

tNumShuffleMerges “

#

0 , if tNumShuffleF iles ă 2ˆ pSortFactor ´ 1
Y

tNumShuffleF iles´2ˆpSortFactor`1
pSortFactor

]

` 1 , otherwise
(6.58)

At the end of the Shuffle phase, a set of “merged” and “unmerged” shuffle files will

exist on disk.

tNumMergShufFiles “ tNumShuffleMerges (6.59)

tMergShufFileSize “ pSortFactor ˆ tShuffleFileSize (6.60)

101

tMergShufFileRecs “ pSortFactor ˆ tShuffleFileRecs (6.61)

tNumUnmergShufFiles “tNumShuffleFiles

´ppSortFactor ˆ tNumShuffleMergesq (6.62)

tUnmergShufFileSize “ tShuffleFileSize (6.63)

tUnmergShufFileRecs “ tShuffleFileRecs (6.64)

The total cost of the Shuffle phase includes cost for the network transfer, cost for

any in-memory merging, and cost for any on-disk merging, as described above.

tInMemMergeTime “

I ptSegmentUncomprSize ă 0 .25 ˆ tShuffleBufferSizeqˆ

r dShuffleSize ˆ csIntermUncomCPUCost

`tNumShuffleFiles ˆ tShuffleFileRecs ˆ csMergeCPUCost

`tNumShuffleFiles ˆ tShuffleFileRecs ˆ csCombineCPUCost

`tNumShuffleFiles ˆ
tShuffleFileSize

dsIntermCompressRatio
ˆ csIntermComCPUCost s

`tNumShuffleFiles ˆ tShuffleFileSize ˆ csLocalIOWriteCost (6.65)

tOnDiskMergeTime “ tNumMergShufFiles ˆ

r tMergShufFileSize ˆ csLocalIOReadCost

`tMergShufFileSize ˆ csIntermUncomCPUCost

`tMergShufFileRecs ˆ csMergeCPUCost

`
tMergShufFileSize

dsIntermCompressRatio
ˆ csIntermComCPUCost

`tMergShufFileSize ˆ csLocalIOWriteCost s (6.66)

102

cShufflePhaseTime “dShuffleSize ˆ csNetworkCost

`tInMemMergeTime

`tOnDiskMergeTime (6.67)

6.4.5 Modeling the Merge Phase in the Reduce Task

After all map output data has been successful transfered to the Reduce node, the

Merge phase2 begins. During this phase, the map output data is merged into a single

stream that is fed to the reduce function for processing. Similar to the Map’s Merge

phase (see Section 6.4.3), the Reduce’s Merge phase may occur it multiple rounds.

However, instead of creating a single output file during the final merge round, the

data is sent directly to the reduce function.

The Shuffle phase may produce (i) a set of merged shuffle files on disk, (ii) a set

of unmerged shuffle files on disk, and (iii) a set of map segments in memory. The

total number of shuffle files on disk is:

tNumShufFilesOnDisk “ tNumMergShufFiles ` tNumUnmergShufFiles (6.68)

The merging in this phase is done in three steps.

Step 1: Some map segments are marked for eviction from memory in order to satisfy

a memory constraint enforced by the pReducerInBufPerc parameter, which specifies

the amount of memory allowed to be occupied by the map segments before the reduce

function begins.

tMaxSegmentBufferSize “ pReducerInBufPerc ˆ pTaskMem (6.69)

2 The Merge phase in the Reduce task is also called “Sort phase” in the literature, even though
no sorting occurs.

103

The amount of memory currently occupied by map segments is:

tCurrSegmentBufferSize “

tNumSegmentsInMem ˆ tSegmentUncomprSize (6.70)

Hence, the number of map segments to evict from, and retain in, memory are:

If ptCurrSegmentBufferSize ą tMaxSegmentBufferSizeq

tNumSegmentsEvicted “

R

tCurrSegmentBufferSize ´ tMaxSegmentBufferSize

tSegmentUncomprSize

V

else

tNumSegmentsEvicted “ 0 (6.71)

tNumSegmentsRemainMem “ tNumSegmentsInMem ´ tNumSegmentsEvicted

(6.72)

If the number of existing shuffle files on disk is less than pSortFactor , then the

map segments marked for eviction will be merged into a single shuffle file on disk.

Otherwise, the map segments marked for eviction are left to be merged with the

shuffle files on disk during Step 2 (i.e., Step 1 does not happen).

104

If ptNumShufFilesOnDisk ă pSortFactorq

tNumShufFilesFromMem “ 1

tShufFilesFromMemSize “ tNumSegmentsEvicted ˆ tSegmentComprSize

tShufFilesFromMemRecs “ tNumSegmentsEvicted ˆ tSegmentRecs

tStep1MergingSize “ tShufFilesFromMemSize

tStep1MergingRecs “ tShufFilesFromMemRecs

else

tNumShufFilesFromMem “ tNumSegmentsEvicted

tShufFilesFromMemSize “ tSegmentComprSize

tShufFilesFromMemRecs “ tSegmentRecs

tStep1MergingSize “ 0

tStep1MergingRecs “ 0 (6.73)

The total cost of Step 1 (which could be zero) is:

cStep1Time “tStep1MergingRecs ˆ csMergeCPUCost

`
tStep1MergingSize

dsIntermCompressRatio
ˆ csIntermComCPUCost

`tStep1MergingSize ˆ csLocalIOWriteCost (6.74)

Step 2: Any shuffle files that reside on disk will go through a merging phase in

multiple merge rounds (similar to the process in Section 6.4.3). This step will happen

only if there exists at least one shuffle file on disk. The total number of files to merge

during Step 2 is:

tFilesToMergeStep2 “

tNumShufFilesOnDisk ` tNumShufFilesFromMem (6.75)

105

The number of intermediate reads (and writes) are:

tIntermMergeReads2 “

calcNumSpillsIntermMergeptFilesToMergeStep2 , pSortFactorq (6.76)

The main difference from Section 6.4.3 is that the merged files in this case have

different sizes. We account for the different sizes by attributing merging costs pro-

portionally. Hence, the total size and number of records involved in the merging

process during Step 2 are:

tStep2MergingSize “
tIntermMergeReads2

tFilesToMergeStep2
ˆ

r tNumMergShufFiles ˆ tMergShufFileSize

`tNumUnmergShufFiles ˆ tUnmergShufFileSize

`tNumShufFilesFromMem ˆ tShufFilesFromMemSizes
(6.77)

tStep2MergingRecs “
tIntermMergeReads2

tFilesToMergeStep2
ˆ

r tNumMergShufFiles ˆ tMergShufFileRecs

`tNumUnmergShufFiles ˆ tUnmergShufFileRecs

`tNumShufFilesFromMem ˆ tShufFilesFromMemRecss
(6.78)

The total cost of Step 2 (which could also be zero) is:

cStep2Time “tStep2MergingSize ˆ csLocalIOReadCost

`tStep2MergingSize ˆ cIntermUnomprCPUCost

`tStep2MergingRecs ˆ csMergeCPUCost

`
tStep2MergingSize

dsIntermCompressRatio
ˆ csIntermComCPUCost

`tStep2MergingSize ˆ csLocalIOWriteCost (6.79)

106

Step 3: All files on disk and in memory will be merged together. The process is

identical to step 2 above. The total number of files to merge during Step 3 is:

tFilesToMergeStep3 “ tNumSegmentsRemainMem

`calcNumSpillsFinalMergeptFilesToMergeStep2 , pSortFactorq (6.80)

The number of intermediate reads (and writes) are:

tIntermMergeReads3 “

calcNumSpillsIntermMergeptFilesToMergeStep3 , pSortFactorq (6.81)

Hence, the total size and number of records involved in the merging process during

Step 3 are:

tStep3MergingSize “
tIntermMergeReads3

tFilesToMergeStep3
ˆ dShuffleSize (6.82)

tStep3MergingRecs “
tIntermMergeReads3

tFilesToMergeStep3
ˆ dShuffleRecs (6.83)

The total cost of Step 3 (which could also be zero) is:

cStep3Time “tStep3MergingSize ˆ csLocalIOReadCost

`tStep3MergingSize ˆ cIntermUnomprCPUCost

`tStep3MergingRecs ˆ csMergeCPUCost

`
tStep3MergingSize

dsIntermCompressRatio
ˆ csIntermComCPUCost

`tStep3MergingSize ˆ csLocalIOWriteCost (6.84)

The total cost of the Merge phase is:

cMergePhaseTime “ cStep1Time ` cStep2Time ` cStep3Time (6.85)

107

6.4.6 Modeling the Reduce and Write Phases in the Reduce Task

Finally, the user-defined reduce function will processed the merged intermediate data

to produce the final output that will be written to HDFS. The size and number of

records processed by the reduce function is:

dReduceInBytes “
tNumShuffleFiles ˆ tShuffleFileSize

dsIntermCompressRatio

`
tNumSegmentsInMem ˆ tSegmentComprSize

dsIntermCompressRatio
(6.86)

dReduceInRecs “tNumShuffleFiles ˆ tShuffleFileRecs

`tNumSegmentsInMem ˆ tSegmentRecs (6.87)

The size and number of records produce by the reduce function is:

dReduceOutBytes “ dReduceInBytes ˆ dsReduceSizeSel (6.88)

dReduceOutRecs “ dReduceInRecs ˆ dsReduceRecsSel (6.89)

The input data to the reduce function may reside in both memory and disk, as

produced by the Shuffle and Merge phases.

tInRedFromDiskSize “tNumMergShufFiles ˆ tMergShufFileSize

`tNumUnmergShufFiles ˆ tUnmergShufFileSize

`tNumShufFilesFromMem ˆ tShufFilesFromMemSize
(6.90)

108

The total cost of the Reduce phase is:

cReducePhaseTime “tInRedFromDiskSize ˆ csLocalIOReadCost

`tInRedFromDiskSize ˆ cIntermUncompCPUCost

`dReduceInRecs ˆ csReduceCPUCost (6.91)

The total cost of the Write phase is:

cWritePhaseTime “

dReduceOutBytes ˆ csOutComprCPUCost

`dReduceOutBytes ˆ dsOutCompressRatio ˆ csHdfsWriteCost (6.92)

6.5 Simulating the Execution of a MapReduce Workload

The virtual job profile contains detailed dataflow and cost information estimated at

the task and phase level for the hypothetical job j1. The What-if Engine uses a

Task Scheduler Simulator, along with the job profiles and information on the cluster

resources, to simulate the scheduling and execution of map and reduce tasks in j1

(recall Figure 6.1). The Task Scheduler Simulator is a pluggable component. Our

current implementation is a lightweight discrete event simulation of Hadoop’s default

FIFO scheduler. For instance, a job with 60 tasks to be run on a 16-node cluster can

be simulated in 0.3 milliseconds.

The Task Scheduler Simulator is aware of both dataflow and resource dependen-

cies among the MapReduce jobs in a workflow. Therefore, when it is given a new

hypothetical job j1 to simulate, it will schedule it (a) concurrently with existing jobs

that have a resource dependency with j1, and (b) after all jobs that have a dataflow

dependency with j1. The output from the simulation is a complete description of the

(hypothetical) execution of job j1 in the cluster.

Existing approaches to simulating Hadoop execution: Mumak (Tang, 2009)

and MRPerf (Wang et al., 2009) are existing Hadoop simulators that perform discrete

109

event simulation to model MapReduce job execution. Mumak needs a job execution

trace from a previous job execution as input. Unlike our What-if Engine, Mumak

cannot simulate job execution for a different cluster size, network topology, or even

different numbers of map or reduce tasks from what the execution trace contains.

MRPerf is able to simulate job execution at the task level like our What-if Engine.

However, MRPerf uses an external network simulator to simulate the data transfers

and communication among the cluster nodes; which leads to a per-job simulation

time on the order of minutes. Such a high simulation overhead prohibits MRPerf’s

use by a cost-based optimizer that needs to perform hundreds to thousands of what-if

calls per job.

6.6 Estimating Derived Data Properties and Workflow Performance

After the execution of a job is simulated on the cluster, the What-if Engine estimates

the properties of the job’s derived datasets (see Figure 6.1). For this purpose, we have

implemented a Virtual Distributed File System (DFS) to keep track of file and block

metadata. The estimated dataflow fields in the virtual profile are used, along with

analytical models, to estimate data properties like the number of files produced, the

file sizes, and whether the files are compressed or not. The simulated task execution

is then used to determine the block placement of the data in the Virtual DFS. The

estimated properties of the derived datasets will be used during the virtual profile

estimation of the later jobs in the workflow that access these datasets as input.

The final output—after all jobs have been simulated—is a description of the

complete (hypothetical) workflow execution in the cluster. The desired answer to

the what-if question—e.g., predicted workflow running time, amount of local I/O, or

a visualization of the task execution timeline—can be computed from the workflow’s

simulated execution.

110

Table 6.3: Cluster-wide Hadoop parameter settings for five EC2 node types.

EC2 Node Map Slots Reduce Slots Max Memory
Type per Node per Node per slot (MB)

m1.small 2 1 300
m1.large 3 2 1024
m1.xlarge 4 4 1536
c1.medium 2 2 300
c1.xlarge 8 6 400

Table 6.4: MapReduce programs and corresponding datasets for the evaluation of
the What-if Engine.

Abbr. MapReduce Program Dataset Description

CO Word Co-occurrence 10GB of documents from Wikipedia
JO Join 60GB data from the TPC-H Benchmark
LG LinkGraph 20GB compressed data from Wikipedia
TF TF-IDF 60GB of documents from Wikipedia
TS Hadoop’s TeraSort 30GB-60GB data from Hadoop’s TeraGen
WC WordCount 30GB-60GB of documents from Wikipedia

6.7 Evaluating the Predictive Power of the What-if Engine

In our experimental evaluation, we used Hadoop clusters running on Amazon EC2

nodes of various sizes and node types. Table 3.2 lists the EC2 node types we used,

along with the resources available for each node type. For each node type, we

used empirically-determined fixed values for the cluster-wide Hadoop configuration

parameters—namely, the number of map and reduce task execution slots per node,

as well as the maximum memory available per task slot (shown on Table 6.3).

Table 6.4 lists the MapReduce programs and datasets used in our evaluation. We

selected representative MapReduce programs used in different domains: text analyt-

ics (WordCount), natural language processing (Word Co-occurrence), information

retrieval (TF-IDF: Term Frequency-Inverse Document Frequency3), creation of large

hyperlink graphs (LinkGraph), and business data processing (Join, TeraSort) (Lin

3 TF-IDF is a workflow consisting of three MapReduce jobs.

111

and Dyer, 2010; White, 2010).

The unoptimized MapReduce jobs are executed using popular rules-of-thumb set-

tings. Following rules of thumb has become a standard technique for setting job con-

figuration parameter settings (Hadoop Tutorial, 2011; Lipcon, 2009; White, 2010).

The rules of thumb are discussed further in Section 7.1. Unless otherwise noted, we

used the training samples produced by the Custom benchmark to train the relative

models for estimating cost statistics (recall Section 6.3).

The goal of the experimental evaluation is to study the ability of the What-if

Engine to provide reliable estimates for the execution time of MapReduce jobs in

various scenarios. Our evaluation methodology is as follows:

• We evaluate the What-if Engine’s accuracy in estimating the sub-task timings,

as well as predicting the overall job completion time.

• We evaluate the predictive power of the What-if Engine for tuning the cluster

size for elastic MapReduce workloads.

• We evaluate the accuracy of the What-if Engine in estimating the execution

time for a program p to be run on the production cluster (rtgt) based on a

profile learned for p on the development cluster (rsrc).

• We evaluate the accuracy of the relative models learned for predicting cost

statistics for the three training benchmarks developed to generate training

samples (recall Section 6.3).

Since our evaluation concentrates on the What-if Engine, we focus on the job running

times and ignore any data loading times.

112

Figure 6.3: Map and reduce time breakdown for Word Co-occurrence jobs from
(A) an actual run and (B) as predicted by the What-if Engine.

6.7.1 Accuracy of What-if Analysis

The experimental results in this section resulted from running the MapReduce pro-

grams listed in Table 6.4 on a Hadoop cluster running on 16 Amazon EC2 nodes

of the c1.medium type. Each node runs at most 2 map tasks and 2 reduce tasks

concurrently. Thus, the cluster can run at most 30 map tasks in a concurrent map

wave, and at most 30 reduce tasks in a concurrent reduce wave.

First, we present the results from running the Word-Cooccurrence program over

10GB of real data obtained from Wikipedia. Figure 6.3 compares the actual task and

phase timings with the corresponding predictions from the What-if Engine. Even

though the predicted timings are slightly different from the actual ones, the relative

percentage of time spent in each phase is captured fairly accurately. To evaluate

the accuracy of the What-if Engine in predicting the overall job execution time, we

ran Word Co-occurrence under 40 different configuration settings. We then asked

the What-if Engine to predict the job execution time for each setting. Figure 6.4(a)

shows a scatter plot of the actual and predicted times for these 40 jobs. Observe the

proportional correspondence between the actual and predicted times, and the clear

identification of settings with the top-k best and worst performance (indicated by

113

Figure 6.4: Actual Vs. predicted running times for (a) Word Co-occurrence, (b)
WordCount, and (c) TeraSort jobs running with different configuration parameter
settings.

the green and red dotted circles respectively).

We repeated the above experiment with WordCount and TeraSort programs pro-

cessing 30GB of data each. Figures 6.4(b) and 6.4(c) show two scatter plots of the

actual and predicted running times for several WordCount and TeraSort jobs when

run using different configuration settings. Once again, we observe that the What-if

Engine can clearly identify the settings that will lead to good and bad performance.

As discussed in Section 4.2, the fairly uniform gap between the actual and pre-

dicted timings is due to the profiling overhead of BTrace. Since dynamic instru-

mentation mainly needs additional CPU cycles, the gap is largest when the MapRe-

duce program runs under CPU contention—which was the case when the Word

Co-occurrence job was profiled. Unlike the case of Word Co-occurrence in Figure

6.4(a), the predicted values in Figures 6.4(b) and 6.4(c) are closer to the actual val-

ues; indicating that the profiling overhead is reflected less in the costs captured in

the job profile. As mentioned earlier, we expect to close this gap using commercial

Java profilers that have demonstrated vastly lower overheads than BTrace (Louth,

2009).

114

Figure 6.5: Actual and predicted running times for MapReduce jobs as the number
of nodes in the cluster is varied.

6.7.2 Tuning the Cluster Size

The class of what-if questions we consider in this section is how will the performance

of a MapReduce job change if the number of nodes in the existing cluster changes? We

evaluate the ability of the What-if Engine to answer such a question automatically.

Figure 6.5 shows the actual and predicted running times for all MapReduce jobs as

the number of nodes in the cluster is varied. All Hadoop clusters for this experiment

used m1.large EC2 nodes. To make the predictions, we used job profiles that were

obtained on a 10-node Hadoop cluster of m1.large EC2 nodes. We observe that the

What-if Engine is able to capture the execution trends of all jobs across the clusters

with different sizes. That is, the What-if Engine predicts correctly the sublinear

speedup achieved for each job as we increase the number of nodes in the cluster.

From the perspective of predicting absolute values, the What-if Engine usually

115

Figure 6.6: Actual and predicted running times for MapReduce jobs when run on
the production cluster. The predictions used job profiles obtained from the develop-
ment cluster.

over-predicts job execution time (by 20.1% on average and 58.6% worse case in Figure

6.5). As before, the prediction difference is due to overhead added by BTrace while

measuring function timings at nanosecond granularities. While the gap is fairly

uniform for different settings of the same MapReduce job, the gap among different

jobs varies significantly, making it difficult to correct for it during the prediction

process.

6.7.3 Transitioning from Development to Production

Another common use case we consider in our evaluation is the presence of a develop-

ment cluster, and the need to stage jobs from the development cluster to the produc-

tion cluster. In our evaluation, we used a 10-node Hadoop cluster with m1.large EC2

nodes as the development cluster, and a 30-node Hadoop cluster with m1.xlarge EC2

nodes as the production one. We profiled all MapReduce programs listed in Table

6.4 on the development cluster. We then executed the MapReduce programs on the

production cluster using three times as much data as used in the development cluster

(i.e., three times as much data as listed in Table 6.4).

Figure 6.6 shows the actual and predicted running times for each job when run

116

on the production cluster. The What-if Engine used job profiles obtained from the

development cluster for making the predictions. Apart from the overall running time,

the What-if Engine can also predict several other aspects of the job execution like

the amount of I/O and network traffic, the running time and scheduling of individual

tasks, as well as data and computational skew.

Overall, the What-if Engine is capable of accurately capturing the performance

trends when varying the configuration parameter settings or the cluster resources.

6.7.4 Evaluating the Training Benchmarks

The ability of the What-if Engine to make accurate predictions across clusters re-

lies on the relative models employed to predict cost statistics. The models we used,

like all black-box models, require representative training data in order to make ac-

curate predictions. As discussed in Section 6.3, we have developed three training

benchmarks that employ different strategies to collect training samples.

Apriori benchmark: This benchmark includes all jobs listed in Table 6.4, which

also form our testing workload. Each job runs over a 600MB random sample of the

original input data.

Fixed benchmark: This benchmarks executes the MapReduce jobs WordCount

and TeraSort multiple times using different configuration settings. We varied the

settings for using intermediate data compression, output compression, and the com-

bine function, since these settings provide tradeoffs between CPU and I/O usage.

Each job processed 600MB of randomly generated text using Hadoop’s Random-

TextGenerator and TeraGen.

Custom benchmark: This benchmark consists of a data generation job template

and a data processing job template, as discussed in Section 6.3. The data generation

job template is run twice (with output compression turned on and off) and the

data processing job template is run four times (corresponding to the four possible

117

Figure 6.7: Total running time for each training benchmark.

combinations of using compression and the combine function).

All benchmarks were run on 10-node Hadoop clusters on EC2 nodes. Each job in

each benchmark processed 600MB of data and was run using rules-of-thumb settings.

We tested the prediction accuracy of the relative models trained by each benchmark

on a test workload consisting of all jobs listed in Table 6.4.

Figure 6.7 shows the running time of each benchmark for collecting all the training

data. The Apriori benchmark takes a significantly longer time to complete compared

to the other two benchmarks as it executes more MapReduce jobs. Unlike the run-

ning time for the Fixed and Custom benchmark, the running time for the Apriori

benchmark is unpredictable and directly depends on representative jobs provided

by the user. The Custom benchmark, on the other hand, completes fast due to its

focused nature of going after a spectrum of cost statistics within the same job.

In order to compare the prediction accuracy of the relative models when trained

with the three benchmarks, we created a test workload consisting of all MapRe-

duce jobs from Table 6.4. The test workload was executed on five 10-node Hadoop

clusters—one for each node type we considered in our evaluation (see Table 6.3).

We then used the job profiles obtained on the m1.large cluster to predict the job

118

Figure 6.8: Relative prediction error for the Fixed and Custom benchmarks over
the Apriori benchmark when asked to predict cost statistics for a test workload.

profiles for the other four clusters (i.e., relative predictions). As the Apriori bench-

mark assumes full knowledge of the test workload, we will use it as the baseline when

comparing the prediction accuracy of the three benchmarks.

Figure 6.8 shows the relative prediction error from using the Fixed and Custom

benchmarks against using the Apriori benchmark. Even though the processing per-

formed by the jobs in the Custom benchmark is completely independent from and

unrelated to the test workload, the prediction errors we observed are relatively low,

typically less than 15%. The Fixed benchmark results in the highest prediction er-

rors: running a predefined set of jobs with various settings does not seem to provide

adequate coverage of the possible cost statistics encountered during the execution of

the test workload.

Even though the Apriori benchmark leads to good predictions when the test

workload contains the same or similar jobs with the training workload, it can lead to

poor predictions for new jobs. For evaluation purposes, we excluded the TF-IDF job

from the training workload of the Apriori benchmark. We then tested the relative

models with the TF-IDF job profiles. We observed higher prediction errors compared

to predictions for the other jobs: Figure 6.9 shows how the Apriori benchmark is now

119

Figure 6.9: Relative prediction error for the Fixed and Custom benchmarks over
the Apriori benchmark without TF-IDF when asked to predict cost statistics for the
TF-IDF job.

outperformed by the Custom benchmark.

Overall, when the workload is known a priori and the high time to collect the

training data is not a concern, using the Apriori benchmark is the best option.

Otherwise, the Custom benchmark is a reliable and robust option for collecting

training samples quickly that lead to good predictions.

120

7

Cost-based Optimization for MapReduce
Workloads

Suppose we want to execute a MapReduce workflow W on a given input dataset

and a given MapReduce cluster. We can think of the settings for the configuration

parameters for all jobs in W as specifying an execution plan for W . Different choices

of the execution plan give rise to potentially different values for the performance

metric of interest for the workflow. In Chapter 6, we have seen how the What-if

Engine estimates the cost of one execution plan. The main problem we address in

this chapter is to automatically and efficiently choose a good execution plan for a

MapReduce workflow given the input dataset and the cluster characteristics. For

ease of exposition, we focus on optimizing individual MapReduce jobs first, followed

by optimization strategies for MapReduce workflows as well as cluster resources.

The optimization problem we are facing in MapReduce systems is similar in

nature to the cost-based query optimization problem in Database systems. Query

optimizers are responsible for finding a good execution plan p for a given query

q, given an input set of tables with some data properties d, and some resources r

allocated to run the plan. Database query optimizers use statistics about the data

121

(e.g., histograms) and known properties of logical operators (e.g., selection, join) to

estimate the size of data processed as input and produced as output by each physical

operator (e.g., index scan, hash join) in an execution plan. These dataflow estimates

and a cost model are used to estimate the performance cost y of a plan p. The query

optimizer employs a search strategy (e.g., dynamic programming (Selinger et al.,

1979)) to explore the space of all possible execution plans in search for the plan with

the least estimated cost y.

There is more than thirty years of work on database query optimization technol-

ogy that can be leveraged. However, due to the MADDER principles, there exist

some major challenges that we need to overcome in order to employ a cost-based

optimization approach to MapReduce programs.

• Black-box map and reduce functions: Map and reduce functions are usu-

ally written in general-purpose programming languages, like Java and Python,

that are not restrictive or declarative like SQL. Thus, the approach of modeling

a small and finite space of relational operators does not work for MapReduce

programs.

• Lack of schema and statistics about the input data: Almost no infor-

mation about the schema and statistics of input data may be available before

the MapReduce job is submitted. Furthermore, keys and values are often ex-

tracted dynamically from the input data by the map function, so it may not

be possible to collect and store statistics about the data beforehand.

• Differences in plan spaces: The execution plan space for SQL queries is very

different from the plan space of job configuration parameters for MapReduce

programs; so algorithms from SQL query optimizers do not translate directly

for optimizing MapReduce programs.

122

• Interactions among various plan choices: The jobs in a workflow exhibit

dataflow dependencies because of producer-consumer relationships as well as

cluster resource dependencies because of concurrent scheduling. Optimizing

configuration settings for MapReduce workflows is challenging because it has

to account for these dependencies and the consequent interactions among con-

figuration settings of different jobs in a workflow.

• Intertwining optimization and provisioning decisions: In addition to

selecting job-level and workflow-level configuration settings, the user is faced

regularly with complex cluster sizing problems that involve finding the cluster

size and the type of resources to use in the cluster from the large number of

choices offered by current cloud platforms (recall Section 2.2.1).

The Profiler, What-if Engine, and the Cost-based Optimizers—the three main com-

ponents of our solution shown in Figure 2.2—are designed to address these challenges

in MapReduce workflow optimization.

This chapter is organized as follows. Section 7.1 discusses related work for

MapReduce job optimization, MapReduce workflow optimization, and cluster pro-

visioning. Section 7.2 presents the first cost-based Job Optimizer for finding good

configuration settings automatically for simple to arbitrarily complex MapReduce

programs. We formulate the workflow optimization problem, and describe a family

of automatic Workflow Optimizers that were developed to address this problem in

Section 7.3. Finally, the Cluster Resource Optimizer, presented in Section 7.4, is

responsible for enumerating and searching the space of possible cluster resources. To

the best of our knowledge, these contributions are being made for the first time in

the literature.

123

7.1 Current Approaches to MapReduce Optimization

MapReduce is emerging rapidly as a viable competitor to existing systems for Big

Data analytics. While MapReduce currently trails existing systems in peak query

performance (Pavlo et al., 2009), a number of ongoing research projects are address-

ing this issue through optimization opportunities arising at different levels of the

MapReduce stack (Abouzeid et al., 2009; Bu et al., 2010; Dittrich et al., 2010; Jiang

et al., 2010). Starfish fills a different void by enabling MapReduce users and appli-

cations to get good performance automatically without any need on their part to

understand and manipulate the many optimization knobs available.

Optimizations for MapReduce jobs: Today, when users are asked to find good

configuration settings for MapReduce jobs, they have to rely on their experience,

intuition, knowledge of the data being processed, rules of thumb from human ex-

perts or tuning manuals, or even guesses to complete the task. Following popular

rules of thumb has become a standard technique for setting job configuration pa-

rameter settings (Hadoop Tutorial, 2011; Lipcon, 2009; White, 2010). For example,

mapred.reduce.tasks (the Hadoop parameter that specifies the number of reduce tasks

in a job) is set to roughly 0.9 times the total number of reduce execution slots in the

cluster. The rationale is to ensure that all reduce tasks run in one wave while leaving

some slots free for re-executing failed or slow tasks. It is important to note that

many rules of thumb still require information from past job executions to work ef-

fectively. For example, setting io.sort.record.percent requires calculating the average

map output record size based on the number of records and size of the map output

produced during a job execution. This rule of thumb sets io.sort.record.percent to

16
16`avg record size

. (The rationale here involves source-code details of Hadoop.)

The response surfaces in Figures 3.5 and 3.6 in Section 3.2 show that the rule-

of-thumb settings gave poor performance in both cases. In fact, the rule-of-thumb

124

settings for WordCount gave one of its worst execution times: io.sort.record.percent

and io.sort.mb were set too high. In the case of TeraSort, the rule of thumb for

io.sort.record.percent was able to achieve a local minimum, when mapred.reduce.tasks

was set to 27 (based on the rule of thumb: 0.9 ˆ 30 slots “ 27). However, a much

larger number of reduce tasks was necessary in order to achieve a better performance

for TeraSort.

When information from previous job executions is available, postmortem perfor-

mance analysis and diagnostics can also help with identifying performance bottle-

necks in MapReduce jobs. Hadoop Vaidya (Hadoop Vaidya, 2011) and Hadoop Per-

formance Monitoring UI (Hadoop Perf UI, 2011) execute a small set of predefined

diagnostic rules against the job execution counters to diagnose various performance

problems, and offer targeted advice. Unlike our optimizers, the recommendations

given by these tools are qualitative instead of quantitative. For example, if the ratio

of spilled records to total map output records exceeds a user-defined threshold, then

Vaidya will suggest increasing io.sort.mb, but without specifying by how much to in-

crease. On the other hand, our cost-based approach automatically suggests concrete

configuration settings to use.

A MapReduce program has semantics similar to a Select-Project-Aggregate (SPA)

in SQL with User-defined functions (UDFs) for the selection and projection (map)

as well as the aggregation (reduce). This equivalence is used in recent work to per-

form semantic optimization of MapReduce programs (Blanas et al., 2010; Cafarella

and Ré, 2010; Nykiel et al., 2010; Olston et al., 2008a). HadoopToSQL and Man-

imal perform static analysis of MapReduce programs written in Java in order to

extract declarative constructs like filters and projections. These constructs are then

used for database-style optimizations such as the use of B-Tree indexes, avoiding

reads of unneeded data, and column-aware compression (Cafarella and Ré, 2010; Iu

and Zwaenepoel, 2010). Manimal does not perform profiling, what-if analysis, or

125

cost-based optimization; it uses rule-based optimization instead. MRShare performs

multi-query optimization by running multiple SPA programs in a single MapReduce

job (Nykiel et al., 2010). MRShare proposes a (simplified) cost model for this appli-

cation. SQL joins over MapReduce have been proposed in the literature (Afrati and

Ullman, 2009; Blanas et al., 2010), but cost-based optimization is either missing or

lacks comprehensive profiling and what-if analysis.

Apart from the typical business application domains, MapReduce is useful in

the scientific analytics domain. The SkewReduce system (Kwon et al., 2010) focuses

on applying some specific optimizations to MapReduce programs from this domain.

SkewReduce includes an optimizer to determine how best to partition the map-output

data to the reduce tasks. Unlike our cost-based optimizers, SkewReduce relies on

user-specified cost functions to estimate job execution times for the various different

ways to partition the data.

In summary, previous work related to MapReduce job optimization targets se-

mantic optimizations for MapReduce programs that correspond predominantly to

SQL specifications (and were evaluated on such programs). In contrast, Starfish’s

What-if Engine support simple to arbitrarily complex MapReduce programs ex-

pressed in whatever programming language the user or application finds convenient.

We focus on the optimization opportunities presented by the large space of MapRe-

duce job configuration parameters.

Optimizations for higher-level MapReduce workloads: For higher levels of

the MapReduce stack that have access to declarative semantics, many optimization

opportunities inspired by database query optimization and workload tuning have

been proposed. Hive and Pig employ rule-based approaches for a variety of opti-

mizations such as filter and projection pushdown, shared scans of input datasets

across multiple operators from the same or different analysis tasks (Nykiel et al.,

126

2010), reducing the number of MapReduce jobs in a workflow (Lee et al., 2011), and

handling data skew in sorts and joins. The epiC system supports System-R-style join

ordering (Wu et al., 2011). Improved data layouts inspired by database storage have

also been proposed (e.g., Jindal et al. (2011)). All of this work is complementary

to our work on optimizing configuration parameters for MapReduce workflows in an

interaction-aware manner.

Automatic workflow optimization has a long history in grid computing. Initially,

grid systems focused on scheduling tasks on unused CPU capacity (Thain et al.,

2005). Data placement and movement occurred as a side effect of task execution.

As dataset sizes grew, researchers began to incorporate data-driven scheduling ap-

proaches that consider storage demands and data transfer costs (Bent et al., 2009;

Shankar and Dewitt, 2007). Awareness of data transfer costs and other scheduling-

level optimizations are built into task schedulers proposed for newer systems like

Hadoop, Dryad, and SCOPE (Isard et al., 2009; Zaharia et al., 2010). Our work

differs from the above work in a number of ways. First and foremost, the above work

is about scheduling a predetermined set of tasks per job. Our techniques complement

the scheduling-level optimizations by automatically picking the best degree of task-

level parallelism to process the jobs in a workflow. Furthermore, these decisions are

made to optimize the overall workflow performance, and not at the level of individual

jobs.

Dryad and SCOPE are data-parallel computing engines whose designs lie be-

tween databases and MapReduce (Isard et al., 2007; Zhou et al., 2010). DryadLINQ

is a language layer that integrates distributed queries into high-level .NET program-

ming languages. These systems contain certain optimizations that are not present in

MapReduce implementations, e.g., the ability to perform a large class of distributed

aggregations by composing a tree of partial aggregations (Yu et al., 2009). While

we work with MapReduce, the optimization techniques we propose are applicable

127

broadly in data-parallel job workflows. DryadLINQ supports a dynamically-changing

execution graph based on run-time information, which is similar to a dynamic opti-

mization approach that we propose in this chapter.

Applying optimizations at the higher or lower levels of the MapReduce stack

have their respective advantages and disadvantages. Intuitively, optimizations at a

higher level are expected to give bigger gains than optimizations at a lower level.

Nevertheless, optimizations done at lower levels of the MapReduce stack apply irre-

spective of the higher-level interface used (e.g., Hive or Pig) to specify workflows. In

addition, the heavy use of UDFs makes it impossible to apply many optimizations

at the higher level. Finally, we have observed from operational use of MapReduce

clusters that configuration parameters are controlled by administrators. Thus, sim-

ilar to physical design of Database systems, administrators can tune configuration

parameters in order to tune important or poorly-performing jobs as needed.

Cluster provisioning and modeling: Our work shares some goals with a recent

work on provisioning Hadoop on cloud platforms (Kambatla et al., 2009). The pro-

posed approach uses the following steps: (i) for a training workload of MapReduce

jobs, perform brute-force search over the resource configuration space to find the

best configuration; (ii) use the collected data to build a signature database that

maps resource utilization signatures from the jobs to the optimal configuration; and

(iii) given a new job j, run a scaled-down version of j to get j’s resource utilization

signature, and probe the signature database to find the best match. Only two con-

figuration parameters were considered, and no solution was proposed for finding the

number of nodes in the cluster. Furthermore, a brute-force approach will not scale

to the complex configuration space arising in MapReduce systems.

There has been considerable interest recently in using black-box models like re-

gression trees to build workload performance predictors in large-scale Data Centers

128

(Bodik et al., 2009). These models can be trained automatically from samples of

system behavior, and retrained when major changes happen. However, these models

are only as good as the predictive behavior of the independent variables they use and

how well the training samples cover the prediction space. As the number of inde-

pendent variables that affect workload performance increases (e.g., data properties,

configuration parameter settings, and scheduling policies), the number of training

samples needed to learn effective black-box models increases dramatically.

There have been proposals to eliminate modeling altogether, relying instead on

actual performance measurements through planned experiments (Duan et al., 2009;

Zheng et al., 2009). While this approach can give accurate predictions for some

specific problems, representative experiments are nontrivial to set up and take time

to run. Given the growing number of commercial cloud platforms, recent research

has looked into benchmarking them (Li et al., 2010). Such benchmarks complement

our work on building relative black-box models that can predict the performance of a

workload W on one provider A based on the performance of W measured on another

provider B.

7.2 Cost-based Optimization of MapReduce Jobs

MapReduce job optimization is defined as:

Given a MapReduce program p to be run on input data d and cluster re-

sources r, find the setting of configuration parameters copt = argmin
c P S

F pp, d, r, cq

for the cost model F represented by the What-if Engine over the full space

S of configuration parameter settings.

The Cost-based Optimizer (CBO) addresses this problem by making what-if calls

with settings c of the configuration parameters selected through an enumeration and

search over S. Recall that the cost model F represented by the What-if Engine is

129

implemented as a mix of simulation and model-based estimation. As observed from

Figures 3.5 and 3.6 in Section 3.2, F is high-dimensional, nonlinear, nonconvex, and

multimodal. For providing both efficiency and effectiveness, the CBO must minimize

the number of what-if calls while finding near-optimal configuration settings.

The What-if Engine needs as input a job profile for the MapReduce program p.

In the common case, this profile is already available when p has to be optimized. The

program p may have been profiled previously on input data d0 and cluster resources

r0 which have the same properties as the current d and r respectively. Profiles

generated previously can also be used when the dataflow proportionality assumption

can be made. Such scenarios are common in companies like Facebook, LinkedIn, and

Yahoo! where a number of MapReduce programs are run periodically on log data

collected over a recent window of time (Gates, 2010; Sood, 2010).

Recall from Section 6.2 that the job profile input to the What-if Engine can also

come fully or in part from an external module like Hive or Pig that submits the job.

This feature is useful when the dataflow proportionality assumption is expected to

be violated significantly, e.g., when a repeated job runs on input data with highly

dissimilar statistical properties. In addition, we have implemented two methods for

the CBO to use for generating a new profile when one is not available to input to

the What-if Engine:

1. The CBO can decide to forgo cost-based optimization for the current job ex-

ecution. However, the current job execution will be profiled to generate a job

profile for future use.

2. The Profiler can be used in a just-in-time mode to generate a job profile using

sampling as described in Section 4.4.

Once a job profile is available, the CBO will use it along with the input data prop-

erties and the cluster resources to find the best configuration settings for the new

130

Figure 7.1: Overall process for optimizing a MapReduce job.

(hypothetical) job. Figure 7.1 shows the overall process for optimizing a MapReduce

job. The CBO uses a two-step process: (i) subspace enumeration, and (ii) search

within each enumerated subspace. The two steps are discussed next.

7.2.1 Subspace Enumeration

A straightforward approach the CBO can take is to apply enumeration and search

techniques to the full space of parameter settings S. (Note that the parameters in

S are those whose performance effects are modeled by the What-if Engine, and are

listed in Table 3.1.) However, the high dimensionality of S affects the scalability of

this approach. More efficient search techniques can be developed if the individual

parameters in c can be grouped into clusters, denoted cpiq, such that the globally-

optimal setting copt in S can be composed from the optimal settings c
piq
opt for the

clusters. That is:

copt=
l

ä

i“1

argmin
cpiqPSpiq

F pp, d, r, cpiqq, with c = cp1q ¨ cp2q ¨ ¨ ¨ cplq (7.1)

131

Here, Spiq denotes the subspace of S consisting of only the parameters in cpiq.
Ä

denotes a composition operation.

Equation 7.1 states that the globally-optimal setting copt can be found using a

divide and conquer approach by (i) breaking the higher-dimensional space S into

the lower-dimensional subspaces Spiq, (ii) considering an independent optimization

problem in each smaller subspace, and (iii) composing the optimal parameter settings

found per subspace to give the setting copt.

MapReduce gives a natural clustering of parameters into two clusters: parameters

that predominantly affect map task execution, and parameters that predominantly

affect reduce task execution. For example, Hadoop’s io.sort.mb parameter only af-

fects the Spill phase in map tasks, while mapred.job.shuffle.merge.percent only affects

the Shuffle phase in reduce tasks. The two subspaces for map tasks and reduce tasks

respectively can be optimized independently. As we will show in Section 7.2.3, the

lower dimensionality of the subspaces decreases the overall optimization time dras-

tically.

Some parameters have small and finite domains, e.g., Boolean. At the other

extreme, the CBO has to narrow down the domain of any parameter whose domain

is unbounded. In these cases, the CBO relies on information from the job profile

and the cluster resources. For example, the CBO uses the maximum heap memory

available for map task execution, along with the program’s memory requirements

(predicted based on the job profile), to bound the range of io.sort.mb values that can

contain the optimal setting.

7.2.2 Search Strategy within a Subspace

The second step of the CBO involves searching within each enumerated subspace to

find the optimal configuration in the subspace. There is an extensive body of work

on finding good settings in complex response surfaces using techniques like simulated

132

annealing (Romeijn and Smith, 1994) and genetic algorithms (Goldberg, 1989). We

have adapted the Recursive Random Search technique, a fairly recent technique de-

veloped to solve black-box global optimization problems (Ye and Kalyanaraman,

2003). For comparison purposes, we also implemented Optimizers that attend to

cover the parameter space S using a Gridding approach.

Gridding (Equispaced or Random): Gridding is a simple technique to generate

points in a space with n parameters. The domain dompciq of each configuration

parameter ci is discretized into k values. The values may be equispaced or chosen

randomly from dompciq. Thus, the space of possible settings, DOM Ď
śn

i“0 dompciq,

is discretized into a grid of size kn. The CBO makes a call to the What-if Engine

for each of these kn settings, and selects the setting with the lowest estimated job

execution time.

Recursive Random Search (RRS): RRS first samples the subspace randomly to

identify promising regions that contain the optimal setting with high probability. It

then samples recursively in these regions which either move or shrink gradually to

locally-optimal settings based on the samples collected. RRS then restarts random

sampling to find a more promising region to repeat the recursive search. We adopted

RRS for three important reasons: (a) RRS provides probabilistic guarantees on how

close the setting it finds is to the optimal setting; (b) RRS is fairly robust to de-

viations of estimated costs from actual performance; and (c) RRS scales to a large

number of dimensions (Ye and Kalyanaraman, 2003).

In summary, we implemented six different cost-based optimizers for finding near

optimal configuration parameter settings. There are two choices for subspace enu-

meration: Full or Clustered that deal respectively with the full space S or smaller

subspaces for map and reduce tasks; and three choices for search within a subspace:

Gridding Equispaced, Gridding Random, and RRS.

133

Table 7.1: MapReduce programs and corresponding datasets for the evaluation of
the Job Optimizer.

Abbr. MapReduce Program Dataset Description

CO Word Co-occurrence 10GB of documents from Wikipedia
WC WordCount 30GB of documents from Wikipedia
TS Hadoop’s TeraSort 30GB data from Hadoop’s TeraGen
LG LinkGraph 10GB compressed data from Wikipedia
JO Join 30GB data from the TPC-H Benchmark

7.2.3 Evaluating Cost-based Job Optimization

The experimental setup used is a Hadoop cluster running with 1 master and 15 slave

Amazon EC2 nodes of the c1.medium type. Each slave node runs at most 2 map

tasks and 2 reduce tasks concurrently. Thus, the cluster can run at most 30 map

tasks in a concurrent map wave, and at most 30 reduce tasks in a concurrent reduce

wave. Table 7.1 lists the MapReduce programs and datasets used in our evaluation.

We selected representative MapReduce programs used in different domains: text

analytics (WordCount), natural language processing (Word Co-occurrence), creation

of large hyperlink graphs (LinkGraph), and business data processing (Join, TeraSort)

(Lin and Dyer, 2010; White, 2010).

We compare the Cost-based Optimizers (CBOs) against the Rules-of-Thumb

(RoT) approach that suggests configuration settings based on the rules of thumb

used by Hadoop experts to tune MapReduce jobs (described in Section 7.1). Apply-

ing the rules of thumb requires information from past job execution as input. CBOs

need job profiles as input which were generated by the Profiler by running each pro-

gram using the rules-of-thumb settings. Our default CBO is Clustered RRS. Our

evaluation methodology is:

1. We evaluate our cost-based approach against Rules-of-Thumb to both validate

the need for a CBO and to provide insights into the nontrivial nature of cost-

134

Table 7.2: MapReduce job configuration settings in Hadoop suggested by Rules-of-
Thumb (RoT) and the Cost-based Optimizer (CBO) for the Word Co-occurrence
program.

Conf. Parameter (described in Table 3.1) RoT Settings CBO Settings

io.sort.factor 10 97

io.sort.mb 200 155

io.sort.record.percent 0.08 0.06

io.sort.spill.percent 0.80 0.41

mapred.compress.map.output TRUE FALSE

mapred.inmem.merge.threshold 1000 528

mapred.job.reduce.input.buffer.percent 0.00 0.37

mapred.job.shuffle.input.buffer.percent 0.70 0.48

mapred.job.shuffle.merge.percent 0.66 0.68

mapred.output.compress FALSE FALSE

mapred.reduce.tasks 27 60

min.num.spills.for.combine 3 3

Use of the combine function TRUE FALSE

based optimization of MapReduce programs.

2. We compare the six different CBOs proposed in terms of effectiveness and

efficiency.

3. We evaluate our cost-based approach against Rules-of-Thumb in more trying

scenarios where predictions have to be given for a program p running on a large

dataset d2 on the production cluster r2 based on a profile learned for p from a

smaller dataset d1 on a small development cluster r1.

4. We evaluate the accuracy versus efficiency tradeoff from the approximate profile

generation techniques in the Profiler.

1. Rule-based Vs. cost-based optimization: We ran the Word Co-occurrence

MapReduce program using the configuration parameter settings shown in Table 7.2

as suggested by the Rules-of-Thumb (RoT) and the (default) CBO. Jobs JRoT and

135

Figure 7.2: Map and reduce time breakdown for two Word Co-occurrence jobs run
with configuration settings suggested by Rules-of-Thumb (RoT) and the Cost-based
Optimizer (CBO).

JCBO denote respectively the execution of Word Co-occurrence using the Rules-of-

Thumb and CBO settings. Note that the same Word Co-occurrence program is

processing the same input dataset in either case. While JRoT runs in 1286 seconds,

JCBO runs in 636 seconds (around 2x faster).

Figure 7.2 shows the task time breakdown from the job profiles collected by

running Word Co-occurrence with the Rules-of-Thumb and CBO-suggested config-

uration settings. Our first observation from Figure 7.2 is that the map tasks in

job JCBO completed on average much faster compared to the map tasks in JRoT .

The higher settings for io.sort.mb and io.sort.spill.percent in JRoT (see Table 7.2)

resulted in a small number of large spills. The data from each spill was processed by

the Combiner and the Compressor in JRoT , leading to high data reduction. However,

the Combiner and the Compressor together caused high CPU contention, negatively

affecting all the compute operations in JRoT ’s map tasks (executing the user-provided

map function, serializing, and sorting the map output).

The Optimizer decided to lower the settings for io.sort.mb and io.sort.spill.percent

compared to the settings in JRoT , leading to more, but individually smaller, map-

136

side spills. Since sorting occurs on the individual spills, smaller spills improve the

overall sorting time. However, more spills may require additional merge rounds to

produce one single map output file that will be transfered to the reducers. Since the

Optimizer is aware of the tradeoffs between sorting and merging, it chose to increase

the setting for io.sort.factor to ensure that all the spills will be merged in a single

merge round, avoiding unnecessary I/O caused from intermediate merge rounds.

In addition, CBO chose to disable both the use of the Combiner and compression

(see Table 7.2) in order to alleviate the CPU-contention problem. Consequently,

the CBO settings caused an increase in the amount of intermediate data spilled to

disk and shuffled to the reducers. CBO also chose to increase the number of reduce

tasks in JCBO to 60 due to the increase in shuffled data, causing the reducers to

execute in two waves. However, the additional local I/O and network transfer costs

in JCBO were dwarfed by the huge reduction in CPU costs; effectively, giving a

more balanced usage of CPU, I/O, and network resources in the map tasks of JCBO.

Unlike CBO, Rules-of-Thumb are not able to capture such complex interactions

among the configuration parameters and the cluster resources, leading to significantly

suboptimal performance.

2. Efficiency and Effectiveness of CBOs: We now evaluate the efficiency and

effectiveness of our six CBOs and Rules-of-Thumb in finding good configuration

settings for all the MapReduce programs in Table 7.1. Figure 7.3 shows running

times for MapReduce programs run using the job configuration parameter settings

from the respective optimizers. Rules-of-Thumb settings provide an average 4.6x

and maximum 8.7x improvement over Hadoop’s Default settings (shown in Table

3.1) across all programs. Settings suggested by our default Clustered RRS CBO

provide an average 8.4x and maximum 13.9x improvement over Default settings, and

an average 1.9x and maximum 2.2x improvement over Rules-of-Thumb settings.

137

Figure 7.3: Running times for MapReduce jobs running with Hadoop’s Default,
Rules-of-Thumb, and CBO-suggested settings.

Figure 7.3 shows that the RRS Optimizers—and Clustered RRS in particular—

consistently lead to the best performance for all the MapReduce programs. All the

Gridding Optimizers enumerate up to k=3 values from each parameter’s domain.

The Gridding Equispaced (Full or Clustered) Optimizers perform poorly sometimes

because using the minimum, mean, and maximum values (the three values that

correspond to k=3) from each parameter’s domain can lead to poor coverage of the

configuration space. The Gridding Random Optimizers perform better.

Figures 7.4 and 7.5 respectively show the optimization time and the total number

of what-if calls made by each CBO. (Note the log scale on the y-axis.) The Gridding

Optimizers make an exponential number of what-if calls, which causes their optimiza-

tion times to range in the order of a few minutes. For Word Co-occurrence, the Full

Gridding Optimizers explore settings for n=14 parameters, and make 314,928 calls

to the What-if Engine. Clustering parameters into two lower-dimensional subspaces

decreases the number of what-if calls drastically, reducing the overall optimization

times down to a few seconds. For Word Co-occurrence, the Clustered Gridding

Optimizers made only 6,480 what-if calls.

138

Figure 7.4: Optimization time for the six Cost-based Optimizers for various
MapReduce jobs.

Figure 7.5: Number of what-if calls made (unique configuration settings consid-
ered) by the six Cost-based Optimizers for various MapReduce jobs.

The RRS Optimizers explore the least number of configuration settings due to the

targeted sampling of the search space. Their optimization time is typically less than

2 seconds. Our default Clustered RRS CBO found the best configuration setting for

Word Co-occurrence in 0.75 seconds after exploring less than 2,000 settings.

3. Cost-based optimization in other common scenarios: Many organizations

139

Figure 7.6: The job execution times for TeraSort when run with (a) Rules-of-
Thumb settings, (b) CBO-suggested settings using a job profile obtained from run-
ning the job on the corresponding data size, and (c) CBO-suggested settings using
a job profile obtained from running the job on 5GB of data.

run the same MapReduce programs over datasets with similar data distribution but

different sizes (Sood, 2010). For example, the same report generation program may

be used to generate daily, weekly, and monthly reports. Or, the daily log data

collected and processed may be larger for a weekday than the data for the weekend.

For the experiments reported here, we profiled the TeraSort MapReduce program

executing on a small dataset of size 5GB. Then, we used the generated job profile

prof(J5GB) as input to the Clustered RRS Optimizer to find good configuration

settings for TeraSort jobs running on larger datasets.

Figure 7.6 shows the running times of TeraSort jobs when run with the CBO

settings using the job profile prof(J5GB). For comparison purposes, we also profiled

each TeraSort job when run over the larger actual datasets, and then asked the CBO

for the best configuration settings. We observe from Figure 7.6 that, in all cases, the

performance improvement achieved over the Rules-of-Thumb settings is almost the

same; irrespective of whether the CBO used the job profile from the small dataset

or the job profile from the actual dataset. Thus, when the dataflow proportionality

assumption holds—as it does for TeraSort—obtaining a job profile from running a

140

Figure 7.7: The job execution times for MapReduce programs when run with (a)
Rules-of-Thumb settings, (b) CBO-suggested settings using a job profile obtained
from running the job on the production cluster, and (c) CBO-suggested settings
using a job profile obtained from running the job on the development cluster.

program over a small dataset is sufficient for the CBO to find good configuration

settings for the program when it is run over larger datasets.

The second common use-case we consider in our evaluation is the use of a de-

velopment cluster for generating job profiles. In many companies, developers use a

small development cluster for testing and debugging MapReduce programs over small

(representative) datasets before running the programs, possibly multiple times, on

the production cluster. For the experiments reported here, our development cluster

was a Hadoop cluster running on 4 Amazon EC2 nodes of the c1.medium type. We

profiled all MapReduce programs listed in Table 7.1 on the development cluster. For

profiling purposes, we used 10% of the original dataset sizes from Table 7.1 that were

used on our 16-node (production) cluster of c1.medium nodes.

Figure 7.7 shows the running times for each MapReduce job j when run with

the CBO settings that are based on the job profile obtained from running j on the

development cluster. For comparison purposes, we also profiled the MapReduce jobs

when run on the production cluster, and then asked the CBO for the best config-

uration settings. We observe from Figure 7.7 that, in most cases, the performance

141

Figure 7.8: Percentage overhead of profiling on the execution time of MapReduce
jobs as the percentage of profiled tasks in a job is varied.

improvement achieved over the Rules-of-Thumb settings is almost the same; irre-

spective of whether the CBO used the job profile from the development cluster or

the production cluster.

Therefore, when the dataflow proportionality holds, obtaining a job profile by

running the program over a small dataset in a development cluster is sufficient for

the CBO to find good configuration settings for when the program is run over larger

datasets in the production cluster. We would like to point out that this property

is very useful in elastic MapReduce clusters, especially in cloud computing settings:

when nodes are added or dropped, the job profiles need not be regenerated.

4. Approximate job profiles through sampling: Profiling causes some slow-

down in the running time of a MapReduce job j. To minimize this overhead, the

Profiler can selectively profile a random fraction of the tasks in j. For this experi-

ment, we profiled all MapReduce jobs listed in Table 7.1 while enabling profiling for

only a random sample of the tasks in each job. As we vary the percentage of profiled

tasks in each job, Figure 7.8 shows the profiling overhead by comparing against the

same job running with profiling turned off. For all MapReduce jobs, as the percent-

142

Figure 7.9: Speedup over the job run with Rules-of-Thumb settings as the per-
centage of profiled tasks used to generate the job profile is varied.

age of profiled tasks increases, the overhead added to the job’s running time also

increases (as expected). It is interesting to note that the profiling overhead varies

significantly across different jobs. The magnitude of the profiling overhead depends

on whether the job is CPU-bound, uses a Combiner, uses compression, as well as the

job configuration settings.

Figure 7.9 shows the speedup achieved by the CBO-suggested settings over the

Rules-of-Thumb settings as the percentage of profiled tasks used to generate the

job profile is varied. In most cases, the settings suggested by CBO led to nearly the

same job performance improvements; showing that the CBO’s effectiveness in finding

good configuration settings does not require that all tasks be profiled. Therefore, by

profiling only a small fraction of the tasks, we can keep the overhead low while

achieving high degrees of accuracy in the collected information.

7.3 Cost-based Optimization of MapReduce Workflows

For a given MapReduce workflow W and cluster resources r, a Workflow Optimizer

must enumerate and search efficiently through the high-dimensional space of config-

uration parameter settings (making appropriate what-if calls) in order to find the

143

Figure 7.10: MapReduce workflows for (a) Query H4 from the Hive Performance
Benchmark; (b) Queries P1 and P7 from the PigMix Benchmark run as one workflow;
(c) Our custom example.

best ones. Even though the role of a Workflow Optimizer might seem similar to the

corresponding role of a Job Optimizer, there exist numerous challenges in optimizing

MapReduce workflows with multiple jobs, dependencies, and potential interactions.

The primary challenge is that the space of configuration parameter settings for a

workflow W comprises the huge cartesian product of the individual configuration

spaces of all jobs in W . We have developed optimizers that traverse this space

efficiently based on a characterization of the dataflow-based and resource-based in-

teractions that can arise in W . We will begin by introducing two experimental results

that illustrate the core insights behind the contributions we make in this Section.

7.3.1 Dataflow and Resource Dependencies in Workflows

The jobs in a workflow exhibit dataflow dependencies because of producer-consumer

relationships as well as cluster resource dependencies because of concurrent schedul-

ing. The dataflow and cluster resource dependencies can result in significant inter-

actions between the configuration parameter settings for the jobs in a MapReduce

workflow. Figure 7.10 shows some example MapReduce workflows that exhibit both

144

types of dependencies. We discuss the dependencies and the consequent interactions

next.

Dataflow dependencies in workflows and consequent (dataflow-based) in-

teractions: We first consider a MapReduce workflow with four jobs for Query H4

from Facebook’s Hive Performance Benchmark, modeled after the work by Pavlo

et al. to compare large-scale analytics systems (Pavlo et al., 2009). The workflow

processes 110GB of data on a 21-node Hadoop cluster (1 master and 20 slaves) on

Amazon EC2 nodes. (Section 7.3.3 gives the details of the cluster.)

Figure 7.11 shows the resulting performance of the workflow when optimized by

three different approaches:

• Rules of Thumb: The “Rules-of-Thumb” settings are based on manual tuning

of the jobs by following popular rules that expert Hadoop administrators use

to set configuration parameters for MapReduce jobs (e.g., Lipcon (2009)).

• Job-level Optimizer: This automated and cost-based optimizer is a natural

extension to the Job Optimizer presented in Section 7.2 above. The Job-

level Optimizer, which goes in topological sort order through the jobs in the

workflow, invokes the Job Optimizer to optimize each job independent of all

other jobs.

• Workflow Optimizer: This automated and cost-based optimizer is one of the

new optimizers we describe in Section 7.3.2.

Figure 7.11 shows that the optimized workflow given by the Workflow Optimizer

is around 3x faster than the manually-optimized workflow and 2.5x faster than the

workflow optimized by considering jobs independently.

The root cause of this performance gap comes from the dataflow dependencies

present in the workflow. Note from Figure 7.10(a) that the output dataset of job j1

145

Figure 7.11: Execution times for jobs in the workflow from Figure 7.10(a) when
run with settings suggested by (a) popular Rules of Thumb; (b) a Job-level Workflow
Optimizer; (c) an Interaction-aware Workflow Optimizer.

in the workflow forms the input dataset of job j2. As a result, there is a potential for

interaction between the configuration parameter settings of j1 and the configuration

parameter settings of j2, caused by the dataflow dependency between these jobs. An

interaction between the configuration parameter settings of j1 and j2 means that the

performance given by a configuration setting c2 for j2 will depend on the configuration

setting c1 used for j1. Thus, the jobs cannot be optimized independently without

running the risk of finding suboptimal configurations; which is what happened in

Figure 7.11.

Specifically, the 4.6GB output dataset produced by j1 compresses extremely well.

Thus, both the Job-level Optimizer and Rules-of-Thumb chose to enable data com-

pression for j1’s output; which is clearly optimal for j1 in isolation, and results in

436MB of output written to HDFS. When j2 is executed later, it will process its

436MB input dataset using two map tasks due to the 256MB block size. As a result,

each map task in j2 will have to process 2.3GB of uncompressed data. Thus, j2 will

make poor use of the cluster resources due to its low degree of parallelism as well as

146

excessive local I/O due to spills and merges in the map tasks.

On the other hand, the Workflow Optimizer takes the potential of interactions

into account when dataflow dependencies exist. It automatically realizes (based on

estimated costs) that a slightly suboptimal configuration for j1 can result in a major

performance boost for j2 and give excellent performance overall by making the best

use of cluster resources. The Workflow Optimizer disables output data compression

for j1, and uses 35 map tasks in j2 to process the 4.6GB of resulting input data.

Each map task in j2 processes only around 132MB and produces 35MB; giving the

2.5-3x overall speedup.

Another possible execution plan for jobs j1 and j2 would be to enable output

data compression for j1 (as suggested by the Job-level Optimizer), but force a larger

number of map tasks for job j2 (as suggested by the Workflow Optimizer). This plan

is possible only when two conditions are met: (i) the compression format used for j1’s

output is “splittable”, i.e., parts of a single compressed file can be read independently,

and (ii) the InputFormat 1 used to manage how the input data is split and read by

the map tasks allows the user to specify custom split points. Even though splittable

compression formats can be used (e.g., LZO, Bzip2), only some InputFormats have

parameters for specifying how to split the data. In addition, these InputFormat

parameters are typically treated as hints and are not always respected. Hence, these

parameters are not included in the optimization space of any of our optimizers, and

consequently, such an execution plan is not possible

Resource dependencies in workflows and consequent (resource-based) in-

teractions: Next, we consider the two-job workflow consisting of queries P1 and P7

from Yahoo!’s PigMix benchmark (Dai, 2011) run over 400GB of data. These two

jobs can run concurrently in the cluster since there is no dataflow dependency path

1 InputFormat describes the input specification for a MapReduce job running in Hadoop and is
customizable by the user.

147

Figure 7.12: Execution timeline for jobs in the workflow from Figure 7.10(b) when
run with settings suggested by (a) popular Rules of Thumb; (b) an Interaction-aware
Workflow Optimizer.

from one to the other. Figures 7.12(a) and (b) show respectively the performance

of this workflow when optimized manually using Rules of Thumb and automatically

with the Workflow Optimizer. The figures are timelines showing the number of tasks

running concurrently from both jobs. Note that reduce tasks start by performing a

Shuffle of the map output data before entering the Reduce phase2.

The crucial difference between the configuration settings generated by Rules of

Thumb and the Workflow Optimizer is in the number of reduce tasks. A widely-used

2 Recall the phases of MapReduce job execution discussed in Section 3.1

148

rule of thumb sets the number of reduce tasks to 36 (which is 90% of the cluster’s

maximum reduce capacity of 40 reduce task slots) for both jobs, resulting in the

following execution seen in Figure 7.12(a):

• Job j1’s map tasks start, followed soon after by its reduce tasks. The cluster’s

maximum map capacity is 60 map task slots, so job j1’s 260 map tasks will run

roughly in 5 waves.

• Job j2’s map tasks start once all of job j1’s map tasks complete and free the

map task slots. However, job j2’s reduce tasks cannot start since most reduce

task slots are hoarded by job j1.
3

A cluster resource dependency exists here between jobs that can run concurrently.

This dependency causes an interaction between the configuration parameter settings

of the two jobs. Our interaction-aware Workflow Optimizer chooses to set j1 and j2

to have 19 and 21 reduce tasks respectively. Both jobs will run slower individually

than if they had 36 reduce tasks since each reduce task will now process more data.

However, the lower degrees of parallelism enable both jobs to together utilize the

cluster resources better, and complete the workflow 1.34x faster. In particular, soon

after job j2 begins execution, j2’s reduce tasks will get scheduled on the 21 available

reduce slots (since j1 only runs 19 reduce tasks and the cluster has a total of 40

reduce slots), and will start shuffling data from j2’s completed map tasks while j1’s

reduce tasks are still executing (see Figure 7.12).

Table 7.3 illustrates a space of optimization choices missed by Rules of Thumb

and the Job-level Optimizer because they do not consider interactions caused by

resource dependencies. The table shows the number of reduce tasks selected by the

3 Similar hoarding problems have been observed by others (Zaharia et al., 2010). However, sched-
ulers like the Fair-Share Scheduler will not solve this particular problem because both jobs come
from the same user/workflow and have identical priorities.

149

Table 7.3: Number of reduce tasks chosen and speedup over Rules-of-Thumb settings
by the Workflow Optimizer for the two jobs in the workflow from Figure 7.10(b) as
we vary the total input size.

Data #Tasks #Tasks #Tasks Speedup Speedup Speedup
Size (Job j1) (Job j2) (Total) (Job j1) (Job j2) (Total)

200GB 26 8 34 1.25 1.30 1.30
300GB 24 16 40 1.24 1.27 1.25
400GB 19 21 40 1.31 1.35 1.34
500GB 38 20 58 1.22 1.25 1.24

Workflow Optimizer based on estimated costs, and resulting speedup, as we vary

the input data size from 200GB to 500GB. For smaller data sizes, a lower degree of

parallelism that permits both jobs to execute in a single concurrent reduce wave is

better. As data sizes increase, it becomes better to let jobs utilize all reduce slots.

The Workflow Optimizer improves performance by more than 1.2x in all cases.

The above experimental results illustrate the importance of optimizing configura-

tion parameters for MapReduce workflows in an interaction-aware manner. Efficient

solutions for this problem will help improve the performance of the entire MapRe-

duce stack automatically, irrespective of the higher-level interface used to specify

workflows.

7.3.2 MapReduce Workflow Optimizers

MapReduce workflow optimization is defined as:

Given a MapReduce workflow W that will run the jobs tjiu in the job

graph GW on input datasets tbiu and cluster resources r, find the con-

figuration parameter settings ci for each job ji in W that minimizes the

overall execution time of W .

For this purpose, the Workflow Optimizer is given three inputs:

1. The workflow profile generated for W by the Profiler; discussed in Section 4.1.

150

2. The properties of the base input datasets on which W will be run; discussed

in Section 3.1.

3. The cluster setup and resource allocation that will be used to run W ; discussed

in Section 3.1.

The Workflow Optimizer’s role is to enumerate and search efficiently through the

high-dimensional space of configuration parameter settings SW , making appropriate

calls to the What-if Engine, in order to find good configuration settings for each job

in W .

Workflow Optimization Space: Recall the set of configuration parameter set-

tings for individual MapReduce jobs discussed in Section 3.1. This set constitutes

the Job-level Optimization Space Sj for a single MapReduce job j. The Workflow

Optimization Space SW for the entire workflow W is the cartesian product of the

job-level optimization spaces for each job in W . That is, SW =
ź

jPW

Sj.

The above cartesian product is the result of the multiple dependencies that can

exist among the jobs in a MapReduce workflow. Consider our running example

workflow from Figure 7.10(c). Jobs j1 and j2 have a resource dependency and can be

scheduled to run concurrently in the cluster. Therefore, the choice for the number

of reduce tasks in j1 can directly affect the performance of j2, and consequently,

the choice for the number of reduce tasks in j2. Since job j3 exhibits a dataflow

dependency with both j1 and j2, the number of reduce tasks in the two jobs—

which determines the data properties for the derived datasets d1 and d2—can affect

the choice for the map-side parameters of j3. Hence, these choices must be made

together.

In theory, a choice for any configuration parameter in a particular job can in-

fluence the choice of any other configuration parameter in any other job in the

151

same workflow. However, in practice—and primarily due to the specific program-

ming model of the MapReduce framework—arbitrary interactions among parameters

across multiple jobs are rare (if present at all). We exploit this property in our work-

flow optimization process below.

Workflow Optimization Process: A straightforward approach for the optimiza-

tion process is to apply enumeration and search techniques to the full optimization

space SW over the entire directed acyclic graph (DAG) GW . However, the high

dimensionality of SW renders this approach impractical. More efficient search tech-

niques can be developed using a divide-and-conquer approach: GW is divided into

(possibly overlapping) subgraphs, denoted G
piq
W , with lower-dimensional subspaces

S
piq
W , such that the globally-optimal choices in SW can be found by composing the

optimal choices found for each S
piq
W .

Each G
piq
W along with the corresponding S

piq
W defines an Optimization Unit. The

core idea behind an optimization unit is to bring together a set of related decisions

that depend on each other, but are independent of the decisions made at other

optimization units. In other words, the goal is to break down the large space SW

into independent subspaces, such that SW =
ď

S
piq
W . Consider again the example

workflow from Figure 7.10(c). The decision for the number of reduce tasks for the

first job does not affect the optimizations that are applicable to the last job in the

workflow; thereby, these optimizations can be made independently.

Within each optimization unit, a Workflow Optimizer is responsible for enumer-

ating and evaluating the different configuration settings applicable to the jobs within

the unit. By making appropriate calls to the What-if Engine, the Workflow Opti-

mizer can evaluate the performance of jobs for different settings in order to make the

optimal decisions.

Overall, a Workflow Optimizer follows a two-step process:

152

Figure 7.13: The optimization units (denoted with dotted boxes) for our example
MapReduce workflow for the three Workflow Optimizers.

1. Given the MapReduce workflow DAG GW , the Optimizer will identify the

optimization units—each consisting of one or more MapReduce jobs—and build

a DAG of optimization units GU based on GW .

2. The Optimizer will traverse the graph GU in topological sort order to optimize

each optimization unit in turn, and then combine the unit-optimal settings in

order to build the globally-optimal execution strategy for W .

We have designed and developed three Workflow Optimizers that use different def-

initions of optimization units (shown in Figure 7.13) to (possibly) find the optimal

settings from the optimization space. The three Optimizers demonstrate the spec-

trum of optimization techniques that are available for workflow optimization as well

as different ways of dividing the workflow optimization space.

153

Job-level Workflow Optimizer

Given a MapReduce workflow W , a straightforward approach to optimize W is to

optimize each job in W independently of the other jobs. This approach is employed

by the Job-level Workflow Optimizer (denoted JobOpt).

Optimization unit: Each optimization unit U piq consists of a single MapReduce

job, while the optimization space S
piq
W consists of only the job-level configuration

parameters that control the execution of the single MapReduce job.

Search strategy within an optimization unit: Given the MapReduce job j in

U piq to be run on input data d and cluster c, the Optimizer must find the setting of

configuration parameters from S
piq
W that minimizes the running time of j. For this

purpose, the Optimizer is using the same enumeration and search strategy used by

the Job Optimizer presented in Section 7.2. The Optimizer first divides the job-

level optimization space Sj into two subspaces: the Map-side Optimization Space

Sm containing parameters that predominantly affect map task execution, and the

Reduce-side Optimization Space Sr containing parameters that predominantly affect

reduce task execution. Hence, Sj = Sm Y Sr. The two subspaces for map tasks and

reduce tasks respectively can be optimized independently by using the Recursive

Random Search (RRS) method twice.

Overall optimization process: Since each optimization unit consists of only one

job, the DAG of optimization units GU has the same structure as the input DAG

of jobs GW . JobOpt optimizes each unit U piq in GU in topological order. We will

describe the traversal process using the running example in Figure 7.13(a). First,

the Optimizer will find the best configuration settings for job j1 that processes the

workflow’s base dataset b1. Job j1 produces the first derived dataset d1, which is

later consumed by job j3. Given the configuration settings selected for j1, the What-

154

if Engine can estimate the properties of d1 (e.g., number of files in d1, size per file,

and use of compression). Next, the Optimizer will optimize job j2 and predict the

data properties for its derived dataset d2; and the process repeats. At the end, the

Optimizer will have the optimal configuration settings for each job in the workflow.

The main drawback of JobOpt is that it does not consider how the configura-

tion settings for a job affect the performance of concurrent or successor jobs. This

limitation is addressed by both the Single-configuration and the Interaction-aware

Workflow Optimizers below.

Single-configuration Workflow Optimizer

Many higher-level systems (e.g., Pig and Hive) expose structured interfaces for

users to express workflows with, and then automatically generate the correspond-

ing MapReduce jobs to execute on the cluster. This process naturally hides the

MapReduce jobs from the users, inevitably preventing them from specifying differ-

ent parameter settings for different jobs in the same workflow4. Motivated from this

fact, the Single-configuration Workflow Optimizer (denoted SinOpt) tries to find a

single set of configuration settings that must be the same for all jobs in the work-

flow; and subject to this constraint, the one that can lead to the best overall workflow

performance.

Optimization unit: SinOpt defines only one optimization unit that consists of the

entire graph GW . The workflow optimization space SW is reduced down to a single

job-level optimization space Sj since all jobs will use the same configuration settings

during execution.

Search strategy within an optimization unit: Similar to JobOpt, SinOpt will

4 The number of reduce tasks is an exception. The user can indirectly specify a different number
of reduce tasks for different MapReduce jobs by specifying a different degree of parallelism for
higher-level declarative constructs.

155

make appropriate what-if calls with settings c of the configuration parameters se-

lected through RRS over the optimization space Sj. Each what-if call will go through

the process of (i) estimating the virtual profile for each job in topological order, (ii)

simulating the job execution, and (iii) estimating the derived dataset properties, as

described in Chapter 6.

Overall optimization process: Since SinOpt consists of a single optimization unit,

the overall optimization process simply involves optimizing that unit.

Unlike JobOpt, SinOpt does take into consideration both resource and dataflow

dependencies among the jobs in the workflow. However, the optimization space it

considers is extremely limited and—as we will see in the evaluation Section 7.3.3—

does not always lead to the best settings.

Interaction-aware Workflow Optimizer

The Interaction-aware Workflow Optimizer (denoted IntOpt) addresses the limita-

tions of the other two optimizers based on the following intuition: when two jobs ji

and jk are separated by one or more jobs in the workflow graph (i.e., the dependency

path between ji and jk contains at least one other job), then the effect of ji on the

execution of jk diminishes rapidly in practical settings. Hence, decisions made for ji

can be made independently from decisions made for jk. For example, the choice for

compressing the output of job j1 in our example workflow from Figure 7.10(c), will

not affect the choice for using a combine function or some other setting in j4.

On the other hand, compressing j1’s derived dataset d1 will affect the performance

of job j3, since j3 will have to uncompress d1 to process it. A compressed input is

likely to affect the number of map tasks, as well as the settings of memory-related

parameters in j3. The Shuffle phase in j3, however, acts as a natural barrier and

synchronization step in the MapReduce framework, where the reduce tasks have to

wait for all the map tasks to complete execution before processing the shuffled data.

156

Hence, the execution of job j1, as well as the map phase of j3, will most likely not

affect the reduce phase of j3.

In summary, IntOpt builds the optimization units based on the conjecture that

jobs running concurrently in the cluster and the map phase of their successor jobs

should be optimized together. Similar to the JobOpt, the IntOpt follows a divide-

and-conquer approach for optimizing a single MapReduce job to explicitly separate

it into its map tasks and reduce tasks.

Optimization unit: An optimization unit U piq consists of (i) the map tasks of

a set of resource-dependent (i.e., concurrent) jobs, (ii) their reduce tasks, and (iii)

the map tasks of the corresponding successor jobs. Figure 7.13(c) shows a pictorial

representation of the interaction-aware optimization units. The first unit consists of

the map and reduce tasks of jobs j1 and j2, as well as the map tasks of job j3.

The optimization space S
piq
W is divided into two subspaces: the first subspace repre-

sents the cross product of the map-side optimization spaces of the resource-dependent

jobs; and the second subspace represents the cross product of the reduce-side opti-

mization spaces of the resource-dependent jobs with the map-side optimization spaces

of the successor jobs.

Search strategy within an optimization unit: IntOpt uses RRS twice to enu-

merate and search over the two subspaces in S
piq
W . For each enumerated point in

the first subspace of S
piq
W , the What-if Engine will (i) estimate the virtual profiles

for the map tasks in the resource-dependent jobs, (ii) simulate their execution, and

(iii) estimate their combined running time. By using RRS the first time, IntOpt

determines the map-side parameter settings that give near-optimal performance for

the map tasks.

For each enumerated point in the second subspace of S
piq
W , the What-if Engine will

(i) estimate the virtual profiles for the reduce tasks in the resource-dependent jobs,

157

(ii) estimate the data properties for the derived datasets, (iii) estimate the virtual

profiles for the map tasks in the successor jobs, and (iv) estimate the total running

time. The second RRS will determine the reduce-side parameter settings for the

resource-dependent jobs, completing the search in the current optimization unit.

Overall optimization process: IntOpt traverses the DAG of optimization unitsGU

in topological order. Each unit is responsible for optimizing the resource-dependent

jobs it contains, as well as estimating the data properties of the derived data sets.

For example, the first optimization unit in Figure 7.13(c) will optimize jobs j1 and

j2, and estimate the properties for derived datasets d1 and d2. The following unit

will optimize job j3 and estimate the properties for d3; and so on.

Overall, IntOpt is able to handle both resource and dataflow dependencies while

dividing the high-dimensional workflow optimization space into smaller, more man-

ageable optimization subspaces.

Static and Dynamic Optimization

We have seen how the three Workflow Optimizers traverse the workflow graph GW ,

create optimization units, and optimize each job in GW . The next question in hand

is when to optimize the workflow. The optimization process can either happen com-

pletely before any job gets submitted for execution in the cluster, or be interleaved

with job executions. The former approach is called Static Optimization, while the

latter is called Dynamic Optimization.

Static Optimization: With static optimization, all optimization units are opti-

mized at once before any jobs are submitted for execution in the cluster. In this

case, only the data properties for the base datasets are known, while the data prop-

erties for all derived datasets must be estimated during the job optimization process.

Static optimization is useful in two cases:

158

1. The user wants to get recommendations for parameter settings, without actu-

ally submitting the workflow for execution.

2. The user is trying to optimize the workflow using hypothetical base datasets

and/or cluster resources.

Dynamic Optimization: The core idea behind dynamic optimization is to optimize

each job immediately before it gets submitted to the cluster. Since all jobs are

organized into optimization units, however, we only optimize each optimization unit

U immediately before the first job j in U gets submitted to the cluster. At this

point, all derived datasets processed by j have already been generated (otherwise, j

would not have been ready for submission) and their properties can be automatically

collected from the cluster; no data estimation is needed.

IntOpt is still doing data estimation as part of the optimization process within a

single unit. Consider the first optimization unit of IntOpt in Figure 7.13(c). Finding

the best reduce-side parameters for jobs j1 and j2 requires estimating the data prop-

erties for d1 and d2. However, those data estimates will not be used by the second

optimization unit containing j3; thereby, any possible estimation mistakes will not

affect the optimization process of j3 and the following MapReduce jobs.

In summary, we have designed and developed three different Workflow Optimizers:

Job-level, Single-configuration, and Interaction-aware. Since SinOpt is responsible

for finding a single set of configurations for all jobs in the workflow, it does not

support Dynamic optimization. JobOpt and IntOpt on the other hand, support both

Static and Dynamic Optimization.

7.3.3 Evaluating Cost-based Workflow Optimization

In our experimental evaluation, we used two different Hadoop clusters. The first

cluster was running on 21 Amazon EC2 nodes of the m1.large type. Each node has

159

Table 7.4: MapReduce workflows and corresponding dataset sizes on two clusters for
the evaluation of the Workflow Optimizer.

Benchmark Dataset Size
Amazon Cluster Yahoo! Cluster

TPC-H Benchmark 100 GB 200 GB
PigMix Benchmark 500 GB 1000 GB
Hive Performance Benchmark 100 GB 200 GB
Custom Benchmark 500 GB 1000 GB

7.5 GB memory, 2 virtual cores, 850 GB local storage, and is set to run at most 3

map tasks and 2 reduce tasks concurrently. Thus, the cluster can run at most 60

map tasks in a concurrent map wave, and at most 40 reduce tasks in a concurrent

reduce wave. The second cluster is a cluster used for testing purposes at Yahoo!

Research and was running on 50 machines arranged in 3 racks. Each machine has

4 GB memory, 2 cores, 2x300 GB disks, and is set to run at most 2 map tasks and

2 reduce tasks concurrently. We will refer to the two clusters respectively as the

Amazon and the Yahoo! clusters.

For our evaluation, we selected representative MapReduce workflows from four

different benchmarks, listed on Table 7.4. These particular benchmarks were chosen

to have broad industry-wide relevance:

1. TPC Benchmark-H (TPC-H) is a decision support benchmark composed of a

suite of 22 business oriented ad-hoc queries (TPC, 2009).

2. PigMix consists of 17 queries that span the spectrum of representative queries

executed on Yahoo!’s production clusters (Dai, 2011).

3. Hive Performance Benchmark is modeled after the queries and data used by

Pavlo et al. in comparing large-scale analytics systems. It consists of 4 queries

performing log analysis (Pavlo et al., 2009).

4. Custom Benchmark contains 3 queries that heavily utilize user-defined func-

160

tions (UDFs). UDFs are commonly found in practice but none of the above

benchmarks include any.

Table 7.4 also lists the dataset sizes used for each benchmark for our two clusters.

All queries were expressed in Pig Latin and submitted using Pig. The unoptimized

MapReduce workflows are executed using Rules-of-Thumb settings found in Lipcon

(2009). Unless otherwise noted, the Dynamic Interaction-aware Workflow Optimizer

is the default optimizer used in our evaluation. Our experimental methodology is as

follows:

1. We evaluate the effectiveness and efficiency of the Workflow Optimizer in find-

ing good configuration settings to use for each job in a MapReduce workflow.

2. We compare the Job-level and Single-configuration Optimizers against the

Interaction-aware Optimizer to provide insights into the nontrivial nature of

the resource and dataflow dependencies that are present among the jobs in a

MapReduce workflow.

3. We compare the Static and Dynamic optimization approaches in terms of both

effectiveness and robustness.

1. End-to-end evaluation of the Workflow Optimizer: We evaluate the end-

to-end performance of the Dynamic Interaction-aware Optimizer on representative

queries selected from the TPC-H, PigMix, and Hive Benchmarks. In order to focus

the discussion on the key points of our evaluation, we do not present the results from

all workflows from all benchmarks. However, the workflows not presented either

exhibit similar results or are trivial, single-job workflows.

Figures 7.14 and 7.15 show the performance improvements achieved by the Work-

flow Optimizer in the Amazon and Yahoo! clusters, respectively. In all cases, the

161

Figure 7.14: Speedup achieved over the Rules-of-Thumb settings for workflows
running on the Amazon cluster from (a) the TPC-H Benchmark, (b) the PigMix
Benchmark, and (c) the Hive Performance Benchmark.

Workflow Optimizer is able to automatically match and surpass the workflow per-

formance obtained when using the Rules-of-Thumb settings, providing over a 2x

speedup in multiple cases. The results observed in the two clusters are very similar,

albeit the Workflow Optimizer provided slightly lower speedups in the Yahoo! cluster

compared to the ones in the Amazon cluster.

It it important to note here that finding the Rules-of-Thumb settings requires

a certain level of expertise as well as good knowledge of the internal workings of

Hadoop. On the other hand, a nonexpert user can simply use the Workflow Op-

timizer for automatically obtaining settings that will lead to both better workflow

performance as well as better utilization of the cluster resources.

Insights to optimization benefits: There are several different reasons for the

optimization benefits we observe in Figures 7.14 and 7.15. In Section 7.3.1, we have

already seen two such reasons. The first scenario involved two MapReduce jobs

having a dataflow dependency. In that case, compressing the output of the first job,

seriously limited the map-phase parallelism of the second job, leading to very poor

performance and cluster resource usage. The second scenario involved executing two

MapReduce jobs concurrently in the same workflow. Rather than maximizing the

162

Figure 7.15: Speedup achieved over the Rules-of-Thumb settings for workflows
running on the Yahoo! cluster from (a) the TPC-H Benchmark, (b) the PigMix
Benchmark, and (c) the Hive Performance Benchmark.

reduce phase parallelism of each job independently, it is often better to divide the

number of reduce slots among the jobs, in order to achieve a more effective use of

the cluster resources.

In order to provide further insights into where these benefits come from, we will

drill down into the execution behavior of TPC-H query T5. Query T5 executes a

6-way join, a group-by aggregation, and sorting, resulting in the generation and exe-

cution of 8 MapReduce jobs, j1 to j8. Using Rules-of-Thumb settings, T5 executes on

the Amazon cluster in around 46 minutes. The overall running time of the workflow

is dominated by jobs j3, j4, and j5, which run in 15, 15, and 11 minutes respectively.

All three jobs execute joins and are, therefore, CPU- and memory-intensive jobs.

Rules-of-thumb settings specify the use of map-output compression, which leads to a

compression ratio5 of around 0.3 for the map output of each job. However, the added

CPU overhead from the compression does not justify the benefits gained from the

reduced I/O—a property that is reflected in the job profiles. By disabling compres-

sion and increasing some memory buffers, the Workflow Optimizer is able to reduce

the running times of jobs j3, j4, and j5 down to 8, 4, and 3 minutes respectively,

5 Compression ratio is defined as the ratio of compressed size over uncompressed size.

163

Figure 7.16: Optimization overhead for all MapReduce workflows.

leading to a 2.6x speedup in the overall workflow execution time.

In addition, the Workflow Optimizer deemed sufficient to use only 26, 21, and 8

reduce tasks respectively for the three jobs, instead of 36 suggested by the Rules-

of-Thumb. Therefore, on top of the performance benefits, the Optimizer’s settings

also lead to more efficient use of the cluster resources. With a smaller number of

reduce tasks, Hadoop avoids the overhead of starting multiple tasks and has more

(free) task slots to schedule other jobs on.

Optimization overhead: The second important evaluation metric for an optimizer

is the efficiency by which it finds the optimal settings. Figure 7.16 shows the time

spent performing optimization. Note that the y-axis measures seconds, while all the

workflows run in the order of minutes. The average optimization time is 11.1 seconds

and the worst time is 23.1 seconds for query T9, which executes 8 MapReduce jobs

in a non-linear graph. The optimization times for the TPC-H queries are higher

compared to the times for the other benchmarks due to the much higher number of

MapReduce jobs that have to get optimized. The average optimization times for the

other two benchmarks is merely 6.4 seconds. Another interesting observation is the

sub-second optimization times for queries P2, H1, and H2. These queries execute

map-only jobs, which have a significantly smaller optimization space as the Workflow

164

Figure 7.17: Running times of queries with settings based on Rules-of-Thumb,
the Job-level Workflow Optimizer (JobOpt), and the Interaction-aware Workflow
Optimizer (IntOpt).

Optimizer does not need to consider any shuffle- or reduce-related parameters. Over-

all, the overhead introduced by the optimization process is dwarfed by the possible

performance improvements that can be achieved using better configuration settings.

2. Job-level Vs. Interaction-aware Workflow Optimizer: By optimizing

each job in isolation, JobOpt essentially employs a greedy approach to workflow

optimization. Similar to most greedy techniques, JobOpt works well in many cases,

but can also lead to suboptimal performance in others. In particular, in the absence

of significant job interactions, JobOpt will perform as well as IntOpt. This is evident

by the workflow performance observed for many queries seen in Figure 7.17. To avoid

repetition, we present results only for the two workflows with the largest number of

jobs from each benchmark.

Many of the MapReduce workflows generated for our benchmark queries consist

of a linear sequence of MapReduce jobs. Thus, resource interactions are not widely

present. However, in the presence of resource or dataflow interactions, JobOpt may

select settings that are optimal for one job but hurt the performance of another job

165

Figure 7.18: Optimization times for the Job-level Workflow Optimizer (JobOpt)
and the Interaction-aware Workflow Optimizer (IntOpt).

in the same workflow. Hive query H4 is a prime example and was discussed in detail

in Section 7.3.1.

We observe similar patterns with the two queries from our Custom Benchmark

(see Figure 7.17). Note that the Custom Benchmark was developed in order to

evaluate the optimizers in the presence of jobs containing complex UDFs. Custom

query C1 executes 2 MapReduce jobs with a dataflow dependency. Both jobs include

UDFs in the reduce tasks and the Combiner. Custom query C1 executes the same

2 jobs, but with a resource dependency instead. In both cases, a greedy selection

for the number of reducers leads to suboptimal use of cluster resources as well as

suboptimal workflow performance. IntOpt, on the other hand, is able to recognize

the dependencies and select the settings that lead to much better performance.

In terms of optimization time, JobOpt is on average 4.5 seconds faster than IntOpt.

Figure 7.18 shows the optimization times for the two optimizers with JobOpt having

an average of 9.4 seconds and IntOpt having an average of 13.9 seconds. Two reasons

account for IntOpt’s additional overhead. First, the optimization space for each unit

of IntOpt is larger than the one for each unit of JobOpt (see Section 7.3.2). Second,

166

Figure 7.19: Running times of queries with settings based on Rules-of-Thumb,
the Single-configuration Workflow Optimizer (SinOpt), and the Interaction-aware
Workflow Optimizer (IntOpt).

within a single unit, IntOpt must estimate the derived data properties with each

what-if call, whereas JobOpt must do so only once per job.

3. Single-configuration Vs. Interaction-aware Optimizer: Unlike JobOpt,

SinOpt will take job dependencies into account, but it will only consider a single

job-level optimization space for the entire workflow. Figure 7.19 shows the workflow

performance achieved by SinOpt settings compared to the Rules-of-Thumb and the

IntOpt settings. We observe that, in some cases, selecting the same settings for

all jobs can still provide significant performance benefits over the Rules-of-Thumb

settings. The main reason behind this observation is that the running time of many

workflows is dominated by the running time of 1 or 2 jobs in the workflow. Hence,

in these cases, SinOpt’s optimization process reduces to finding the best settings for

the dominating job(s) in the workflow.

The main scenario for which SinOpt can produce suboptimal results is when two

or more dominant jobs benefit from conflicting settings. For example, suppose that

it is best for one job j1 in a workflow W to enable the Combiner, whereas it is best

167

Figure 7.20: Optimization times for the Single-configuration Workflow Optimizer
(SinOpt) and the Interaction-aware Workflow Optimizer (IntOpt).

for another job j2 in W to disable it. SinOpt is simply not capable of making the

best decision for both jobs at the same time. Custom workflow C1 exhibits the

aforementioned behavior. The Combiner for job j1 has a record selectivity6 of 0.78,

and thus does not provide sufficient data reduction to justify its CPU overhead.

On the other hand, the combiner for j2 offers substantial data reductions with a

record selectivity of 0.31. SinOpt selects to disable the Combiner which improves the

performance of j1, but hurts j2 since j2 now needs to process more data.

Figure 7.20 shows the optimization times for SinOpt and IntOpt. On average, the

optimization time for SinOpt is 12.2 seconds and, thus, only slightly better that the

optimization time for IntOpt (13.9 seconds). Even though the overall optimization

space that IntOpt considers is significantly larger than the one for SinOpt, recursive

random search is still able to efficiently search through the larger space by only

adding a very small overhead to the total optimization time.

4. Static Vs. Dynamic optimization: Our final set of experiments targets the

6 Record selectivity is defined as the ratio of the number of output records over the number of
input records.

168

Figure 7.21: Running times of queries with settings based on Rules-of-Thumb, and
the Static and Dynamic Interaction-aware Workflow Optimizers.

evaluation of the Static and Dynamic optimization process. As discussed in Section

7.3.2, in Static optimization, the entire workflow is optimized before any job is sub-

mitted to the cluster, whereas in Dynamic each optimization unit is optimized imme-

diately before its first job is submitted. Figure 7.21 shows the performance achieved

when using the Static and Dynamic Interaction-aware Optimizers. Both optimizers

offer remarkably similar performance improvements over the Rules-of-Thumb set-

tings because the derived data estimation process used in Static Optimization is

fairly accurate.

In order to study the behavior of the Static Optimizer in the presence of mis-

estimation, we devised Custom workflow C3 consisting of 2 MapReduce jobs: The

first job j1 contains a filter UDF for filtering out data, and the second job j2 processes

the data generated by j1. The filter UDF allows us to externally control the filter

ratio7 of j1. We executed the workflow multiple times with different filter ratios

but each time we told the Optimizers the filter ratio was 0.4. Therefore, the Static

Optimizer would estimate the data properties of the derived data incorrectly.

7 The filter ratio is defined at the ratio of the output data size over the input data size.

169

Figure 7.22: Running times of queries with settings based on Rules-of-Thumb,
and the Static and Dynamic Interaction-aware Workflow Optimizers, as we vary the
actual filter ratio of job j1. The estimated filter ratio is always 0.4.

Figure 7.22 shows the workflow performance achieved by the Static and Dynamic

Optimizers against the Rules-of-Thumb as we vary the filter ratio of job j1. When the

filter ratio is set for example to 0.6, the Static Optimizer will overestimate the size of

j1’s output data by a filter ratio of 0.2, which roughly corresponds to 15 GB of data.

Despite the data mis-estimation, the Static Optimizer is still able to improve upon

the Rules-of-Thumb settings in all cases, showcasing the robustness of the selected

settings. The Dynamic Optimizer on the other hand, will dynamically observe the

properties of the derived dataset and correct any previous mis-estimations, offering

greater improvements.

7.4 Cost-based Optimization of Cluster Resources

One of the main purposes of Starfish is to automatically address cluster sizing prob-

lems for MapReduce workloads on the cloud. Recall that cluster sizing problems refer

to determining the appropriate cluster resources to use—in addition to the MapRe-

duce configuration settings—in order to meet desired requirements on execution time

and cost for a given MapReduce workload. The Job and Workflow Optimizers pre-

170

sented above are responsible for job-level configuration settings, whereas the Cluster

Resource Optimizer is responsible for the space of possible cluster resources. By

using all three components together, Starfish can provide reliable answers to tuning

queries.

7.4.1 Cluster Resource Optimizer

The properties used to represent the cluster resources in Starfish include the number

of nodes in the cluster, a label per node representing the node type, the cluster’s

network topology, the number of map and reduce task execution slots per node, and

the maximum memory available per task execution slot. From the above properties,

only the number of nodes and the node type is included as part of the search space

for cluster resources.

As discussed in Section 5.1, our current implementation of the Cluster Resource

Optimizer in Starfish does not include the cluster’s network topology as part of

the search space for cluster resources, since most current cloud providers hide the

underlying network topology from clients. In addition, the current tuning query

interface does not expose the other cluster-wide configuration parameters either.

Empirical evidence has shown that good settings for these parameters are determined

primarily by the CPU (number of cores) and memory resources available per node

in the cluster.

The Cluster Resource Optimizer is responsible for finding the optimal cluster re-

sources (in addition to job-level configuration settings) to meet desired requirements

on execution time and cost for a given MapReduce workflow. In addition to the

workflow profile and the input data properties, the input to the optimizer includes

a range for the cluster size and a set of labels that represent the resource choices.

Given the small discretized space of resource choices (e.g., EC2 node types) offered

by cloud platforms, the Cluster Resource Optimizer uses gridding to enumerate all

171

possible choices in the search space. For each enumerated space point (i.e., a particu-

lar cluster size and node type), the Cluster Resource Optimizer uses (i) the Workflow

Optimizer to find the optimal configuration settings {copt} for the workflow and (ii)

the What-if Engine to estimate the execution time (or cost) of the workflow using

{copt}. Note that the best configuration settings for the workflow will invariably

change if the cluster resources change. Finally, the Cluster Resource Optimizer se-

lects the space point (along with the corresponding configuration settings) with the

least estimated time (or cost).

Even though the Cluster Resource Optimizer covers a much smaller search space

compared to the other Optimizers, it is still an indispensable component that enables

Starfish to support multi-objective cluster provisioning. Starfish uses all Cost-based

Optimizers to enumerate and optimize the cluster resources and job configuration

parameter settings in tandem.

7.4.2 Evaluating Cost-based Cluster Provisioning

Starfish can reason about the Hadoop job parameter configuration space as well as

the cluster resources space. In this section, we evaluate the ability of Starfish to find

good cluster and job configuration settings to use for a MapReduce workload under

the dual objectives of execution time and cost.

For this evaluation, we used the Amazon EC2 node types c1.medium, m1.large,

and m1.xlarge. Table 3.2 lists the resources available for the three node types.

For each node type, we used empirically-determined fixed values for the cluster-

wide Hadoop configuration parameters—namely, the number of map and reduce task

execution slots per node, and the maximum memory available per task slot (shown

on Table 6.3). We varied the cluster sizes from 10 to 30 nodes.

The workload we used consists of the MapReduce jobs listed in Table 6.4—namely

Word Co-occurrence, Join, LinkGraph, TF-IDF, TeraSort, and WordCount—run one

172

Figure 7.23: Running time and monetary cost of the workload when run with
(a) Rules-of-Thumb settings and (b) Starfish-suggested settings, while varying the
number of nodes and node types in the clusters.

after the other. The job profiles were obtained by running the workload on a 10-node

cluster of m1.large EC2 nodes. For monetary cost predictions, Starfish uses a pricing

model containing the hourly node costs listed in Table 3.2.

Figure 7.23 shows the running time of the workload when run with the configura-

tion settings suggested by Starfish, across clusters each with a different type of node

and number of nodes. Starfish was able to provide up to 1.7x speedup for the work-

load, which translates into 42% cost savings. Since Starfish is able to reason about

the combined cluster resources and configuration space accurately, Starfish is also

able to answer general provisioning queries of the form: “What is the best combina-

tion of cluster resources and configuration settings to use for running my workload

in a way that minimizes execution time (or monetary cost), subject to a maximum

tolerable monetary cost (or execution time)?” In our experiment, Starfish was able

173

to identify correctly that using a 30-node cluster with m1.xlarge nodes would yield

the best workload execution time, whereas using a 20-node cluster with c1.medium

nodes would minimize the monetary cost.

It is interesting to note the complex interactions between execution times and

monetary costs as we vary the number of nodes and node type used in the clusters.

As expected, increasing the number of nodes and using more powerful machines lead

to better running times. However, the performance improvements are not necessarily

linear. Let us consider the 10-node cluster with m1.xlarge nodes. If we use 3x

more nodes, then we achieve only 2x performance improvement for the workload,

but for only a 1.5x increase in cost. On the other hand, the same 3x increase in the

number of nodes for a cluster with m1.large nodes leads to an almost 3x performance

improvement with only a 1.2x increase in cost.

Overall, Starfish is able to capture these complex interactions with a good degree

of accuracy; so it can help users select the best cluster resources to fit their needs

and preferences.

174

8

An Experiment-driven Approach to Tuning
Analytical Queries

Profile-predict-optimize forms the core approach used in this dissertation to address

a variety of tunings problems caused by the MADDER principles (recall Section

2.2). The Starfish system discussed in Chapters 4 through 7 applies this approach to

automatically tune a MapReduce workload W after observing a single execution of

W running on a MapReduce cluster. This application, however, is just one cycle of a

more general, self-tuning approach that learns over time and re-optimizes as needed.

We can employ the profile-predict-optimize approach repeatedly; that is, we

can collect some targeted profile information, perform optimization, and repeat as

needed to perform fine-grained workload tuning in the context of both Database and

Dataflow systems. This approach is particularly useful for the tuning scenario where

a user is willing to invest some resources upfront for tuning an important workload.

We have implemented this approach within the realm of Database systems to im-

prove suboptimal execution plans picked by the query optimizer for queries that are

run repeatedly (e.g., by a business intelligence or report generation application).

175

Traditional query optimizers for Database Systems have predominantly followed

a plan-first execute-next approach (Selinger et al., 1979): the optimizer uses a search

algorithm to enumerate plans, estimates plan costs based on a performance model

and statistics, and picks the plan with least estimated cost to execute a given SQL

query. While this approach has been widely successful, it causes a lot of grief when

the optimizer mistakenly picks a poor plan for a repeatedly run query. Unknown or

stale statistics, complex expressions, and changing conditions can cause the optimizer

to make mistakes. For example, the optimizer may pick a poor join order, overlook

an important index, use a nested-loop join when a hash join would have done better,

or cause an expensive, but avoidable, sort to happen (Deshpande et al., 2007). A

database administrator (DBA) may have to step in to lead the optimizer towards a

good plan (Belknap et al., 2009).

The process of improving the performance of a “problem query” is referred to in

the database industry as SQL tuning. SQL tuning is also needed while tuning multi-

tier services to meet service-level objectives (SLOs) on response time or workload

completion time (e.g., all reports should be generated by 6:00 AM).

Need for a SQL-tuning-aware query optimizer: SQL tuning is a human-

intensive and time-consuming process today, and expensive in terms of the total

cost of database ownership. The pain of SQL tuning can be lessened considerably if

query optimizers support a feature using which a user or higher-level tuning tool can

tell the optimizer: “I am not satisfied with the performance of the plan p being used

for the query Q that runs repeatedly. Can you generate a (δ%) better plan?” This

Chapter will discuss the design, implementation, and evaluation of Xplus, which—to

the best of our knowledge—is the first query optimizer to provide this feature.

The key to effective tuning ofQ is to make the best use of the information available

from running a plan (or subplan) for Q; and to repeat this process until a satisfactory

176

plan is found. Information available for each operator O of a plan p after p runs

includes: (i)Estimated Cardinality (EC), that is, the number of tuples produced by

O as estimated by the optimizer during plan selection, (ii)Actual Cardinality (AC),

that is, the actual number of tuples produced, and (iii)Estimated-Actual Cardinality

(EAC), that is, the number of tuples produced by O as estimated by the optimizer

if the optimizer knew the actual cardinality (AC) values of O’s children.

Existing approaches: The Learning Optimizer (Leo) (Stillger et al., 2001) incor-

porates AC values obtained from previous plan runs to correct EC values during

the optimization of queries submitted by users and applications (Chen and Rous-

sopoulos, 1994). The pay-as-you-go approach takes this idea further using proactive

plan modification and monitoring techniques to measure approximate cardinalities

for subexpressions to supplement the AC values collected from operators in a plan

(Chaudhuri et al., 2008). The overall approach of query execution feedback has some

limitations in practice:

• Risk of unpredictable behavior: Making changes to plans of user-facing queries

runs the risk of performance regression because incorporating a few AC values

alongside EC values can sometimes lead to the selection of plans with worse

performance than before (Markl et al., 2007).

• Imbalanced use of exploitation and exploration: Effective tuning of a problem

query needs to balance two conflicting objectives. Pure exploitation recom-

mends running the plan with the lowest estimated cost based on the current

cardinality estimates. Leo and Pay-As-You-Go take this route which ignores

the uncertainty in estimates when picking the plan for the query. In contrast,

pure exploration recommends running the plan whose execution will produce

information that reduces the uncertainty in current estimates the most, while

ignoring plan costs. Oracle’s Automatic Tuning Optimizer (ATO) (Belknap

177

et al., 2009) takes an exploration-oriented route where base tables and joins

are first sampled to reduce the uncertainty in their cardinality estimates.

• No support for the SLO setting: No current optimizer supports the SLO setting

where systematic exploration can be critical.

Xplus addresses these limitations. A user or tuning tool can mark a query Q for

which the performance of the plan p being picked is not satisfactory; and Xplus will

try to find a new plan that gives the desired performance. If Xplus fails to find

such a plan, it will still produce Q’s optimal plan for the current database configu-

ration and optimizer cost model; with all plans costed using accurate cardinalities.

Xplus works with the existing database configuration. While configuration changes

(e.g., new indexes, changes to server parameters, or provisioning more resources) can

also improve Q’s performance, such changes are disruptive in many ways including

changes to the performance of other queries. If Xplus fails, then we have the strong

guarantee that disruptive changes are unavoidable to get the desired performance.

Section 8.4 gives a detailed comparison of Xplus with other SQL tuning approaches.

In addition to the query Q to tune and the current plan p, the user can specify

a stopping condition for when to stop tuning Q, and resource constraints to limit

the overhead placed by Xplus on the regular database workload. Xplus accepts a

parameter MPLT (multiprogramming level of tuning) that represents the maximum

number of plans Xplus can run concurrently. The current stopping conditions are to

run Xplus until (i) a new plan is found that is a given δ% better than p; or (ii) a

given time interval; or (iii) Xplus can cost all plans for Q using accurate cardinalities

(a novel contribution); or (iv) the user exits the tuning session when she is satisfied

with the performance of the best plan found so far.

Xplus outputs the best plan p1 found so far in the tuning session, and the im-

provement of p1 over p. Database systems provide multiple ways to enable p1 to be

178

Figure 8.1: Neighborhoods and physical plans for our example star-join query.

used for future instances of Q: (i) associating a plan with a query template (stored

outlines in Oracle (Belknap et al., 2009), abstract plans in Sybase ASE (Andrei and

Valduriez, 2001), and Explain Plan in PostgreSQL (Herodotou and Babu, 2009)), (ii)

optimizer hints in Microsoft SQL Server (Bruno et al., 2009) and IBM DB2 (IBM

Corp., 2011a), and (iii) optimization profiles (IBM Corp., 2009) in DB2.

SQL tuning challenges: We introduce a running example to illustrate the chal-

lenges faced during SQL tuning. Suppose Xplus has to tune a star-join query Q

that joins four tables R (fact table), S, T , and U , with filter conditions on R and

S. Figure 8.1 shows four valid execution plans p1-p4 for Q. Let p1 be the least-cost

plan picked by the query optimizer. Figure 8.1 shows the EC, AC, and EAC values

for each operator in plan p1 that are available after a run of p1.

• Cardinality estimation errors: A large difference between an AC and cor-

responding EC value indicates a cardinality estimation error. For example,

AC=1800 differs significantly from EC=800 for the filtered table scan over R,

caused possibly by unknown correlations among columns of R.

• Error propagation: Blind comparison of AC and EC values can lead to wrong

179

conclusions because estimation errors propagate up the plan. This issue can

be addressed by comparing AC values with corresponding EAC values. For

example, consider the hash join between R and S in plan p1. While the gap

between AC=1367 and EC=450 is large for this join, the EAC=1350 is close

to AC. (This EAC was computed based on the actual cardinalities, 1800 and

1200, of the join’s children.) This information suggests that the estimation

error in the join’s output cardinality is almost exclusively due to wrong input

cardinality estimates, rather than a wrong join selectivity estimate.

• Livelock in SQL tuning: Suppose p2 is the new least-cost plan when the AC

values from p1 are incorporated with existing statistics. Approaches like Leo

will use p2 to run the next instance of Q submitted, which is problematic.

Although p2 is seemingly very different from p1, p2 will not bring any new AC

values. Thus, no further progress will be made towards finding better plans for

Q; we say that the tuning of Q is livelocked1.

• Use of EAC: Comparing EAC and AC values for joins indicates which joins are

more (or less) selective than the optimizer’s estimate. For example, R’s join

with T , whose EAC=756 ą AC=508, turned out to be much more selective

than estimated. Such information can guide whether a plan like p3, which has

a different join order from p1, could improve performance. A run of p3 will also

bring the unknown AC value for R ’ T .

• Exploitation Vs. exploration: Would plan p4 be preferable to p3 as the plan

to run next because a run of p4 will bring two unknown AC values compared

to just one from p3? At the same time, p4 is riskier to run because its cost

estimate relies on two unknowns. This issue is the manifestation in SQL tuning

1 Livelocks are well-studied phenomena where a process appears to be executing, but makes no
real progress towards its goal.

180

of the classic “exploit or explore” dilemma in machine learning (Gittins and

Jones, 1974).

• Efficiency features: Running a subplan instead of the full plan will often bring

all the new AC values that the plan brings, e.g., the R ’ T subplan will bring

all new AC values for p3.

As this example shows, a number of novel opportunities and challenges await a

SQL-tuning-aware optimizer like Xplus. The nontrivial challenges Xplus is facing

are in (i) choosing a small set of plans to run from the huge plan space, and (ii)

guiding the tuning process as new information is collected. To addresses these chal-

lenges, Xplus uses a novel abstraction called plan neighborhoods to capture useful

relationships among plans that simplify information tracking and improve efficiency

in SQL tuning. Xplus balances exploitation and exploration efficiently using a com-

bination of tuning experts with different goals, and a policy to arbitrate among the

experts. Efficiency is further improved through features like subplan selection and

parallel execution. Finally, Xplus is designed to leverage recent solutions that let the

Database system run query plans noninvasively in sandboxed (Belknap et al., 2009)

and standby (Belknap et al., 2009; Duan et al., 2009) settings for tuning.

8.1 New Representation of the Physical Plan Space

A query optimizer uses a performance model to estimate the cost of plans for a query

Q, which consists of a cardinality model and a cost model (Haas et al., 2009). The

cardinality model is used to estimate the cardinality of relational algebra expres-

sions defining the data inputs and output of each operator in a plan. Given these

cardinality estimates, the cost model estimates the execution cost of each operator.

While modern cost models have been validated to be quite accurate when cardinal-

ities are known, the cardinality models are laced with simplifying assumptions that

181

can introduce order-of-magnitude errors (Haas et al., 2009).

Definition 1. Cardinality Set: To estimate the execution cost of an operator O

in a plan p, the optimizer uses its cardinality model to estimate cardinalities for a

set CS(O) of relational algebra expressions. CS(O) is called O’s cardinality set. The

cardinality set CS(p) of plan p is the set union of the cardinality sets of all operators

in p.

A function Generate CS(O,p) is written per physical operator type to return the

cardinality set CS(O) of an instance O of that type in a plan p. The expressions

in CS(O) are a subset of the relational algebra expressions that define each of O’s

inputs and outputs in p; and whose cardinalities are needed to find O’s execution

cost in p. For example, for a hash join operator H over two subplans representing

the relational algebra expressions L and R in a plan p, Generate CS(H,p) will return

the cardinality set {L, R, L ’ R}. According to PostgreSQL’s cost model for a hash

join operator, the cardinalities of L, R, and L ’ R2 are needed to cost H. Finally,

CS(p) is generated by invoking the Generate CS(O,p) functions of all operators in

plan p using a bottom-up plan traversal.

Definition 2. Plan Neighborhood: The space of physical plans for a query Q can

be represented as a graph GQ. Each vertex in GQ denotes a physical plan for Q. An

edge exists between the vertices for plans p1 and p2 if CS(p1) Ď CS(p2) or CS(p2) Ď

CS(p1). The connected components of GQ define the plan neighborhoods of Q.

CS(N), the cardinality set of plan neighborhood N , is the set union of the cardinality

sets of all plans in N , i.e., the cardinalities needed to calculate execution costs for

all plans in N . It follows that a plan p belongs to a neighborhood N iff CS(p) Ď

CS(N).

2 |L ’ R| is used for estimating the CPU cost of the hash join.

182

Figure 8.2: Neighborhood and Cardinality Tables for our example star-join query.

Xplus uses two data structures to store all information about neighborhoods:

Neighborhood Table and Cardinality Table. Figure 8.2 illustrates these two data

structures for our running example query. The Neighborhood Table stores infor-

mation about all neighborhoods—including cardinality set and current least-cost

plan—with each row corresponding to one neighborhood. Each row in the Cardinal-

ity Table stores the EC and (if available) AC values of a relational algebra expression

needed for costing. The initialization, use, and maintenance of these data structures

during a tuning session are discussed in Section 8.2.

Figure 8.2 shows the cardinality set of neighborhood N1 for our running ex-

ample. Plans p1 and p2 from Figure 8.1 belong to N1, with CS(p1)ĂCS(N1) and

CS(p2)ĂCS(N1). We get CS(p1)=CS(p2) even though p2 uses a merge join, has an

extra sort, and a different join order between R and S compared to p1. Consider a

plan pN1 (not shown in the figure) that is similar to p1 except for a hash join (HJ)

with table U instead an INLJ. Then, CS(p1)ĂCS(pN1) because plan pN1 also needs

the cardinality of U for costing; and CS(pN1)=CS(N1). Plans p3 and p4 belong to

different neighborhoods than N1 since CS(p3) and CS(p4) are disjoint from CS(N1).

183

The progress of Xplus while tuning a query Q can be described in terms of the

coverage of neighborhoods in Q’s plan space.

Definition 3. Covering a Neighborhood: A neighborhood N is covered when AC

values are available for all expressions in CS(N).

When a tuning session starts, only the AC values from the plan picked originally

for Q by the optimizer may be available. More AC values are brought in as Xplus

runs (sub)plans during the tuning session, leading to more and more neighborhoods

getting covered.

Property 1. Once a neighborhood N is covered, Xplus can guarantee that all plans

in N are costed with accurate cardinalities. l

Property 2. Once all neighborhoods are covered for a query Q, Xplus can output

Q’s optimal plan for the given database configuration and optimizer cost model. l

The efficiency with which Xplus provides these strong guarantees is captured by

Properties 3-5.

Property 3. Xplus runs at most one (possibly modified) plan in a neighborhood N

to obtain AC values for CS(N). l

Property 3 allows Xplus to reduce the number of plans run to tune a query by

maximizing the use of information collected from each plan run.

Property 4. Xplus can cover all neighborhoods for a query Q by running plans for

only a fraction of Q’s neighborhoods. Almost all these runs are of subplans of Q (and

not full plans). l

Consider our running example query and plan p1 selected originally by the optimizer

(Figure 8.1). Xplus can fully tune this query to provide the strong guarantee in

184

Property 2 by running only two subplans: one in neighborhood N3 and one in N5.

As a real-life example, PostgreSQL has around 250,000 valid plans for the complex

TPC-H Query Q9; which gave 36 neighborhoods. Xplus only ran 8 subplans to fully

tune this query and give a 2.3x speedup compared to the original PostgreSQL plan.

Property 5. Xplus can determine efficiently the minimum set of neighborhoods that

contain plans whose cost estimates will change based on AC values collected from

running a plan for a query. l

8.2 New Search Strategy over the Physical Plan Space

We will now discuss how Xplus enumerates neighborhoods and plans, chooses the

next neighborhood to cover at any point, and selects the (sub)plan to run to cover

the chosen neighborhood.

8.2.1 Enumerating Neighborhoods and Plans

Definition 2 lends itself naturally to an approach to enumerate all neighborhoods for

a query Q: (i) enumerate all plans for Q and their cardinality sets; (ii) generate the

vertices and edges in the corresponding graph GQ as per Definition 2; and (iii) use

Breadth First Search to identify the connected components of GQ. This approach

quickly becomes very expensive for complex queries, so we developed an efficient

alternative based on plan transformations.

Definition 4. Transformation: A transformation τ when applied to a plan p for

a query Q, gives a different plan p1 for Q. τ is an intra (neighborhood) transfor-

mation if p and p1 are in the same neighborhood; else τ is an inter (neighborhood)

transformation.

Given a sound and complete set of transformations for a given Database system,

Xplus can use (i) inter transformations to enumerate all neighborhoods efficiently

185

for a query starting from an initial plan, and (ii) intra transformations to enumerate

all plans in a neighborhood efficiently, starting from a plan stored for each neigh-

borhood. We have developed a set of transformations applicable to the physical

plans of PostgreSQL. Transformations are implemented as functions that are ap-

plied to a plan data structure representing a physical plan p for a query Q (similar

to work on extensible query optimizers, like Graefe and DeWitt (1987)). Applying

these transformations multiple times enables Xplus to enumerate all of Q’s plans and

neighborhoods.

Like many query optimizers (including PostgreSQL), Xplus uses non-cost-based

query rewrite rules to identify the select-project-join-aggregation (SPJA) blocks in

the query. Each SPJA block is optimized separately to produce a plan per block;

and these plans are connected together to form the execution plan for the full query.

Intra and inter transformations in Xplus are applied to plans for SPJA blocks. Recall

that Xplus takes the input query Q and its current (unsatisfactory) plan p as input.

Xplus works with the SPJA blocks in p.

Intra Transformations: Intra transformations are applied to a single operator in

a plan to generate a different plan in the same neighborhood. These transformations

belong to one of two classes:

1. Method Transformations, which change one operator implementation (method)

to another implementation of the same underlying logical operation. Instances

of this class include: (i) Transforming a scan method to a different one (e.g.,

transforming a full table scan on a table to an index scan); (ii) Transforming a

join method to a different one (e.g., transforming a hash join to a merge join);

(iii) Transforming a grouping and aggregation method to a different one (e.g.,

transforming a sort-based aggregation operator to a hash-based one).

2. Commutativity Transformations, which swap the order of the outer and inner

186

subplans of a commutative operator. For example, transforming L ’ R to

R ’ L, for subplans L and R, since joins are commutative.

It is important to note that some transformations may not be possible on a given

plan. For example, a table scan on table R cannot be transformed into an index

scan unless an index exists on R. Also, additional changes may be required along

with the application of a transformation in order to preserve plan correctness. For

instance, a merge join requires both of its subplans to produce sorted output. If they

do not produce sorted output, then a transformation from a hash join to a merge

join must add sort operators above the subplans. Note that the addition of these

sort operators will not change the cardinality set of the plan (recall plans p1 and p2

in Figure 8.1).

Inter Transformations: When applied to a plan p, an inter transformation pro-

duces a plan p1 in a different neighborhood. That is, CS(p) ‰ CS(p1). Inter transfor-

mations predominantly apply across multiple operators in a plan. (It is theoretically

possible that changing the implementation method of an operator in a plan produces

a plan in a different neighborhood.) The main inter transformation swaps two tables

that do not belong to the same join in a join tree. As with intra transformations,

any changes required to preserve the correctness of the new plan are done along

with the inter transformation. The two other inter transformations are: (i) Pulling

a filter operation F over an operator (by default, F is done at the earliest operator

where F ’s inputs are available in the plan); (ii) Pushing a grouping and aggregation

operator below another operator (by default, the grouping and aggregation operator

is done after all filters and joins).

Our running example star-join query has six neighborhoods, each with its own dis-

tinct join tree (see Figure 8.1). Plan p2 can be produced from p1 by applying two

intra transformations: a method transformation that changes the middle join from a

187

hash join to a merge join, and a commutativity transformation that changes R ’ S

to S ’ R. Plan p3 can be produced from p1 by applying one inter transformation

(swap T and S) and one intra transformation (change R ’ T to T ’ R).

8.2.2 Picking the Neighborhoods to Cover

During the tuning process, Xplus must decide which neighborhood to cover next,

that is, from which neighborhood to run a plan to collect additional information and

convert more cardinality estimates from uncertain to accurate. Pure exploitation and

pure exploration form two extreme decision strategies. In pure exploitation, the plan

with the lowest cost based on current cardinality estimates is always preferred, while

the uncertainty in these estimates is ignored. In contrast, in pure exploration, the

focus is on reducing the uncertainty in cardinality estimates, so a plan that resolves

the current uncertainty the most will be preferred over other plans. Exploitation and

exploration are naturally at odds with each other, but elements of both are required

in holistic SQL tuning.

Xplus balances these conflicting objectives using multiple goal-driven experts—

given the current global state, an expert has its own assumptions and strategy to rec-

ommend the next neighborhood to cover—and a selection policy to arbitrate among

the experts.

We describe the design of four experts whose combined behavior has worked very

well in common query tuning scenarios. These experts operate with different degrees

of exploitation and exploration, summarized in Table 8.1.

Pure Exploiter Expert: The Pure Exploiter simply recommends the neighbor-

hood Nopt containing the plan with the lowest estimated cost based on the currently

available information. Nopt is recommended if it has not been covered yet. Oth-

erwise, the Pure Exploiter has no neighborhood to recommend and gets livelocked

(i.e., it gets stuck in a local optimum). It is also possible for the Pure Exploiter

188

Table 8.1: Properties of the current experts in Xplus.

Expert Exploitation Exploration Can run into
Component Component a Livelock?

Pure Exploiter Highest None Yes
Join Shuffler High Low Yes
Base Changer Low High No
Pure Explorer None Highest No

to recommend a bad neighborhood by mistake, just like a regular optimizer could

select a bad plan, because the plan cost estimation is based on the both AC and

EC values. Recall that EC values are computed using statistics supplemented, as

is common, with assumptions of uniformity and independence as well as the use of

magic numbers. Uncertainty in these estimates is not taken into consideration while

computing plan costs.

Join Shuffler Expert: The recommendation strategy of the Join Shuffler is a mix

of exploitation and exploration. This expert leans more towards exploitation based

on the observation that the more selective joins should appear earlier in the plan’s

join tree. The Join Shuffler works with the current least-cost plan popt among all

covered neighborhoods. It uses AC and EAC values in popt to identify joins for which

the join selectivity was overestimated, and uses inter transformations to push these

joins as low in the plan as possible (with any transformations required to maintain

correctness as discussed in Section 8.2.1). If these transformations result in a plan

pnew in an uncovered neighborhood Nnew, then Nnew is recommended; otherwise the

Join Shuffler is livelocked.

The degree of overestimation d in the selectivity of a join operator O is computed

as the relative difference between O’s EAC and AC values. That is, d “ EAC´AC
AC

.

Large d for O is an indication that O’s join selectivity is much smaller than what

the optimizer estimated based on the current available information. Hence, pushing

189

such joins down the join tree can potentially reduce the data flow up the tree, and

decrease the overall cost of the plan.

Base Changer Expert: The Base Changer’s recommendation strategy also mixes

exploitation and exploration, but this expert leans more towards exploration. The

motivation for this expert comes from the observation that the choice of which two

tables to join first (called the base join) in a join tree often has a high impact on the

overall performance of the tree. For example, the base of the plan p1 in Figure 8.1

is R ’ S. As anecdotal evidence, optimizer hints in most Database systems have

direct support to specify the first join or the first table to use in the join tree, e.g.,

the leading hint in Oracle (Belknap et al., 2009).

The Base Changer considers each two-way join in the query as a possible base,

and creates the rest of each join tree based on the join order in the current least-cost

plan popt. This strategy causes the Base Changer to recommend neighborhoods with

plenty of uncertain cardinality estimates. The mild exploitation component of this

expert comes from using popt to build parts of the join trees. Unless all neighborhoods

are covered, the Base Changer will always have a neighborhood to recommend; it

will never run into a livelock (unlike the previous two experts).

Pure Explorer Expert: If the overall degree of certainty in cardinality estimates

is low, then a lot of information may need to be collected in order to find an execution

plan with the desired performance. Compared to the other experts, the Pure Explorer

is designed to gather more statistics quickly. For each uncovered neighborhood Nu in

the space, the Pure Explorer computes the number of expressions in the cardinality

set of Nu whose AC values are not available. The Pure Explorer will then recommend

the uncovered neighborhood with the highest number of such expressions. Ties are

broken arbitrarily. Similar to the Base Changer, the Pure Explorer will never livelock.

For example, suppose that neighborhood N1 from our running example in Figure

190

8.1 has been covered. The Cardinality Table contains AC values for each expression

in the cardinality set of N1 (seen in Figure 8.2). Suppose the Pure Explorer has

two options for the neighborhood to recommend: N2 and N6. In this case, the

Pure Explorer will recommend covering N6 since it will bring in AC values for two

uncertain expressions, namely, σppRq ’ U and σppRq ’ T ’ U ; whereas covering N2

will only bring in the AC value for σppRq ’ T .

Xplus supports three different policies to determine which expert’s recommendation

should be followed at any point of time.

Round-Robin Policy: This policy consults the experts in a round-robin fashion.

Apart from its simplicity, this policy has the advantage of ensuring fairness across

all experts.

Priority-based Policy: This policy assigns a predefined priority to each expert.

Each time a new recommendation is needed, the experts are consulted in decreasing

order of priority. If an expert has no neighborhood to recommend, then the expert

with the next highest priority is consulted. By default, priorities are assigned to ex-

perts in decreasing order of the degree of exploitation they do. Thus, Pure Exploiter

has the highest priority, followed in order by Join Shuffler, Base Changer, and Pure

Explorer. Overall, this strategy realizes a common (greedy) approach that humans

use when faced with an exploitation versus exploration problem: explore only when

further exploitation is not possible currently.

Reward-based Policy: This policy consults experts based on an online assignment

of rewards that reflects how well the recommendations from each expert have per-

formed in the past. Each time a new recommendation is needed, the expert with the

current highest reward is consulted. If this expert has no neighborhood to recom-

mend, then the expert with the next highest reward is consulted; and so on. Rewards

are assigned as follows: If the overall least-cost plan changes based on an expert E’s

191

recommendation, then E’s reward is incremented by 1; otherwise, it is reduced by 1.

8.2.3 Picking the Plan to Run in a Neighborhood

Once a neighborhood N is selected for coverage, the next step is to pick the least-

cost (possibly-modified) plan prun such that a run of prun will bring AC values for all

expressions in MCS(N). MCS(N), called the missing cardinality set of N , is the subset

of expressions in CS(N) for which accurate cardinalities are currently unavailable.

Xplus uses the following algorithm:

(a) Use intra transformations to enumerate all plans in N .

(b) For each plan pPN , generate plan p1 that has any modifications needed to

collect all AC values for MCS(N). Find the cost of p1.

(c) Pick prun as the plan p1 with least cost over all plans from (b).

Xplus supports two general plan-modification techniques for the nontrivial Step (b):

subplan identification and additional scans.

Subplan identification: This technique finds the smallest connected subplan of p,

starting from the operators at the leaves of of p, whose execution will bring all AC

values for MCS(N).

Additional scans: While most needed AC values correspond to the output cardi-

nality of some operator in p, there are exceptions that need to be handled: (i) an

indexed nested-loop join (INLJ) will not collect the inner table’s cardinality, and (ii)

table scans or index-based access in the presence of filters containing ANDs/ORs of

individual predicates may not collect AC values for specific predicate combinations

needed for costing (Chaudhuri et al., 2008). Fortunately, both exceptions arise at

leaf operators of p. Thus, Xplus addresses them by adding additional table or index

scans to p in a cost-based manner.

192

Figure 8.3: System architecture of Xplus.

The above plan-modification techniques were sufficient for PostgreSQL plans. (No

changes were made to the PostgreSQL execution engine’s source code.) Query

plans in systems like IBM DB2 pose other exceptions like early exit from pipelines.

Adding (blocking) materialization operators to plans for statistics collection is a

plan-modification technique that can handle such exceptions (Markl et al., 2004).

8.3 Implementation of Xplus

8.3.1 Architecture

Xplus consists of six major components as shown in Figure 8.3:

• Global State Repository, which stores monitoring information collected by run-

ning plans, as well as conventional database statistics from the system catalog.

• Enumeration and Costing Engine, which enumerates neighborhoods and plans,

and estimates plan costs based on the information in the Repository.

• Recommendation Engine, which uses multiple Experts and a Selection Policy

to recommend neighborhoods to cover.

193

• Plan Selector, which selects the least-cost (sub)plan to collect the missing AC

values in each recommended neighborhood.

• Execution Agent, which schedules selected (sub)plans for execution based on

the specified resource constraints. Monitoring information from each execution

is added to the Repository.

• Controller, which shepherds each input query through its lifecycle by invoking

the above components appropriately.

Xplus is implemented currently as a Java application that interacts with the Database

system through a well-defined interface provided by the system. SQL Database sys-

tems contain external or internal interfaces to: (a) get cardinality and cost estimates

for physical plans, and (b) run a specified plan and collect AC values for opera-

tors during the run. We implemented a new server command in PostgreSQL, called

Explain Plan, to expose its interface for costing and running plans to external ap-

plications (Herodotou and Babu, 2009). Since the plan neighborhood abstraction,

central to how Xplus works, is not present in current optimizers, we developed plan

transformations as described in Section 8.2. Overall, only minor changes were needed

to PostgreSQL internals to support SQL tuning with Xplus. No changes were made

to PostgreSQL’s execution engine.

8.3.2 Extensibility Features

Xplus provides three dimensions for extensibility: adding new experts, new selec-

tion policies, and new controllers. SQL tuning problems that are hard to fix in a

commercial Database system usually get referred to the optimizer developers. Based

on the reports seen over time, the developers may notice a defect in the optimizer

that causes it to pick poor plans in certain conditions. Rather than modifying the

optimizer and thoroughly testing the new version, an easy temporary fix can be to

194

release a new Xplus expert that spots the mistake pattern and recommends plans to

correct it. The expert is dropped once the optimizer is corrected and tested (which

is very time consuming). This scenario illustrates one of the many positive impacts

that Xplus can have on optimizer development and usage.

Adding a new expert, selection policy, or controller involves implementing spe-

cific interfaces defined by Xplus. We used this feature to implement five different

controllers, described next. Recall that a controller is responsible for taking a given

query through its entire lifecyle (tuning or conventional processing) in the system.

Plan-first-execute-next controller: This non-tuning controller enables Xplus to

simulate the conventional query lifecyle: get the least estimated cost plan in the plan

space, and run it to generate the query results.

Serial (experts) controller: This controller repeatedly invokes the Xplus compo-

nents in sequence until the stopping condition is met. The Recommendation Engine

picks the next neighborhood N to cover in consultation with the Experts and the

Selection Policy. N is given to the Plan Selector for selecting the least-cost plan to

run to collect all missing AC values for CS(N). The returned (sub)plan is run by the

Execution Agent subject to the resource constraints specified. The new monitoring

data is entered into the Repository.

Parallel (experts) controller: This controller runs the Recommendation Engine,

Enumeration and Costing Engine, Plan Selector, and Execution Agent concurrently

to enable inter-component parallelism in Xplus. The Parallel controller provides

multiple benefits:

• If MPLT is set greater than 1, then these many (sub)plans will be run concur-

rently.

• If new AC values from a plan execution are available when a costing cycle

195

completes, another cycle is started to find the new least-cost plan; which helps

when the plan space is large.

• Running the Recommendation Engine and Plan Selector in parallel with other

components can hide plan recommendation latency in the presence of complex

experts or plan modifications.

Leo controller: This controller implements tuning as done by the Leo optimizer

(Stillger et al., 2001). In Xplus, the Leo controller effectively means using the serial

controller with the Pure Exploiter as the only expert. Whenever the current plan

finishes, the Pure Exploiter is consulted for the neighborhood to cover next. The Leo

controller cannot make further progress when the Pure Exploiter gets livelocked.

ATO controller: This controller implements how Oracle’s ATO (Belknap et al.,

2009) performs SQL tuning by collecting cardinality values for per-table filter pred-

icates and two-way joins. After these cardinality values are collected, the new least-

cost plan is recommended. Oracle’s ATO estimates cardinality values using random

sampling. Since PostgreSQL’s execution engine has no external support for sampling,

the ATO controller collects accurate AC values using the least-cost scan operator for

filter predicates, and the least-cost join operator for two-way joins.

We could not implement controllers for other related work like Eddies (Avnur and

Hellerstein, 2000), RIO (Babu et al., 2005), Pay-As-You-Go (Chaudhuri et al., 2008),

and POP (Markl et al., 2004) because they all require nontrivial changes to the plan

execution engine in the database. Such changes to the execution engine can help

Xplus collect AC values faster and more efficiently.

8.3.3 Efficiency Features

We have implemented a large range of the features in Xplus that reduce the time to

find a better plan as well as make Xplus scale to large queries.

196

1. Use of parallelism: In addition to incorporating inter-component parallelism

through the Parallel Controller, Xplus implements intra-component parallelism

in multiple places. The Execution Agent can schedule multiple plans to run in

parallel based on the MPLT setting. The Costing Engine, which leverages the

plan space partitioning imposed by neighborhoods, can cost plans in parallel.

The Recommendation Engine can invoke different experts in parallel.

2. Executing subplans instead of full plans: The Plan Selector implements this

optimization as described in Section 8.2.3, giving major efficiency improvements

as we will see in Section 8.5.

3. Prioritize neighborhoods: It is possible that some neighborhoods consist almost

exclusively of highly suboptimal plans. Xplus proactively identifies and avoids

such neighborhoods, even when not all AC values are available for them. As

an example, consider plan p4 belonging to neighborhood N6 in Figure 8.1. Let

AC values be available for σppRq, U , and σppRq ’ U , but not for the rest of

the plan. Also suppose that the three available AC values are very high. Then,

irrespective of what values the unknown cardinalities take, Xplus may discover

that the cost of doing σppRq ’ U makes all plans in neighborhood N6 worse

than the overall best plan among the neighborhoods covered so far. If so, Xplus

can avoid N6.

4. Optimized preprocessing: Recall how the Plan Selector may need to add addi-

tional scans to plans to collect needed AC values. Xplus proactively identifies

such exceptions during neighborhood enumeration, and does cost-based table

or index scans per table to collect needed AC values in a preprocessing step.

Table-by-table preprocessing is efficient because it makes better use of the

buffer cache.

197

5. Use of materialization: Plans from different neighborhoods may share common

subexpressions (e.g., R ’ S for neighborhoods N1 and N4 in Figure 8.1). Find-

ing commonalities and creating materialized views help avoid re-computation

during SQL tuning.

6. Use of sampling: Database systems have made giant strides in internal and

external support for sampling (Olken and Rotem, 1995). Xplus could use

sampling instead of executing (sub)plans on the full data.

7. Execution engine modifications: Xplus (especially the Plan Selector) can ben-

efit from a number of plan-modification techniques proposed in the database

research literature to increase statistics and cost monitoring capabilities during

plan execution (Babu et al., 2005; Chaudhuri et al., 2008; Markl et al., 2004).

The first four features listed above are fully integrated into Xplus, with the first two

been the most useful. The last three features are left for future work.

8.4 Comparing Xplus to Other SQL-tuning Approaches

In this section, we discuss current approaches to SQL tuning and provide a detailed

comparison with Xplus. Table 8.2 provides a high-level summary of the similar-

ities and differences between Xplus and other approaches with respect to various

important properties.

Using feedback from query execution: Leo (Stillger et al., 2001) corrects cardi-

nality estimation errors made by the query optimizer by comparing EC values with

AC values obtained when plans run (Chen and Roussopoulos, 1994). This approach

can find a better plan for a poorly-performing query Q over multiple executions of

Q or of queries with similar subexpressions. The Pay-As-You-Go approach took this

idea further using proactive plan modification and monitoring techniques to measure

198

Table 8.2: Comparison of Xplus, Leo, Pay-As-You-Go, and ATO.

Property Xplus Leo Pay-As- ATO
You-Go

Balanced use of exploitation and explo-
ration

Yes No No No

Support for SLO tuning tasks Yes No No No

Risk of unpredictable changes to user-
facing query behavior

No Yes Yes No

Requires changes to the query execution
engine

No No Yes No

Provides optimality guarantees for given
database configuration and optimizer
cost model

Yes No No No
(Prop. 2,
Sec. 8.1)

Use of parallelism Yes No No Possible

Use of collected statistics to improve
plans for other queries

Possible Yes Yes Possible

Potential to address errors in the opti-
mizer cost model

Yes No No Yes

Possibility for running into a livelock in

the SQL tuning process (Section 8.2.2)

Depends Yes Yes No
on choice
of experts

Use in fully automated tuning Possible Yes Yes Yes

approximate cardinality values for subexpressions, in addition to the subexpressions

contained in a running plan (Chaudhuri et al., 2008). While query execution feedback

is related closely to how Xplus performs SQL tuning, there are some key differences

between Xplus and the existing query execution feedback approaches:

• SQL tuning is inherently an unpredictable and risky process in that a plan

better than the optimizer’s original pick p may be found only after some plans

worse than p are tried. Given how difficult query optimization is, there is always

an element of trial-and-error in SQL tuning. Furthermore, experiences with

Leo show that incorporating some AC values alongside EC values can cause

optimizers to pick plans whose performance is worse than before (Markl et al.,

2007). Thus, attempting SQL tuning directly on queries being run by users

runs the risk of unpredictable behavior and performance regression. DBAs and

199

users usually prefer predictable, possibly lower, performance over unpredictable

behavior (Babcock and Chaudhuri, 2005). For this reason, unlike Leo and Pay-

As-You-Go, Xplus deliberately keeps the SQL tuning path separate from the

normal path of submitted queries.

• The concept of balancing the exploitation and exploration objectives explicitly

in SQL tuning is unique to Xplus. Leo and Pay-As-You-Go are exploitation-

heavy approaches, ignoring the uncertainty in estimates when picking the plan

for the query.

• A serious concern with using an exploitation-heavy approach is the possibility

of a livelock (see Section 8.2.2) because the subexpressions produced by a plan

dictate which set of actual cardinality values are available from running that

plan.

• Unlike Leo and Xplus, implementing the Pay-As-You-Go approach (and related

ones like RIO (Babu et al., 2005) and POP (Markl et al., 2004)) in a Database

system requires nontrivial changes to the plan execution engine.

• Execution of plans brings in valuable information like EC, AC, and EAC car-

dinality values. Other types of information that Xplus can track based on plan

execution include estimated and actual costs (including estimated-actual costs

similar to EAC), I/O patterns, and resource bottlenecks. Significant differ-

ences between actual costs and the corresponding estimated-actual costs may

indicate errors in the optimizer cost model.

Oracle’s Automatic Tuning Optimizer (ATO): Xplus shares common goals

with Oracle’s ATO (Belknap et al., 2009), but differs in the algorithms and system

architecture. While Leo and Pay-As-You-Go focus on exploitation, ATO is on the

200

exploration side. When invoked for a query Q, ATO does additional processing to

reduce the uncertainty in cardinality estimates for Q. First, ATO collects random

samples from the base tables to validate the cardinality estimates of Q’s filter pred-

icates. Given more time, ATO performs random sampling to validate all two-way

join cardinality estimates (possibly, up to all n-way joins). ATO uses a sandboxed

environment for the additional processing to limit the overhead of the tuning process

on the rest of the database workload. If the new estimates cause the least-cost plan

to change, then ATO compares the performance of the new plan against the old one

by running both plans in a competitive fashion. Unlike Xplus, ATO has features

to recommend new statistics to collect, indexes to create, and rewrites to the query

text.

Adaptive query processing: Xplus is one point in the design spectrum that in-

cludes a long line of work on adaptive query processing (Deshpande et al., 2007).

The Rdb system introduced competition-based query plan selection, namely, running

multiple plans for the same query concurrently, and retaining the best one (An-

toshenkov and Ziauddin, 1996). Database systems for emerging application domains

(e.g., MongoDB) are using this concept to address the lack of statistics in these

settings.

Eddies (Avnur and Hellerstein, 2000) identified the relationship of adaptive query

processing to multi-armed bandit (MAB) problems from machine learning (Gittins

and Jones, 1974). The study of MAB problems has led to theory and algorithms to

balance the exploitation-exploration tradeoff under certain assumptions, including

algorithms to control multiple competing experts (Gittins and Jones, 1974). Xplus

uses a similar approach by designing experts for SQL tuning who recommend new

plans to try based on the information available so far. While the experts in Xplus

are static, small in number, and recommend query plans, each expert in Eddies and

201

Rdb is a candidate plan for the query; which makes the architecture and algorithms

of Xplus very different from that of Eddies and Rdb. Experts have also been used

in query optimizers to exercise rewrite rules and heuristics during the optimization

of a query (Kemper et al., 1993).

Multiple optimization levels: Most current optimizers provide multiple levels of

optimization. For example, when a query is optimized in IBM DB2’s most powerful

9th level, all available statistics, query rewrite rules, access methods, and join orders

are considered (IBM Corp., 2011b). The design of Xplus (which stands for 10+) came

from considering what hypothetical classes 10 and higher of DB2’s optimizer could

usefully do. Our answer is that these higher levels will execute selected (sub)plans

proactively, and iterate based on the observed information; a challenging task left to

DBAs today.

8.5 Experimental Evaluation

The purpose of the evaluation of Xplus is threefold. First, we evaluate the effec-

tiveness and efficiency of Xplus in tuning poorly-performing queries. Second, we

compare Xplus with previous work. Finally, we evaluate different expert-selection

policies, combinations of experts, and the impact of the efficiency features outlined

in Section 8.3.3. All experiments were run on an Ubuntu Linux 9.04 machine, with

an Intel Core Duo 3.16GHz CPU, 8GB of RAM, and an 80GB 7200 RPM SATA-300

hard drive. The database server used was PostgreSQL 8.3.4. We used the TPC-H

Benchmark (TPC, 2009) with a scale factor of 10. We used the DB2 index advisor

(db2advis) to recommend indexes for the TPC-H workload since we have observed

that its index recommendations work well for PostgreSQL. All table and column

statistics are up to date except when creating problem queries due to stale statis-

tics. Unless otherwise noted, all results were obtained using the Parallel Experts

202

Table 8.3: Tuning scenarios created with TPC-H queries.

TPC-H Queries

Tuning Scenario Class 2 5 7 9 10 11 16 20 21

Query-level issues X X X X X
Data-level issues X X X X X
Statistics-level issues X X X X
Physical-design issues X X X X

Controller with MPLT=2 and the Priority policy with all experts.

We will present the evaluation of Xplus in terms of tuning scenarios, where a query

performs poorly due to some root cause. Four classes of query tuning scenarios are

common in practice:

1. Query-level issues: A query may contain a complex predicate (e.g., with a

UDF) for which cardinality estimation is hard.

2. Data-level issues: Real-life datasets contain skew and correlations that are hard

to capture using common database statistics.

3. Statistics-level issues: Statistics may be stale or missing, e.g., when a lot of

new data is loaded into a warehouse per day.

4. Physical-design issues: The optimizer may not pick a useful index, or it may

pick an index that causes a lot of random I/O.

We created multiple instances per tuning scenario class. Query-level issues were

created by making minor changes to the TPC-H query templates, mainly in the form

of adding filter predicates. Data-level issues were created by injecting Zipfian skew

into some columns. We decreased the amount of statistics collected by PostgreSQL

for some columns to create issues at the statistics and physical design levels. Table

8.3 summarizes the issues that were caused for each TPC-H query. Often problems

are due to some combination of multiple root causes, which is reflected in Table 8.3.

203

Table 8.4: Overall tuning results of Xplus for TPC-H queries.

Query Run Time of Run Time of Speedup Number of Time to Find Xplus Plan
PostgreSQL Xplus Factor Subplans Absolute Normalized
Plan (sec) Plan (sec) Xplus Ran (sec) (Col6/Col2)

2 8.67 0.59 14.8 5 40.42 4.66
5 1037.80 399.01 2.6 8 149.76 0.14
7 257.55 21.38 12.0 6 131.58 0.51
9 1722.27 754.82 2.3 8 870.78 0.51
10 2248.52 695.70 3.2 4 149.15 0.07
11 20.00 3.55 5.6 2 29.11 1.46
16 15.90 0.77 20.7 2 27.04 1.70
20 3.36 2.32 1.4 4 7.13 2.13
21 509.51 72.17 7.1 4 45.83 0.09

8.5.1 Overall Performance of Xplus

The first set of experiments targets the ability and efficiency of Xplus in finding

better execution plans for poorly-performing queries. Table 8.4 provides the results

for nine different tuning scenarios. (All plan running times shown are averaged over

six runs.) In all nine cases, Xplus found a better execution plan, offering an average

speedup of 7.7 times faster compared to the original plan (selected by the PostgreSQL

query optimizer) to be tuned. In three cases, Xplus found a new plan that is over

an order of magnitude faster.

The last two columns of Table 8.4 show the time Xplus takes to find the better

plan. The absolute times (second-last column) are small, which shows the high degree

of efficiency that our implementation achieves. In particular, the last column shows

normalized tuning time, which is the ratio of the time taken by Xplus to find the

better plan to the running time of the original plan to be tuned. The low values in

this column clearly demonstrate how Xplus gives its benefits in the time it takes to

run the original plan a very small number of times (often ă 2).

Figure 8.4 shows the execution timeline of Xplus while tuning TPC-H Query

7. The y-axis shows the execution time of the best plan found so far in the covered

204

Figure 8.4: Progress of the execution time of the best plan in the covered space as
Xplus tunes TPC-H Query 7.

space. The plan found by the PostgreSQL optimizer is N1p1 (plan p1 in neighborhood

N1), which runs in 257.55 seconds. Let us see the role of the experts in Xplus in

this tuning task. For ease of plotting the timeline, the Serial Controller with the

Priority policy and all four experts was used. First, a neighborhood recommended

by the Pure Exploiter led to the discovery of plan N1p1121, which gave a speedup

factor of 3.1. The Pure Exploiter livelocked at this point. The Join Shuffler then

recommended a neighborhood that led to plan N4p681; increasing the speedup to 4.1.

It took a recommendation from the exploration-heavy Base Changer for Xplus to find

plan N8p1270 with a speedup of 12. All neighborhoods were covered by the execution

of 7 subplans (not full plans). Recall the strong guarantee that Xplus provides once

all neighborhoods are covered (Property 2). This tuning task is an excellent example

of how exploitation and exploration are both needed to reach the optimal plan.

8.5.2 Comparison with Other SQL-tuning Approaches

We now compare Xplus with two other SQL tuning approaches: Leo and Oracle’s

ATO using the respective controllers discussed in Section 8.3.2. For the same nine

tuning scenarios from Table 8.4, Figure 8.5 shows the speedup factor of the plans

205

Figure 8.5: Speedup from Xplus, Leo, and ATO controllers over the execution time
of the original PostgreSQL plan.

produced by the three approaches compared to the original plan to be tuned. Xplus

found a better plan than Leo in 4 cases, offering up to an order of magnitude ad-

ditional speedup. Xplus found a better plan than ATO in 7 cases, with similar

improvements. The performance advantages of Xplus are more prominent for more

complex queries.

SQL tuning is also needed while tuning multi-tier services to meet service-level

objectives (SLOs) on response time or workload completion time. Motivated by this

scenario, Table 8.5 shows the performance of Xplus, Leo, and ATO controllers for

the following tuning task per query Q: find a plan that is 5x faster than the current

plan picked by the PostgreSQL optimizer for Q. For each approach, we show its

normalized tuning time and result. For the Leo and ATO controllers, the result is

one of: (i) Success, if a plan with ě5 speedup is found; or (ii) Failure(α), if the

controller could only find a plan with α ă5 speedup. In contrast, when Xplus fails to

find a plan with ě5 speedup, it provides the guarantee Guaranteepαq: for the given

database configuration and optimizer cost model, the optimal plan for Q only gives

α speedup. With this knowledge, the user or tuning tool can plan for the disruptive

206

Table 8.5: Tuning results of Xplus, Leo controller, and ATO controller when asked
to find a 5x better plan. Time is normalized over the execution time of the original
PostgreSQL plan.

Query Xplus Leo Controller ATO Controller
Time Result Time Result Time Result

2 4.66 Success 5.09 Failure(2.9) 4.99 Failure(2.2)
5 2.56 Guarantee(2.6) 0.57 Failure(2.6) 1.92 Failure(1.5)
7 0.51 Success 0.26 Failure(3.2) 1.03 Failure(4.2)
9 2.91 Guarantee(2.3) 0.91 Failure(1.4) 2.13 Failure(1.5)
10 0.07 Guarantee(3.2) 0.03 Failure(1.9) 0.23 Failure(3.2)
11 1.46 Success 0.14 Success 0.54 Success
16 1.70 Success 0.10 Success 1.35 Failure(2.8)
20 2.23 Guarantee(1.4) 2.12 Failure(1.4) 3.07 Failure(1.0)
21 0.09 Success 0.01 Success 0.59 Failure(1.9)

changes needed to the physical design, server parameters, or resource provisioning

to get the desired performance for the query.

Table 8.5 demonstrates the advantages of Xplus. Xplus finds a 5x faster plan in

five cases in Table 8.5, and provides a strong guarantee in the rest. The Leo and ATO

controllers succeed in only three cases and one case respectively. The Leo controller

fails to complete a task because it runs into a livelock, whereas the ATO controller

fails because the cardinality estimates gathered from sampling tables and two-way

joins are not enough to produce a plan with the desired performance.

8.5.3 Internal Comparisons for Xplus

Figures 8.6(a) and 8.6(b) illustrate an important trend that emerged in our evalua-

tion. These figures consider five strategies for plan recommendation: Priority, Round

Robin, and Rewards, each with all four experts; and Priority with (a) the Pure Ex-

ploiter and Pure Explorer (called Exploiter-Explorer), and (b) the Pure Explorer

only (called Explorer-Only). These strategies are compared based on convergence

time (how soon they found the best plan), as well as the completion time (how long

they took to cover all neighborhoods).

207

Figure 8.6: (a) Convergence times and (b) completion times for the expert-selection
policies.

Note from Figure 8.6 that exploration-heavy policies (like Explorer-Only and

Exploiter-Explorer) take longer to converge, but lead to lower completion times.

Exploitation targets missing statistics related to the current least-cost plan, which

leads to better convergence. However, the time to gather all statistics is longer

as exploitation makes small steps towards this goal. Exploration brings in more

information in each step, often decreasing the total number of executed (sub)plans

and the overall completion time.

Based on these observations, we offer the following guideline to choose the policy

and experts for a SQL tuning task. If the user or DBA wishes to find the best

plan possible (e.g., to decide whether disruptive tuning can be avoided), then she

should select an exploration-heavy strategy. On the other hand, if she is interested

208

Figure 8.7: Impact of the efficiency features in Xplus.

in quick improvements to the current plan, then a strategy that favors exploitation

over exploration is more suitable.

Figure 8.7 shows the impact of the two important efficiency features of Xplus:

use of parallelism and running subplans instead of full plans whenever possible.

Use of subplans is particularly beneficial for complex and long-running queries. For

example, Xplus ran 8 subplans to cover all neighborhoods for TPC-H Query 5. Most

of these subplans contained only around half of the tables in a full plan for the query,

causing Xplus to complete four times faster.

209

9

Increasing Partition-awareness in Cost-based Query
Optimization

“M” in MADDER principles represents the need to support data analysis over a

variety of data sources. At the same time, data partitioning—and table partitioning

in particular—is a powerful mechanism for improving query performance and system

manageability in both Database systems (IBM Corp., 2007; Morales, 2007; Talmage,

2009) and Dataflow systems (Thusoo et al., 2009; Chaiken et al., 2008). Uses of

partitioning range from more efficient loading and removal of data on a partition-by-

partition basis to finer control over the choice of physical design, statistics creation,

and storage provisioning based on the workload. Table 9.1 lists various uses of table

partitioning. Deciding how to partition tables, however, is now an involved process

where multiple objectives—e.g., getting fast data loading along with good query

performance—and constraints—e.g., on the maximum size or number of partitions

per table—may need to be met.

Unfortunately, cost-based query optimization technology has not kept pace with

the growing usage and user control of table partitioning. Previously, query optimizers

210

Table 9.1: Uses of table partitioning in Database systems.

Uses of Table Partitioning in Database Systems

Efficient pruning of unneeded data during query processing

Parallel access to data during query processing (e.g., parallel scans and par-
titioned parallelism)

Reducing data contention during query processing and administrative tasks.
Faster data loading, archival, and backup

Efficient statistics maintenance in response to insert, delete, and update
rates. Better cardinality estimation for subplans that access few partitions

Prioritized data storage on faster/slower disks based on access patterns

Fine-grained control over physical design for database tuning

Efficient and online table and index defragmentation at the partition level

had to consider only the restricted partitioning schemes specified by the database

administrator (DBA) on base tables. Today, the query optimizer faces a diverse

mix of partitioning schemes that expand on traditional schemes such as hash and

equi-range partitioning.

The growing usage of table partitioning has been accompanied by efforts to give

applications and user queries the ability to specify partitioning conditions for tables

that they derive from base data. MapReduce frameworks enable users to provide

partitioning functions that dictate how the data output by the map tasks is par-

titioned across the reduce tasks. This feature is used extensively by the Hive and

Pig frameworks (Thusoo et al., 2009; Olston et al., 2008b). Hive’s SQL-like query

language offers direct support to specify table partitioning. Finally, we are also start-

ing to see SQL extensions that provide first-class support for partitioning (Friedman

et al., 2009). Given such features, DBAs may not be able to control or restrict how

tables accessed in a query are partitioned.

In this chapter, we present new cost-based techniques to generate efficient plans

for queries involving multiway joins over partitioned tables. We will focus on hori-

zontal partitioning in centralized row-store Database systems sold by major database

211

Figure 9.1: Partitioning of tables R, S, T , and U . Dotted lines show partitions
with potentially joining records.

vendors as well as popular open-source systems like MySQL and PostgreSQL. The

need for partitioning in these systems has been shown previously (Agrawal et al.,

2004; Zeller and Kemper, 2002). Our work is also useful in parallel Database systems

like Aster nCluster (AsterData, 2012; Friedman et al., 2009), HadoopDB (Abouzeid

et al., 2009), and Teradata (Teradata, 2012) since these systems try to partition

data such that most queries in the workload need intra-node processing only. The

contributions of this chapter are complementary to the overall tuning approach pro-

posed in this dissertation, and necessary for both Database and Dataflow systems to

support the MADDER principles.

9.1 Optimization Opportunities for Partitioned Tables

We will begin with an illustration of the diverse mix of partitioning schemes that

expand on traditional schemes such as hash and equi-range partitioning. Figure 9.1

shows partitioning schemes for tables Rpaq, Spa, bq, T paq, and Upbq, where attribute

a is an integer and b is a date. Table S exhibits hierarchical (or multi-dimensional)

212

partitioning; S is equi-partitioned on ranges of a into four partitions S1-S4, each

of which is further partitioned on ranges of b. Such scheme can deal with multiple

granularities or hierarchies in the data (Baldwin et al., 2003).

Tables R, S, and T are all partitioned on a—typical for multiple related data

sources or even star/snowflake schemas—but with different ranges due to data prop-

erties and storage considerations. For example, if the number of records with the

same value of a is large in T (e.g., user clicks), then smaller ranges will give more

manageable partitions.

Table U is partitioned using nonequi ranges on b for data loading and archival

efficiency as well as workload performance. Daily partitions for daily loads are an

attractive option since it is faster to load an entire partition at a time. However,

maintenance overheads and database limitations on the maximum number of par-

titions can prevent the creation of daily partitions. Hence, 10-day ranges are used

for recent partitions of U . Older data is accessed less frequently, so older 10-day

partitions are merged into monthly ones to improve query performance and archival

efficiency.

The flexible nature and rising complexity of partitioning schemes pose new chal-

lenges and opportunities during the optimization of queries over partitioned tables.

Consider an example query Q over the partitioned tables R, S, and T in Figure 9.1.

Q: Select *

From R, S, T

Where R.a = S.a and S.a = T.a and S.b ě 02-15-10 and T.a ă 25;

Use of filter conditions for partition pruning: An optimization that many

current optimizers apply to Q is to prune partitions T4-T8 and S11, S21, S31, S41

from consideration because it is clear from the partitioning conditions that records

in these partitions will not satisfy the filter conditions. Partition pruning can speed

213

Figure 9.2: P1 is a plan generated by current optimizers for the running example
query Q. P2 is a plan generated by our partition-aware optimizer. IS and TS are
respectively index and table scan operators. HJ, MJ, and INLJ are respectively hash,
merge, and index-nested-loop join operators. Union is a bag union operator.

up query performance drastically by eliminating unnecessary table and index scans

as well as reducing memory needs, disk spills, and contention-related overheads.

Use of join conditions for partition pruning: Based on a transitive closure of

the filter and join conditions, partition pruning can also eliminate partitions S32, S33,

S42, S43, R3, R4, and U1.

Most current optimizers will stop here as far as exploiting partitions during the

optimization of Q is concerned; and generate a plan like P1 shown in Figure 9.2. In

a plan like P1, the leaf operators logically append together (i.e., do a bag union of)

the unpruned partitions for each table. Each unpruned partition is accessed using

regular table or index scans. The appended partitions are joined using operators like

hash, merge, and (index) nested-loop joins.

Partition-aware join path selection: Depending on the data properties, physical

design, and storage characteristics of the Database system, a plan like P2 shown in

Figure 9.2 can significantly outperform plan P1. P2 exploits a number of properties

arising from partitioning in the given setting:

• Records in partition R1 can join only with S12 Y S13 and T1 Y T2. Similarly,

214

records in partition R2 can join only with S22 Y S23 and T3. Thus, the full

R ’ S ’ T join can be broken up into smaller and more efficient partition-wise

joins.

• The best join order for R1 ’ pS12YS13q ’ pT1YT2q can be different from that

for R2 ’ pS22 Y S23q ’ T3. One likely reason is change in the data properties

of tables S and T over time, causing variations in statistics across partitions 1.

• The best choice of join operators for R1 ’ pS12 Y S13q ’ pT1 Y T2q may differ

from that for R2 ’ pS22 Y S23q ’ T3, e.g., due to storage or physical design

differences across partitions (e.g., index created on one partition but not on

another).

The above examples illustrate the optimization possibilities for SQL queries over

partitioned tables, which enlarge the plan space drastically. To our knowledge, no

current optimizer (commercial or research prototype) takes this space into account

to find efficient plans with low optimization overhead. We address this limitation by

developing a novel partition-aware SQL query optimizer:

• Dealing with plan space explosion: A nontrivial challenge we have to

address in a partition-aware optimizer is to keep the additional computational

and memory overheads of the optimization process in check while enabling

good plans to be found.

• Incorporation into state-of-the-art optimizers: The new techniques we

propose are designed for easy incorporation into bottom-up query optimizers

(like the seminal System R optimizer (Selinger et al., 1979)) that are in wide

use today. With this design, we leverage decades of past investment as well as

1 Most enterprises keep 6-24 months of historical data online.

215

potential future enhancements to these optimizers (e.g., new rewrite rules, new

join operators, and improvements in statistics and cardinality estimation).

• Partitions as physical or logical properties? The conventional wisdom

in the database literature as well as implementation in commercial bottom-

up query optimizers treat partitions as physical properties (Rao et al., 2002).

We show that treating partitions only as physical properties falls well short of

making the best use of partitioned tables. Our optimizer considers partitions

efficiently at both the logical and physical levels to get the best of two worlds:

(a) generating plans like P2 in Figure 9.2, and (b) preserving interesting parti-

tions (Rao et al., 2002) that may benefit operators (e.g., group-by) higher-up

in the plan.

• Supporting practical partitioning conditions: In addition to conventional

DBA-specified partitioning conditions on base tables, our optimizer supports a

wide range of user-specified partitioning conditions including multi-dimensional

partitions, multi-level hierarchical partitions, and irregular ranges. The chal-

lenge here is to deal with complex join graphs arising at the partition level (like

Figure 9.1) from the combination of the filter, join, and table-level partitioning

conditions for a SQL query.

• Improving cardinality estimates: A nonobvious effect arises from the fact

that most Database systems keep statistics (e.g., number of distinct values) at

the level of individual partitions. Cardinality estimation for appended parti-

tions necessitates combination of per-partition statistics. We have found that

estimation errors from such combination are worse for a plan like P1 that unions

multiple partitions together compared to P2.

216

9.2 Related Work on Table Partitioning

Various table partitioning schemes as well as techniques to find a good partitioning

scheme automatically have been proposed as part of database physical design tuning

(e.g., Agrawal et al. (2004); Rao et al. (2002)). In contrast, our goal is to fully exploit

possible query optimization opportunities given the existing horizontal partitioning

scheme in the database.

Partitioning in centralized Database systems: Commercial Database Manage-

ment System (DBMS) vendors (e.g., IBM, Microsoft, Oracle, and Sybase) provide

support for different types of partitioning, including hash, range, and list partition-

ing, as well as support for hierarchical (multi-dimensional) partitioning. However,

they implement different partition-aware optimization techniques. Most commercial

optimizers have excellent support for per-table partition pruning. In addition to

optimization-time pruning, systems like IBM DB2 support pruning of partitions

at plan execution time, e.g., to account for join predicates in index-nested-loop

joins (IBM Corp., 2007). Some optimizers generate plans containing n one-to-one

partition-wise joins for any pair of tables R and S that are partitioned into the

same number n of partitions with one-to-one correspondence between the partitions

(Morales, 2007; Talmage, 2009). For joins where only table R is partitioned, Oracle

supports dynamic partitioning of S based on R’s partitioning; effectively creating a

one-to-one join between the partitions.

UNION ALL views are a useful construct that can be used to support table

partitioning (Neugebauer et al., 2002). The techniques proposed in this paper are

related closely to pushing joins down through UNION ALL views. For example,

when a UNION ALL view representing a partitioned table R “ R1 Y . . . Y Rn is

joined with a table S, IBM DB2’s query optimizer considers pushing the join down

to generate a UNION of base-table joins pR1 ’ Sq Y . . . Y pRn ’ Sq (Neugebauer

217

et al., 2002). However, unlike our techniques, the join pushdown is considered in

the query-rewrite phase. As the authors of (Neugebauer et al., 2002) point out,

this step can increase the time and memory overheads of optimization significantly

because of the large number of joins generated (especially, if multiple UNION ALL

views are joined like in our example query in Figure 9.2). The techniques we propose

are designed to keep these overheads in check—even in the presence of hundreds of

partitions—while ensuring that good plans can be found.

Partitioning in parallel/distributed Database systems: While we focus on

centralized DBMSs, the partition-aware optimization techniques we propose are re-

lated closely to data localization in distributed DBMSs (Ozsu and Valduriez, 1999).

Data localization is a query-rewrite phase where heuristic rules like filter pushdown

are used to prune partitions and their joins that will not contribute to the query

result. A join graph is created for the partitions belonging to the joining tables,

and inference rules are used to determine the empty joins (Ceri and Gottlob, 1986).

While our work shares some goals with data localization, a number of differences

exist. Instead of heuristic rewrite rules, we propose (provably optimal) cost-based

optimization of partitioned tables. In particular, we address the accompanying non-

trivial challenge of plan space explosion—especially in the presence of hundreds of

partitions per table (e.g., daily partitions for a year)—and the need to incorporate

the new optimization techniques into industry-strength cost-based SQL optimizers.

The cost-based optimization algorithms we present are independent of the physi-

cal join methods supported by the DBMS. Parallel DBMSs support several partition-

aware join methods including collocated, directed, broadcast, and repartitioned joins

(Baru et al., 1995). SCOPE is a system for large-scale data analysis that uses cost-

based optimization to select the repartitioning of tables and intermediate results

(Zhou et al., 2010). Query optimizers in these systems attempt to minimize data

218

transfer costs among nodes, which is orthogonal to our work.

Dynamic partitioning: Selectivity-based partitioning (Polyzotis, 2005), content-

based routing (Bizarro et al., 2005), and conditional plans (Deshpande et al., 2005)

are techniques that enable different execution plans to be used for different subsets

of the input data. Unlike our work, these techniques focus on dynamic partitioning

of (unpartitioned) tables and data streams rather than exploiting the properties of

existing partitions. Easy incorporation into widely-used SQL optimizers is not a

focus of Bizarro et al. (2005), Deshpande et al. (2005), or Polyzotis (2005).

Predicate optimization: Predicate move-around (Levy et al., 1994) is a query

transformation technique that moves predicates among different relations, and pos-

sibly query blocks, to generate potentially better plans. Magic sets (Bancilhon et al.,

1986) represent a complementary technique that can generate auxiliary tables to be

used as early filters in a plan. Both techniques are applied in the rewrite phase of

query optimization, thereby complementing the cost-based optimization techniques

we propose.

9.3 Query Optimization Techniques for Partitioned Tables

Our goal is to generate an efficient plan for a SQL query that contains joins of

horizontally partitioned tables. We focus on tables that are partitioned horizontally

based on conditions specified on one or more partitioning attributes (columns). The

condition that defines a partition of a table is an expression involving any number

of binary subexpressions of the form Attr Op Val, connected by AND or OR logical

operators. Attr is an attribute in the table, Val is a constant, and Op is one of

t“,‰,ă,ď,ą,ěu.

Joins in a SQL query can be equi or nonequi joins. The joined tables could have

different number of partitions and could be partitioned on multiple attributes, like

219

in Figure 9.1. Furthermore, the partitions between joined tables need not have one-

on-one correspondence with each other. For example, a table may have one partition

per month while another table has one partition per day.

Our approach for partition-aware query optimization is based on extending bottom-

up query optimizers. We will give an overview of the well-known System R bottom-up

query optimizer (Selinger et al., 1979) on which a number of current optimizers are

based, followed by an overview of the extensions we make.

A bottom-up optimizer starts by optimizing the smallest expressions in the query,

and then uses this information to progressively optimize larger expressions until the

optimal physical plan for the full query is found. First, the best access path (e.g.,

table or index scan) is found and retained for each table in the query. The best

join path is then found and retained for each pair of joining tables R and S in the

query. The join path consists of a physical join operator (e.g., hash or merge join)

and the access paths found earlier for the tables. Next, the best join path is found

and retained for all three-way joins in the query; and so on.

Bottom-up optimizers pay special attention to physical properties (e.g., sort or-

der) that affect the ability to generate the optimal plan for an expression e by com-

bining optimal plans for subexpressions of e. For example, for R ’ S, the System R

optimizer stores the optimal join path for each interesting sort order (Selinger et al.,

1979) of R ’ S that can potentially reduce the plan cost of any larger expression

that contains R ’ S (e.g., R ’ S ’ U).

Our extensions: Consider the join path selection in a bottom-up optimizer for two

partitioned tables R and S. R and S can be base tables or the result of intermediate

subexpressions. Let the respective partitions be R1, . . . , Rr and S1, . . . , Ss pr, s ě 1q.

We call R and S the parent tables in the join, and each Ri (Sj) a child table. By

default, the optimizer will consider a join path corresponding to pR1 Y R2 ¨ ¨ ¨ Y Rrq

220

’ pS1 Y S2 ¨ ¨ ¨ Y Ssq, i.e., a physical join operator that takes the bag unions of the

child tables as input. This approach leads to plans like P1 in Figure 9.2.

Partition-aware optimization must consider joins among the child tables in order

to get efficient plans like P2 in Figure 9.2; effectively, pushing the join below the

union(s). Joins of the child tables are called child joins. When the bottom-up

optimizer considers the join of partitioned tables R and S, we extend its search

space to include plans consisting of the union of child joins. This process works in

four phases: applicability testing, matching, clustering, and path creation.

Applicability testing: We first check whether the specified join condition between

R and S match the partitioning conditions on R and S appropriately. Intuitively,

efficient child joins can be utilized only when the partitioning columns are part of

the join attributes. For example, the R.a “ S.a join condition makes it possible to

utilize the R2 ’ pS22 Y S23q child join in plan P2 in Figure 9.2.

Matching: This phase uses the partitioning conditions to determine efficiently which

joins between individual child tables of R and S can potentially generate output

records, and to prune the empty child joins. For R ’ S in our running example

queryQ, this phase outputs tpR1, S12q, pR1, S13q, pR2, S22q, pR2, S23qu. The remaining

possible child joins are pruned.

Clustering: Production deployments can contain tables with many tens to hundreds

of partitions that lead to a large number of joins between individual child tables.

To reduce the join path creation overhead and execution inefficiencies, we carefully

cluster the child tables. For R ’ S in our running example, the matching phase’s

output is clustered such that only the two child joins R1 ’ pS12 Y S13q and R2 ’

pS22 Y S23q are considered during path creation.

Path Creation: This phase creates and costs join paths for all child joins output

by the clustering phase, as well as the path that represents the union of the best

221

child-join paths. This path will be chosen for R ’ S if it costs lower than the one

produced by the optimizer without our extensions.

Next we present the details of these phases, and discuss how our techniques can be

incorporated into the bottom-up optimization process.

9.3.1 Matching Phase

Suppose the bottom-up optimizer is in the process of selecting the join path for parent

tables R and S with respective child tables R1, . . . , Rr and S1, . . . , Ss pr, s ě 1q. The

goal of the matching phase is to identify all partition-wise join pairs pRi, Sjq such that

Ri ’ Sj can produce output tuples as per the given partitioning and join conditions.

Equivalently, this algorithm prunes out (from all possible join pairs) partition-wise

joins that cannot produce any results.

An obvious matching algorithm would enumerate and check all the rˆ s possible

child table pairs. In distributed query optimization, this algorithm is implemented

by generating a join graph for the child tables (Ceri and Gottlob, 1986). The real

inefficiency from this quadratic algorithm comes from the fact that it gets invoked

from scratch for each distinct join of parent tables considered throughout the bottom-

up optimization process. Recall that R and S can be base tables or the result of

intermediate subexpressions.

Partition Index Trees (PITs): We developed a more efficient matching algorithm

that builds, probes, and reuses Partition Index Trees (PITs). The core idea is to

associate each child table with one or more intervals generated from the table’s

partitioning condition. An interval is specified as a Low to High range, which can

be numeric (e.g., p0, 10s), date (e.g., r02-01-10, 03-01-10q), or a single numeric or

categorical value (e.g., r5, 5s, rurl,urls). A PIT indexes all intervals of all child tables

for one of the partitioning columns of a parent table. The PIT then enables efficient

222

Figure 9.3: A partition index tree containing intervals for all child tables (parti-
tions) of T from Figure 9.1.

lookup of the intervals that overlap with a given probe interval from the other table.

Use of PITs provides two main advantages:

• For most practical partitioning and join conditions, building and probing PITs

has Opr log rq complexity (for r partitions in a table). The memory needs are

θprq.

• Most PITs are built once and then reused many times over the course of the

bottom-up optimization process.

PIT, at a basic level, is an augmented red-black tree (Cormen et al., 2003). The

tree is ordered by the Low values of the intervals, and an extra annotation is added

to every node recording the maximum High value (denoted Max) across both its

subtrees. Figure 9.3 shows the PIT created on attribute T.a based on the partitioning

conditions of all child tables of T (see Figure 9.1). The Low and Max values on each

node are used during probing to efficiently guide the search for finding the overlapping

intervals. When the interval r20, 40q is used to probe the PIT, five intervals are

checked (highlighted in Figure 9.3) and the two overlapping intervals r20, 30q and

r30, 40q are returned.

223

Algorithm for performing the matching phase

Input: Relation R, Relation S, Join Condition
Output: All partition-wise join pairs (Ri,Sj) that can produce join results

For each (binary join expression in Join Condition) {
Convert all partitioning conditions to intervals;
Build a PIT with intervals from partitions of R;
Probe the PIT with intervals from partitions of S;
Adjust matching result based on logical AND or OR semantics of the Join Condition;

}

Figure 9.4: Matching algorithm.

Matching algorithm: Figure 9.4 provides all the steps for the matching algorithm.

The input consists of the two tables to be joined and the join condition. We will

describe the algorithm using our running example query Q. The join condition for

S ’ T in Q is a simple equality expression: S.a “ T.a. Later, we will discuss

how the algorithm handles more complex conditions involving logical AND and OR

operators, as well as nonequi join conditions. Since the matching phase is executed

only if the Applicability Test passes, the attributes S.a and T.a must appear in the

partitioning conditions for the partitions of S and T respectively.

The table with the smallest number of (unpruned) partitions is identified as

the build relation and the other as the probe relation. In our example, T (with 3

partitions) will be the build relation and S (with 4 partitions) will be the probe

one. Since partition pruning is performed before any joins are considered, only the

unpruned child tables are used for building and probing the PIT. Then, the matching

algorithm works as follows:

• Build phase: For each child table Ti of T , generate the interval for Ti’s parti-

tioning condition. Build a PIT that indexes all intervals from the child tables

of T .

• Probe phase: For each child table Sj of S, generate the interval int for Sj’s

224

partitioning condition. Probe the PIT on T.a to find intervals overlapping

with int. Only T ’s child tables corresponding to these overlapping intervals

can have tuples joining with Sj; output the identified join pairs.

For S ’ T in our running example query, the PIT on T.a will contain the intervals

r0, 10q, r10, 20q and r20, 30q, which are associated with partitions T1, T2, and T3

respectively (see Figure 9.1). When this PIT is probed with the interval r20, 40q for

child table S22, the result will be the interval r20, 30q, indicating that only T3 will

join with S22. Overall, this phase outputs tpS12, T1q, pS12, T2q, pS13, T1q, pS13, T2q,

pS22, T3q, pS23, T3qu; the remaining possible child joins are pruned.

Support for complex conditions: The description so far was simplified for ease

of presentation. A number of nontrivial enhancements to PITs and the matching

algorithm were needed in order to support complex partitioning and join conditions

that can arise in practice. First, PITs need support for multiple types of intervals:

open, closed, partially closed, one sided, and single values (e.g., p1, 5q, r1, 5s, r1, 5q,

p´8, 5s, and r5, 5s). In addition, supporting nonequi joins required support from

PITs to efficiently find all intervals in the tree that are to the left or to the right of

the probe interval.

Before building and probing the PIT, we need to convert each partitioning and

join condition into one or more intervals. A condition could be any complex combi-

nations of AND and OR subexpressions, as well as involve any operator in t“,‰,ă

,ď,ą,ěu. Subexpressions that are ANDed together are used to build a single inter-

val, whereas subexpressions that are ORed together will produce multiple intervals.

For example, suppose the partitioning condition is (R.a ě 0 AND R.a ă 20). This

condition will create the interval r0, 20q. The condition (R.a ą 0 AND R.b ą 5) will

create the interval p0,8q, since only R.a appears in the join conditions of query Q.

The condition (R.a ă 0 OR R.a ą 10) will create the intervals p´8, 0q and p10,8q.

225

If the particular condition does not involve R.a, then the interval created is p´8,8q,

as any value for R.a is possible.

Our approach can also support nonequi joins, for example R.a ă S.a. Suppose

A “ pA1, A2q is an interval in the PIT and B “ pB1, B2q is the probing interval.

The interval A is marked as an overlapping interval if Dα P A, β P B such that

α ă β. Note that this check is equivalent to finding all intervals in the PIT that

overlap with the interval p´8, B2q.

Finally, we support complex join expressions involving logical ANDs and ORs.

Suppose the join condition is (R.a “ S.a AND R.b “ S.b). In this case, two PITs

are built; one for R.a and one for R.b. After probing the two PITs, we will get two

sets of join pairs. We then adjust the pairs based on whether the join conditions are

ANDed or ORed together. In the example above, suppose that R1 can join with S1

based on R.a, and that R1 can join with both S1 and S2 based on R.b. Since the two

binary join expressions are ANDed together, we induce that R1 can join only with

S1. However, if the join condition were (R.a “ S.a OR R.b “ S.b), then we would

induce that R1 can join with both S1 and S2.

Complexity analysis: Suppose N and M are the number of partitions for the

build and probe relations respectively. Also suppose each partition condition is

translated into a small, fixed number of intervals (which is usually the case). In

fact, a simple range partitioning condition will generate exactly one interval. Then,

building a PIT requires OpNˆlogNq time. Probing a PIT with a single interval takes

OpminpN, kˆ logNqq time, where k is the number of matching intervals. Hence, the

overall time to identify all possible child join pairs is OpM ˆminpN, k ˆ logNqq.

The space overhead introduced by a PIT is θpNq since it is a binary tree. However,

a PIT can be reused multiple times during the optimization process. For example,

consider the three-way join condition R.a “ S.a AND R.a “ T.a. The same PIT

226

Figure 9.5: Clustering algorithm applied to the running example query Q.

on R.a can be (re)used for performing the matching algorithm when considering the

joins R ’ S, R ’ T , pR ’ Sq ’ T , and pR ’ T q ’ S.

9.3.2 Clustering Phase

The number of join pairs output by the matching phase can be large, e.g., when each

child table of R joins with multiple child tables of S. In such settings, it becomes

important to reduce the number of join pairs that need to be considered during

join path creation to avoid both optimization and execution inefficiencies. Join path

creation introduces optimization-time overheads for enumerating join operators, ac-

cessing catalogs, and calculating cardinality estimates. During execution, if multiple

child-join paths reference the same child table Ri, then Ri will be accessed multiple

times; a situation we want to avoid.

The approach we use to reduce the number of join pairs is to cluster together

multiple child tables of the same parent table. Figure 9.5 considers S ’ T for

our running example query Q from Section 9.1. The six partition-wise join pairs

output by the matching phase are shown on the left. Notice that the join pairs

pS22, T3q and pS23, T3q indicate that both S22 and S23 can join with T3 to potentially

generate output records. If S22 is clustered with S23, then the single (clustered) join

pS22 Y S23q ’ T3 will be considered in the path creation phase instead of the two

227

Algorithm for clustering the output of the matching phase

Input: Partition join pairs (output of matching phase)
Output: Clustered join pairs (which will be input to path creation phase)

Build a bipartite join graph from the input partition join pairs where:
Child tables are the vertices, and
Partition join pairs are the edges;

Use Breadth-First-Search to identify connected components in the graph;
Output a clustered join pair for each connected component;

Figure 9.6: Clustering algorithm.

joins S22 ’ T3 and S23 ’ T3. Furthermore, because of the clustering, the child table

T3 will have only one access path (say, a table or index scan) in Q’s plan.

Clustering metric: For an R ’ S join, two (unpruned) child tables Sj and Sk of

S will be clustered together iff there exists a (unpruned) child table Ri of R such

that the matching phase outputs the join pairs pRi, Sjq and pRi, Skq. If Sj and Sk

are clustered together when no such Ri exists, then the union of Sj and Sk will lead

to unneeded joins with child tables of R; hurting plan performance during execution.

In our example in Figure 9.5, suppose we cluster S22 with S13. Then, S22 will have

to be considered unnecessarily in joins with T1 and T2.

On the other hand, failing to cluster Sj and Sk together when the matching phase

outputs the join pairs pRi, Sjq and pRi, Skq would result in considering join paths

separately for Ri ’ Sj and Ri ’ Sk. The result is higher optimization overhead as

well as access of Ri in at least two separate paths during execution. In our example,

if we consider separate join paths for S22 ’ T3 and S23 ’ T3, then partition T3 will

be accessed twice.

Clustering algorithm: Figure 9.6 shows the clustering algorithm that takes as

input the join pairs output by the matching phase. The algorithm first constructs

the join partition graph from the input join pairs. Each child table is a vertex in

this bipartite graph, and each join pair forms an edge between the corresponding

228

vertices. Figure 9.5 shows the join partition graph for our example. Breadth First

Search is used to identify all the connected components in the join partition graph.

Each connected component will give a (possibly clustered) join pair. Following our

example in Figure 9.5, S12 will be clustered with S13, S22 with S23, and T1 with T2,

forming the output of the clustering phase consisting of the two (clustered) join pairs

ptS12, S13u, tT1, T2uq and ptS22, S23u, tT3uq.

9.3.3 Path Creation and Selection

We will now consider how to create and cost join paths for all (clustered) child

joins output by the clustering phase, as well as the union of the best child-join

paths. We leverage the functionality of a bottom-up query optimizer (Selinger et al.,

1979) to create join paths, which are coupled tightly with the physical join operators

supported by the database. The main challenge is how to extend the enumeration

and path retention aspects of a bottom-up query optimizer in order to find the plan

with the least estimated cost (i.e., the optimal plan) in the new extended plan space

efficiently.

Definition 5. Extended plan space: In addition to the default plan space con-

sidered by the bottom-up optimizer for an n-way (n ě 2) join of parent tables, the

extended plan space includes the plans containing any possible join order and join

path for joins of the child tables such that each child table (partition) is accessed at

most once. l

We will discuss three different approaches on how to extend the bottom-up optimizer

to find the optimal plan in the extended plan space.

Query Q from Section 9.1 is used as an example throughout. Note that Q joins

the three parent tables R, S, and T . For Q, a bottom-up optimizer will consider the

three 2-way joins R ’ S, R ’ T , S ’ T , and the single 3-way join R ’ S ’ T .

229

For each join considered, the optimizer will find and retain the best join path for

each interesting order and the best “unordered” path. Sort orders on R.a, S.a, and

T.a are the candidate interesting orders for Q. When the optimizer is considering an

n-way join, it only uses the best join paths retained for smaller joins.

Extended enumeration: The first approach is to extend the existing path creation

process that occurs during the enumeration of each possible join. The extended

enumeration includes the path representing the union of the best child-join paths for

the join, in addition to the join over the unions of the child tables. For instance, as

part of the enumeration process for query Q, the optimizer will create and cost join

paths for S ’ T .

The conventional join paths include joining the union of S’s partitions with the

union of T ’s partitions using all applicable join operators (like hash join or merge

join), leading to plans like P1 in Figure 9.2. At this point, extended enumeration

will also create join paths for pS12 Y S13q ’ pT1 Y T2q and pS22 Y S23q ’ T3, find the

corresponding best paths, and create the union of the best child-join paths. We will

use the notation Pu in this section to denote the union of the best child-join paths.

As usual, the bottom-up optimizer will retain the best join path for each inter-

esting order (a in this case) as well as the best (possibly unordered) overall path. If

Pu is the best for one of these categories, then it will be retained. The paths retained

will be the only paths considered later when the enumeration process moves on to

larger joins. For example, when creating join paths for pS ’ T q ’ R, only the join

paths retained for S ’ T will be used (in addition to the best access paths retained

for R).

Property 6. Adding extended enumeration to a bottom-up optimizer will not always

find the optimal plan in the extended plan space. l

We will prove Property 6 using our running example. Suppose plan Pu for S ’ T is

230

not retained because it is not a best path for any order. Without Pu for S ’ T , when

the optimizer goes on to consider pS ’ T q ’ R, it will not be able to consider any

3-way child join. Thus, plans similar to P2 from Figure 9.2 will never be considered;

thereby losing the opportunity to find the optimal plan in the extended plan space.

Treating partitions as a physical property: The next approach considers par-

titioning as a physical property of tables and joins. The concept of interesting par-

titions (similar to interesting orders) can be used to incorporate partitioning as a

physical property in the bottom-up optimizer (Rao et al., 2002). In our example

query Q, partitions on attributes R.a, S.a, and T.a are interesting.

Paths with interesting partitions can make later joins and grouping operations

less expensive when these operations can take advantage of the partitioning. For

example, partitioning on S.a for S ’ T could lead to the creation of three-way

child joins for R ’ S ’ T . Hence, the optimizer will retain the best path for each

interesting partition, in addition to each interesting order. Overall, if there are n

interesting orders and m interesting partitions, then the optimizer can retain up to

nˆm paths, one for each combination of interesting orders and interesting partitions.

Property 7. Treating partitioning as a physical property in a bottom-up optimizer

will not always find the optimal plan in the extended plan space. l

Once again we will prove the above property using the example query Q. When the

optimizer enumerates paths for S ’ T , it will consider the union of the best child-join

paths Pu. Unlike what happened in extended enumeration, Pu will now be retained,

since Pu has an interesting partition on S.a. Suppose the first and second child joins

of Pu have the respective join paths pS12 Y S13q HJ pT1 Y T2q and pS22 Y S23q HJ T3.

Also, the best join path for S ’ T with an interesting order on S.a is the union of

the child-join paths pS12 Y S13q MJ pT1 Y T2q and pS22 Y S23q MJ T3.

However, it can still be the case that the optimal plan for Q is plan P2 shown in

231

Figure 9.2. Note that P2 contains pS12 Y S13q MJ pT1 Y T2q: the interesting order on

S.a in this child join led to a better overall plan. However, the interesting order on

S.a was not useful in the case of the second child join of S ’ T , so pS22YS23q MJ T3

is not used in P2. Simply adding interesting partitions alongside interesting orders

to a bottom-up optimizer will not enable it to find the optimal plan P2.

The optimizer was not able to generate plan P2 in the above example because

it did not consider interesting orders independently for each child join. Instead,

the optimizer considered interesting orders and interesting partitions at the level of

the parent tables (R, S, T) and joins of parent tables (R ’ S, R ’ T , S ’ T ,

R ’ S ’ T) only. An apparent solution would be for the optimizer to create

union plans for all possible combinations of child-join paths with interesting orders.

However, the number of such plans is exponential in the number of child joins per

parent join, rendering this approach impractical.

Treating partitions as a logical property: Our approach eliminates the afore-

mentioned problems by treating partitioning as a property of the logical relations

(tables or joins) that are enumerated during the bottom-up optimization process. A

logical relation refers to the output produced by either accessing a table or joining

multiple tables together. For example, the logical relation (join) RST represents the

output produced when joining the tables R, S, and T , irrespective of the join order

or the join operators used in the physical execution plan. Figure 9.7 shows all logical

relations created during the enumeration process for our example query Q.

As illustrated in Figure 9.7, each logical relation (table or join) maintains: (i) a list

of logical child relations (child tables or child joins), (ii) the partitioning conditions,

which are propagated up the enumeration lattice when the child joins are created, and

(iii) the best paths found so far for each interesting order and the best unordered path.

A logical child table is created for each unpruned partition during partition pruning,

232

Figure 9.7: Logical relations (with child relations) enumerated for query Q by our
partition-aware bottom-up optimizer.

whereas logical child joins are created based on the output of the clustering phase. For

our example query Q, the child-join pairs ptS12, S13u, tT1, T2uq and ptS22, S23u, tT3uq

output by the clustering phase are used to create the respective logical child joins

S12S13T1T2 and S22S23T3. Note that both the matching and clustering phases work

at the logical level, independent of physical plans (paths).

The logical relations are the entities for which the best paths found so far during

the enumeration process are retained. The logical child joins behave in the same way

as their parent joins, retaining the best paths for each interesting order and the best

unordered path. Hence, the number of paths retained is linear in the number of child

joins per parent join (instead of exponential as in the case when partitions are treated

as physical properties). The optimizer considers all child-join paths with interesting

orders during path creation for higher child joins, while ensuring the property:

Property 8. Paths with interesting orders for a single child join can be used later

up the lattice, independent from all other child joins of the same parent relation. l

233

Suppose, the optimizer is considering joining ST withR to create paths forRST . The

output of the clustering phase will produce the two child-join pairs pS12S13T1T2, R1q

and pS22S23T3, R2q. Join paths for these two child joins will be created and costed

independently from each other, using any paths with interesting orders and join

operators that are available. The best join paths for ppS12 Y S13q ’ pT1 Y T2qq ’ R1

and ppS22 Y S23q ’ T3q ’ R2q will be retained in the logical relations R1S12S13T1T2

and R2S22S23T3 respectively (see Figure 9.7).

For each parent relation, the path representing the union of the best child-join

paths is created only at the end of each enumeration level2 and it is retained only if

it is the best path. Hence, the optimizer will consider all join orders for each child

join before creating the union, leading to the following property:

Property 9. The optimizer will consider plans where different child joins of the

same parent relation can have different join orders and/or join operators. l

We have already seen how the optimizer created join paths ppS12YS13q ’ pT1YT2qq ’

R1 and ppS22 Y S23q ’ T3q ’ R2 when joining ST with R. Later, the optimizer will

consider joining RS with T , creating join paths for pR1 ’ pS12 Y S13qq ’ pT1 Y T2q

and pR2 ’ pS22YS23qq ’ T3. It is possible that the best join path for ppS12YS13q ’

pT1 Y T2qq ’ R1 is better than that for pR1 ’ pS12 Y S13qq ’ pT1 Y T2q, while the

opposite occurs between ppS22YS23q ’ T3q ’ R2 and pR2 ’ pS22YS23qq ’ T3; which

leads to the plan P2 in Figure 9.2.

Property 10. Optimality guarantee: By treating partitioning as a logical prop-

erty, our bottom-up optimizer will find the optimal plan in the extended plan space.

l

This property is a direct consequence of Properties 8 and 9. We have extended

the plan space to include plans containing unions of child joins. Each child join

2 Enumeration level n refers to the logical relations representing all possible n-way joins.

234

is enumerated during the traditional bottom-up optimization process in the same

way as its parent; the paths are built bottom-up, interesting orders are taken into

consideration, and the best paths are retained. Since each child join is optimized

independently, the top-most union of the best child-join paths is the optimal union

of the child joins. Finally, recall that the union of the best child-join paths is created

at the end of each enumeration level and retained only if it is the best plan for its

parent join. Therefore, the full extended plan space is considered and the optimizer

will be able to find the optimal plan (given the current database configuration, cost

model, and physical design).

Traditionally, grouping (and aggregation) operators are added on top of the phys-

ical join trees produced by the bottom-up enumeration process (Selinger et al., 1979).

In this case, interesting partitions are useful for pushing the grouping below the

union of the child joins, in an attempt to create less expensive execution paths.

With our approach, paths with interesting partitions on the grouping attributes can

be constructed at the top node of the enumeration lattice, and used later on while

considering the grouping operator.

Treating partitions as a property of the logical relations allows for a clean separa-

tion between the enumeration process of the logical relations and the construction of

the physical plans. Hence, our algorithms are applicable to any Database system that

uses a bottom-up optimizer. Moreover, they can be adapted for non-database data

processing systems like SCOPE and Hive that offer support for table partitioning

and joins.

9.3.4 Extending our Techniques to Parallel Database Systems

While this paper focuses on centralized DBMSs, our work is also useful in paral-

lel DBMSs like Aster nCluster (AsterData, 2012), Teradata (Teradata, 2012), and

HadoopDB (Abouzeid et al., 2009), which try to partition tables such that most

235

queries in the workload need intra-node processing only. A common data placement

strategy in parallel DBMSs is to use hash partitioning to distribute tuples in a ta-

ble among the nodes N1, . . . , Nk, and then use range/list partitioning of the tuples

within each node. Our techniques extend to this setting: if two joining tables R and

S have the same hash partitioning function and the same number of partitions, then

a partition-wise join Ri ’ Si is created for each node Ni. If a secondary range/list

partitioning has been used to further partition Ri and Si at an individual node, then

our techniques can be applied directly to produce child joins for Ri ’ Si.

Another data placement strategy popular in data warehouses is to replicate the

dimension tables on all nodes, while the fact table is partitioned across the nodes.

The fact-table partition as well as the dimension tables may be further partitioned

on each node, so our techniques can be used to create child joins at each node. In

such settings, multi-dimensional partitioning of the fact table can improve query

performance significantly as we show in Section 9.4.

9.4 Experimental Evaluation

The purpose of this section is to evaluate the effectiveness and efficiency of our opti-

mization techniques across a wide range of factors that affect table partitioning. We

have prototyped our techniques in the PostgreSQL 8.3.7 optimizer. All experiments

were run on Amazon EC2 nodes of m1.large type. Each node runs 64-bit Ubuntu

Linux 10.04 and has 7.5GB RAM, dual-core 2GHz CPU, and 850GB of storage. We

used the TPC-H benchmark with scale factors ranging from 10 to 40, with 30 be-

ing the default scale. Following directions from the TPC-H Standard Specifications

(TPC, 2009), we partitioned tables only on primary key, foreign key, and/or date

columns. We present experimental results for a representative set of 10 out of the 22

TPC-H queries, ranging from 2-way up to the maximum possible 8-way joins. All

results presented are averaged over three query executions.

236

Table 9.2: Optimizer categories considered in the experimental evaluation.

Name Features

Basic Per-table partition pruning only (like MySQL and PostgreSQL).
The PostgreSQL 8.3.7 optimizer is used as the Basic optimizer.

Intermediate Per-table partition pruning and one-to-one partition-wise joins
(like Oracle and SQLServer). The Intermediate optimizer is im-
plemented as a variant of the Advanced optimizer that checks
for and creates one-to-one partition-wise join pairs in place of
the regular matching and clustering phases.

Advanced Per-table partition pruning and all the join optimizations for
partitioned tables as described in Section 9.3.

For evaluation purposes, we categorized query optimizers into three categories—

Basic, Intermediate, and Advanced—based on how they exploit partitioning infor-

mation to perform optimization. Details are given in Table 9.2. We compare the

optimizers on three metrics used to evaluate optimizers (Giakoumakis and Galindo-

Legaria, 2008): (i) query execution time, (ii) optimization time, and (iii) optimizer’s

memory usage.

9.4.1 Results for Different Partitioning Schemes

The most important factor affecting query performance over partitioned tables is

the partitioning scheme that determines which tables are partitioned and on which

attribute(s). We identified two cases that arise in practice:

1. The DBA has full control in selecting and deploying the partitioning scheme

to maximize query-processing efficiency.

2. The partitioning scheme is forced either partially or fully by practical reasons

beyond query-processing efficiency.

Results from DBA-controlled schemes: Given the capabilities of the query op-

timizer, the DBA has a spectrum of choices regarding the partitioning scheme (Zilio

237

Table 9.3: Partitioning schemes for TPC-H databases.

Partition Table Partitioning Number of
Scheme Attributes Partitions

PS-P orders o orderdate 28
lineitem l shipdate 85

PS-J orders o orderkey 48
lineitem l orderkey 48
partsupp ps partkey 12
part p partkey 12

PS-B orders o orderkey, o orderdate 72
lineitem l orderkey, l shipdate 120
partsupp ps partkey 12
part p partkey 6

PS-C orders o orderkey, o orderdate 36
lineitem l orderkey, l shipdate 168
partsupp ps partkey 30
part p partkey 6
customer c custkey 6

et al., 1994). In one extreme, the DBA can partition tables based on attributes

appearing in filter conditions in order to take maximum advantage of partition prun-

ing. At the other extreme, the DBA can partition tables based on joining attributes

in order to take maximum advantage of one-to-one partition-wise joins; assuming

the optimizer supports such joins (like the Intermediate optimizer in Table 9.2). In

addition, our techniques now enable the creation of multi-dimensional partitions to

take advantage of both partition pruning and partition-wise joins. We will refer to

the three above schemes as partitioning schemes respectively for pruning (PS-P), for

joins (PS-J), and for both (PS-B). Table 9.3 lists all partitioning schemes used in

our evaluation.

Figure 9.8(a) shows the execution times for the plans selected by the three query

optimizers for the ten TPC-H queries running on the database with the PS-J scheme.

The Intermediate and Advanced optimizers are able to generate a better plan than

the Basic optimizer for all queries, providing up to an order of magnitude benefit

238

Figure 9.8: (a) Execution times and (b) optimization times for TPC-H queries over
partitioning scheme PS-J.

for some of them. Note that the Intermediate and Advanced optimizers produce

the same plan in all cases, since one-to-one partition-wise joins are the only join

optimization option for both optimizers for the PS-J scheme.

Figure 9.8(b) presents the corresponding optimization times for the queries. The

Intermediate optimizer introduces some overhead on optimization time—average of

17% and worst case of 21% due to the creation of child-join paths—compared to

Basic. The additional overhead introduced by the Advanced optimizer over Interme-

diate is on average less than 3%. This overhead is due to the matching and clustering

algorithms. Overall, the optimization overhead introduced by Advanced is low, and

is most definitely gained back during execution as we can see by comparing the y-axes

of Figures 9.8(a) and 9.8(b) (execution time is in minutes whereas optimization time

is in milliseconds). The memory overheads follow the same trend: average memory

overhead of Advanced over Basic is around 7%, and the worst case is 10%.

Query performance is related directly to the optimizer capabilities and the par-

titioning scheme used in the database. Figure 9.9 shows the performance results

for TPC-H queries 5 and 8 for the three optimizers over databases with different

partitioning schemes. (Results for other queries are similar.) Since a database using

the PS-P scheme only allows for partition pruning, all three optimizers behave in an

239

Figure 9.9: (a) Execution times and (b) optimization times for TPC-H queries 5
and 8 over three partitioning schemes.

identical manner. A PS-J scheme on the other hand, does not allow for any partition

pruning since join attributes do not appear in filter conditions in the queries. Hence,

the Basic optimizer performs poorly in many cases, whereas the Intermediate and

Advanced optimizers take advantage of partition-wise joins to produce better plans

with very low overhead.

The presence of multi-dimensional partitions in a PS-B scheme prevents the In-

termediate optimizer from generating any one-to-one partition-wise joins, but it can

still perform partition pruning, just like the Basic optimizer can. The Advanced

optimizer utilizes both partition pruning and partition-wise joins to find better-

performing plans. Consider the problem of picking the best partitioning scheme for

a given query workload. The best query performance can be obtained either from (a)

partition pruning (PS-P is best for query 8 in Figure 9.9), or (b) from partition-aware

join processing (PS-J is best for query 5 in Figure 9.9), or (c) from a combination of

both due to some workload or data properties. In all cases, the Advanced optimizer

enables finding the plan with the best possible performance.

Results from constrained schemes: In many cases, external constraints or ob-

jectives can limit the partitioning scheme that can be used. For instance, data arrival

rates may require the creation of daily or weekly partitions; file-system properties

240

Figure 9.10: (a) Execution times and (b) optimization times for TPC-H queries
over partitioning scheme PS-C with partition size 128MB.

may impose a maximum partition size to ensure that each partition is laid out con-

tiguously; or optimizer limitations may impose a maximum number of partitions per

table.

For a TPC-H scale factor of 30, biweekly partitions of the fact table lead to a

128MB partition size. We will impose a maximum partition size of 128MB to create

the partitioning scheme PS-C used in this section (see Table 9.3). Figure 9.10 shows

the results for the TPC-H queries executed over a database with the PS-C scheme.

The constraint imposed on the partitioning scheme does not allow for any one-to-

one partition-wise joins. Hence, the Intermediate optimizer produces the same plans

as Basic, and is excluded from the figures for clarity. Once again, the Advanced

optimizer was able to generate a better plan than the Basic optimizer for all queries,

providing over 2x speedup for 50% of them. The average optimization time and

memory overheads were just 7.9% and 3.6% respectively.

9.4.2 Studying Optimization Factors on Table Partitioning

In this section, we study the effects of our optimization techniques on execution

time, optimization time, and memory usage by varying (i) the number and size of

partitions used to split each table, (ii) the amount of data residing in the Database

system, and (iii) the use of the clustering algorithm.

241

Figure 9.11: (a) Execution times and (b) optimization times as we vary the parti-
tion size for TPC-H queries 5 and 8.

Effect of size and number of partitions: We evaluate the performance of the

optimizers as we vary the size (and thus the number) of partitions created for each

table, using the PS-C scheme. As we vary the partition size from 64MB to 256MB,

the number of partitions for the fact table vary from 336 to 84. Figure 9.11(b) shows

the optimization times taken by the two optimizers for TPC-H queries 5 and 8. As

the partition size increases (and the number of partitions decreases), the optimization

time decreases for both optimizers. We observe that (i) the optimization times for

the Advanced optimizer scale in a similar way as for the Basic optimizer, and (ii)

the overhead introduced by the creation of the partition-wise joins remains small

(around 12%) in all cases.

The overhead added by our approach remains low due to two reasons. First,

Clustering bounds the number of child joins for R ’ S to min(number of partitions

in R, S); so we cause only a linear increase in paths enumerated per join. Second,

optimizers have other overheads like parsing, rewrites, scan path enumeration, cat-

alog and statistics access, and cardinality estimation. Let us consider Query 5 from

Figure 9.11(b). Query 5 joins five tables, including orders and lineitem with 72 and

336 partitions respectively. In this case, Basic enumerated 2317 scan and join paths

in total, while Advanced enumerated 2716 paths. The extra 17% paths are for the

242

Figure 9.12: Execution times as we vary the total data size.

72 partition-wise joins created by Advanced. The trends are similar for the memory

consumption of the optimizers. Hence, our algorithms scale well with the number of

table partitions.

Decreasing the partition size for the same total data size has a positive effect on

plan execution times as seen in Figure 9.11(a): smaller partition sizes force finer-

grained partition ranges, leading to better partition pruning and join execution.

Looking into execution times at the subplan level, we observed that PostgreSQL was

more effective in our experimental settings when it accessed partitions in the 64MB

range. It is worth noting that current partitioning scheme recommenders (Agrawal

et al., 2004; Rao et al., 2002; Zilio et al., 1994) do not consider partition size tuning.

Effect of data size: We used the PS-C scheme with a partition size of 128 MB to

study the effects of the overall data size on query performance. Figure 9.12 shows

the query execution times as the amount of data stored in the database increases.

For many queries, the plans selected by the Basic optimizer lead to a quadratic or

exponential increase in execution time as data size increases linearly. We observed

that joins for large data sizes cause the Basic optimizer to frequently resort to index

243

Figure 9.13: (a) Execution times and (b) optimization times for enabling and
disabling clustering.

nested loop joins (the system has 7.5GB RAM only).

On the other hand, the Advanced optimizer is able to generate smaller partition-

wise joins that use more efficient join methods (like hash and merge joins); leading

to the desired linear increase in execution time as data size increases linearly. For

the queries where the Basic optimizer is also able to achieve a linear trend, the slope

is much higher compared to the Advanced optimizer. Figure 9.12 shows that the

benefits from our approach become more important for larger databases. Note that

optimization times and memory consumption are independent of the data size.

Effect of the clustering algorithm: Clustering (Section 9.3.2) is an essential phase

in our overall partition-aware optimization approach that is missing from the data

localization approach discussed in Section 9.2. When matching is applied without

clustering, our optimizer implements a rough equivalent of the four-phase approach to

distributed query optimization (Ozsu and Valduriez, 1999). Figure 9.13(b) compares

the optimization time of the optimizer when clustering is enabled and disabled in a

database with the PS-C scheme. Disabling clustering causes high overhead since the

optimizer must now generate join paths for each child join produced by the matching

phase. This issue has not come up in the distributed optimization literature because

the implementation and evaluation there considers a small number of partitions (ă10

244

Figure 9.14: Estimated and actual number of records produced by TPC-H queries
over partitioning scheme PS-C.

partitions), while our optimizer has to perform well under hundreds of partitions per

table (e.g., daily partitions for 2 years).

Figure 9.13(a) shows the execution times for the plans generated when enabling

and disabling clustering. In all cases shown, the plan generated without clustering

is worse than the plan generated when clustering is used, since the generated plans

scan the same partitions multiple times (in different joins). The queries that are

not shown failed to complete because the system runs out of memory during plan

execution. Note that with multi-dimensional partitioning and without clustering,

literally thousands of child join paths are created, each requiring a small amount of

memory during their initialization phase. We conclude that the use of clustering is

crucial for finding good execution plans.

9.4.3 Impact on Cardinality Estimation

An additional benefit that child joins bring is better cardinality estimation for costing

during path creation. Cardinality estimation for filter and join conditions is based

on data-level statistics kept by the Database system for each table (e.g., distribu-

tion histograms, minimum and maximum values, number of distinct values). For

245

partitioned tables, databases like Oracle and PostgreSQL collect statistics for each

individual partition. When the optimizer considers joining unions of partitions, the

cardinality estimates needed are derived by aggregating statistics over partitions.

This process, however, can give inaccurate estimates since many typical statistics

kept by the system cannot be readily aggregated. For instance, estimating the num-

ber of unique values for all partitions is not possible by simply combining the number

of unique values for each partition.

Figure 9.14 shows the estimated and actual number of records of TPC-H queries

over the PS-C scheme. For the Basic Optimizer, we observe large cardinality errors.

In contrast, partition-wise joins provide much more accurate cardinality estimation

because these joins increase the chances of using partition-level statistics directly

for costing. The same pattern was observed with all the partitioning schemes and

queries used.

246

10

The Future of Big Data Analytics

Over the next decade, the number of servers (virtual and physical) worldwide are

predicted to grow by a factor of 10, the amount of information managed by enterprise

data centers to grow by a factor of 50, and the number of files in a given data

center to grow by a factor of 75 (Gantz and Reinsel, 2011). However, the number

of Information Technology (IT) professionals in the world that are responsible for

managing and capitalizing on this explosive growth of information is predicted to

grow by less than a factor of 1.5. It is imperative that new, flexible, scalable, and,

most importantly, self-tuning systems are developed to face the challenges in the Big

Data era.

The thesis of this work is that the proposed profile-predict-optimize approach can

form the basis for automatically tuning both Database and Dataflow systems used to

analyze Big Data. To support this thesis, we designed, implemented, and evaluated

solutions for systems belonging in both categories. Starfish, a system that is built

on top of Hadoop MapReduce, uses the profile-predict-optimize approach for tuning

repeatedly-run as well as ad-hoc MapReduce workloads. Xplus, on the other hand,

247

employs this technique repeatedly to perform fine-grained tuning of SQL queries

executing in Database systems. In the process, we have made numerous contributions

in the areas of automated management, dynamic optimization, and tuning, while

creating a large number of future challenges and opportunities to address.

10.1 Starfish: Present and Future

Starfish builds on the Hadoop platform while adapting to user needs and system

workloads to provide good performance automatically throughout the data lifecycle

in analytics; without any need for users to understand and manipulate the many

tuning knobs available. A system like Starfish is essential as Hadoop usage continues

to grow beyond companies like Facebook and Yahoo! that have considerable expertise

in Hadoop to new application domains as well as to organizations with few expert

users. The Starfish source code has been released publicly and the Starfish system

has gained several external users in both academia and industry.

Starfish implements, to the best of our knowledge, the first cost-based optimiza-

tion framework for MapReduce that can handle simple to arbitrarily complex MapRe-

duce programs. Our approach is applicable to optimizing the execution of MapRe-

duce jobs and workflows regardless of whether they are submitted directly by the

user or come from a higher-level system like Hive, Jaql, or Pig.

We focused on the optimization opportunities presented by the large space of

configuration parameters in Hadoop as well as the space of cluster resources. The

supported optimization space can be extended in the future to include logical deci-

sions such as selecting the best partitioning function, join operator, and data layout.

In these cases, the profiles proposed in Chapter 4 will form the basic unit of statisti-

cal information that higher-level optimizers can use while making their optimization

decisions.

We proposed a lightweight Profiler to collect detailed statistical information from

248

unmodified MapReduce programs. The Profiler, with its task-level sampling support,

can be used to collect profiles online while MapReduce jobs are executed on the

production cluster. Novel opportunities arise from storing these job profiles over

time, including tuning the execution of MapReduce jobs adaptively within a job

execution and across multiple executions. New policies are needed to decide when

to turn on dynamic instrumentation and which stored profile to use as input for a

given what-if question or optimization request.

We also proposed a What-if Engine for the fine-grained cost estimation needed

by the Cost-based Optimizers. A promising direction for future work is to integrate

the What-if Engine with tools like data layout advisors, dynamic and elastic re-

source allocators, resource-aware job schedulers, and progress estimators for complex

MapReduce workflows.

In addition to optimizing configuration parameters for individual MapReduce

jobs, we showed the importance of optimizing them for MapReduce workflows in

an automated and interaction-aware manner. Efficient solutions for this problem

improve the performance of the entire MapReduce stack, irrespective of the higher-

level interface used to specify workflows. Furthermore, the growing usage of data-

intensive workflows beyond large Web companies to smaller groups with few human

tuning experts makes such automatic optimization timely.

The primary challenge we faced in the workflow optimization problem was that

the space of configuration parameter settings for a workflow W comprises the huge

cartesian product of the individual configuration spaces of all jobs in W . We devel-

oped optimizers that traverse this space efficiently based on a characterization of the

dataflow-based and resource-based interactions that can arise in W . We also devel-

oped interaction-aware techniques for profiling as well as answering what-if questions

on workflow performance.

Infrastructure-as-a-Service (IaaS) cloud platforms allow nonexpert users to pro-

249

vision clusters of any size on the cloud to run their MapReduce workloads, and pay

only for the resources used. However, these users are now faced with complex cluster

sizing problems that involve determining the cluster resources, in addition to MapRe-

duce configuration settings, to meet desired requirements on execution time and cost

for a given analytic workload. Users can express their cluster sizing problems as

queries in a declarative fashion to Starfish. Starfish will provide reliable answers to

these queries using an automated technique; providing nonexpert users with a good

combination of cluster resource and job configuration settings to meet their needs.

The automated technique is based on a careful mix of job profiling, estimation using

black-box and white-box models, and simulation.

Multi-tenancy is a key characteristic of IaaS cloud platforms that can cause vari-

ations in the performance of MapReduce workloads. In other words, the execution

time of a particular MapReduce job j can vary based on what other MapReduce jobs

and background processes run concurrently with j in the cluster. It would be interest-

ing to study the effects of multi-tenancy and to enable Starfish to recommend robust

configuration settings for running a MapReduce workload under different conditions.

This work will require extensions to the simulation process used by the What-if En-

gine. Another interesting avenue for future work is to add support for auction-based

resource provisioning, for example, spot instances on Amazon EC2.

Finally, all Starfish components were prototyped and evaluated for the popular

Hadoop MapReduce system using representative MapReduce programs from vari-

ous application domains, as well as a variety of benchmarks from Facebook, Yahoo!,

and TPC. The results showed that, not only is our automated cost-based optimiza-

tion able to match manual rule-based optimization used in real-life MapReduce de-

ployments, but also routinely outperforms manual tuning by 1.2-2.5x for complex

workflows.

250

10.2 Xplus: Present and Future

As a novel query optimizer, Xplus is the right entity to automate the important task

of SQL tuning. An Xplus user can mark a repeatedly-run query for which she is

not satisfied with the performance of the plan being picked; and Xplus will try to

find a new plan that gives the desired performance. Xplus differs from regular query

optimizers in its ability to run plans proactively, and to collect monitoring data from

these runs to diagnose its mistakes as well as to identify better plans.

A key contributor to the effectiveness and efficiency of Xplus is the abstraction

of plan neighborhoods in the physical plan space. Plan neighborhoods are used to

capture useful relationships among plans that simplify information tracking; allowing

Xplus to overcome the nontrivial challenge of choosing a small set of plans to run

from the huge plan space in order to improve efficiency in SQL tuning. Efficiency is

further improved through features like subplan selection and parallel execution.

We showed how the two conflicting objectives of exploitation and exploration

need to be balanced in effective SQL tuning. Xplus uses an architecture based

on multiple SQL-tuning experts with different goals, and an arbitration policy to

achieve this balance. Perhaps one of the most important features that Xplus has

to offer is the strong optimality guarantee: after completing the tuning process of

a query Q, Xplus produces Q’s optimal plan for the current database configuration

and optimizer cost model; with all plans costed using accurate cardinalities. Finally,

we validated the promise of Xplus through an extensive evaluation based on tuning

scenarios that arise in practice.

As Xplus has to run subplans to collect information, it uses an experiment-driven

approach to address the problem of SQL tuning. The use of experiments for SQL tun-

ing (or any other tuning task) poses a tradeoff between costs and benefits. Emerging

mechanisms, like cloud computing, enable the use of experiments on a larger scale.

251

For example, Amazon EC2 provides cheap resources that can be leveraged for exper-

iments. At the same time, it creates challenging research questions like how to get

the data into the cloud, and how to leverage parallelism in this context.

In the Database world, query optimization technology has not kept pace with

the growing usage and user control of table partitioning. We addressed this gap by

developing novel partition-aware optimization techniques to generate efficient plans

for SQL queries over partitioned tables. We extended the search space to include

plans with multiway partition-wise joins, and provided techniques to find the optimal

plan efficiently. Our techniques are designed for easy incorporation into the bottom-

up query optimizers that are in widespread use today. An extensive experimental

evaluation showed that our optimizer, with low optimization-time overhead, can

generate plans that are an order of magnitude better than plans generated by current

optimizers. Integrating our optimizer with physical design advisors is a promising

avenue for future work. Another promising future direction is to apply partition-

aware query optimization techniques to parallel Database systems—both multicore-

based and shared-nothing like Aster nCluster, Greenplum Database, HadoopDB, and

Teradata—as well as to MapReduce-oriented systems like Pig and Hive.

Closing remarks: Currently, the technology for cost-based optimization and self-

tuning in Dataflow systems lags behind the corresponding technology in Database

systems. Our work on Starfish has made significant contributions and raised the

bar for Dataflow systems. At the same time, our work on Xplus and partition-aware

query optimization has raised the bar even higher for Database systems. Most impor-

tantly, we have introduced a unified theme—the profile-predict-optimize approach—

to move cost-based optimization and self-tuning in these two systems forward, es-

pecially as these systems themselves are evolving in accordance with the MADDER

principles. I look forward to future work from myself as well as others to further

bridge the gap in cost-based optimization and self-tuning between these systems.

252

Bibliography

Aboulnaga, A. and Chaudhuri, S. (1999), “Self-Tuning Histograms: Building His-
tograms without Looking at Data,” ACM SIGMOD Record, 28, 181–192.

Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D., Rasin, A., and Silberschatz, A.
(2009), “HadoopDB: An Architectural Hybrid of MapReduce and DBMS Tech-
nologies for Analytical Workloads,” Proc. of the VLDB Endowment, 2, 922–933.

Afrati, F. and Ullman, J. D. (2009), “Optimizing Joins in a MapReduce Environ-
ment,” in Proc. of the 13th Intl. Conf. on Extending Database Technology, pp.
99–110, ACM.

Agrawal, S., Chaudhuri, S., and Narasayya, V. R. (2000), “Automated Selection
of Materialized Views and Indexes in SQL Databases,” in Proc. of the 26th Intl.
Conf. on Very Large Data Bases, pp. 496–505, Morgan Kaufmann Publishers Inc.

Agrawal, S., Narasayya, V., and Yang, B. (2004), “Integrating Vertical and Horizon-
tal Partitioning into Automated Physical Database Design,” in Proc. of the 2004
ACM SIGMOD Intl. Conf. on Management of Data, pp. 359–370, ACM.

Agrawal, S., Chaudhuri, S., Kollar, L., Marathe, A., Narasayya, V., and Syamala,
M. (2005), “Database Tuning Advisor for Microsoft SQL Server 2005,” in Proc. of
the 2005 ACM SIGMOD Intl. Conf. on Management of Data, pp. 930–932, ACM.

Agrawal, S., Chu, E., and Narasayya, V. (2006), “Automatic Physical Design Tuning:
Workload as a Sequence,” in Proc. of the 2006 ACM SIGMOD Intl. Conf. on
Management of Data, pp. 683–694, ACM.

Amazon EMR (2012), “Amazon Elastic MapReduce,” http://aws.amazon.com/

elasticmapreduce.

Andrei, M. and Valduriez, P. (2001), “User-Optimizer Communication using Ab-
stract Plans in Sybase ASE,” in Proc. of the 27th Intl. Conf. on Very Large Data
Bases, pp. 29–38, Morgan Kaufmann Publishers Inc.

Antoshenkov, G. and Ziauddin, M. (1996), “Query Processing and Optimization in
Oracle Rdb,” The VLDB Journal, 5, 229–237.

253

http://aws.amazon.com/elasticmapreduce
http://aws.amazon.com/elasticmapreduce

AsterData (2012), “Aster Data nCluster,” http://www.asterdata.com/product/

ncluster_cloud.php.

Astrahan, M. M., Blasgen, M. W., Chamberlin, D. D., Eswaran, K. P., Gray, J. N.,
Griffiths, P. P., King, W. F., Lorie, R. A., McJones, P. R., Mehl, J. W., Putzolu,
G. R., Traiger, I. L., Wade, B. W., and Watson, V. (1976), “System R: Relational
Approach to Database Management,” ACM Transactions on Database Systems
(TODS), 1, 97–137.

Avnur, R. and Hellerstein, J. M. (2000), “Eddies: Continuously Adaptive Query
Processing,” in Proc. of the 2000 ACM SIGMOD Intl. Conf. on Management of
Data, pp. 261–272, ACM.

Azkaban (2011), “Azkaban: Simple Hadoop Workflow,” http://sna-projects.

com/azkaban/.

Babcock, B. and Chaudhuri, S. (2005), “Towards a Robust Query Optimizer: A
Principled and Practical Approach,” in Proc. of the 2005 ACM SIGMOD Intl.
Conf. on Management of Data, pp. 119–130, ACM.

Babu, S. (2010), “Towards Automatic Optimization of MapReduce Programs,” in
Proc. of the 1st Symposium on Cloud Computing, pp. 137–142, ACM.

Babu, S., Bizarro, P., and DeWitt, D. (2005), “Proactive Re-Optimization,” in Proc.
of the 2005 ACM SIGMOD Intl. Conf. on Management of Data, pp. 107–118,
ACM.

Baldwin, C., Eliassi-Rad, T., Abdulla, G., and Critchlow, T. (2003), “The Evolution
of a Hierarchical Partitioning Algorithm for Large-Scale Scientific Data: Three
Steps of Increasing Complexity,” in Proc. of the 15th Intl. Conf. on Scientific and
Statistical Database Management, pp. 225–228, IEEE.

Bancilhon, F., Maier, D., Sagiv, Y., and Ullman, J. D. (1986), “Magic Sets and Other
Strange Ways to Implement Logic Programs,” in Proc. of the 5th ACM Symp. on
Principles of Database Systems, pp. 1–15, ACM.

Baru, C. K., Fecteau, G., Goyal, A., Hsiao, H., Jhingran, A., Padmanabhan, S.,
Copeland, G. P., and Wilson, W. G. (1995), “DB2 Parallel Edition,” IBM Systems
Journal, 34.

Belknap, P., Dageville, B., Dias, K., and Yagoub, K. (2009), “Self-Tuning for SQL
Performance in Oracle Database 11g,” in Proc. of the 25th IEEE Intl. Conf. on
Data Engineering, pp. 1694–1700, IEEE.

Bent, J., Denehy, T. E., Livny, M., Arpaci-Dusseau, A. C., and Arpaci-Dusseau,
R. H. (2009), “Data-Driven Batch Scheduling,” in Proc. of the 2nd Intl. Workshop
on Data-Aware Distributed Computing, pp. 1–10, ACM.

254

http://www.asterdata.com/product/ncluster_cloud.php
http://www.asterdata.com/product/ncluster_cloud.php
http://sna-projects.com/azkaban/
http://sna-projects.com/azkaban/

Bizarro, P., Babu, S., DeWitt, D. J., and Widom, J. (2005), “Content-Based Routing:
Different Plans for Different Data,” in Proc. of the 31st Intl. Conf. on Very Large
Data Bases, pp. 757–768, VLDB Endowment.

Blanas, S., Patel, J. M., Ercegovac, V., Rao, J., Shekita, E. J., and Tian, Y. (2010),
“A Comparison of Join Algorithms for Log Processing in MapReduce,” in Proc. of
the 2010 ACM SIGMOD Intl. Conf. on Management of Data, pp. 975–986, ACM.

Bodik, P., Griffith, R., Sutton, C., Fox, A., Jordan, M., and Patterson, D. (2009),
“Statistical Machine Learning Makes Automatic Control Practical for Internet
Datacenters,” in Proc. of the 1st USENIX Conf. on Hot Topics in Cloud Comput-
ing, USENIX Association.

Bodkin, R. (2010), “Facebook on Hadoop, Hive, HBase, and A/B Testing,” http://

rbodkin.wordpress.com/2010/07/14/facebook-on-hadoop-hive-hbase-and%

C2%A0ab%C2%A0testing/.

Bruno, N. and Chaudhuri, S. (2005), “Automatic Physical Database Tuning: A
Relaxation-Based Approach,” in Proc. of the 2005 ACM SIGMOD Intl. Conf. on
Management of Data, pp. 227–238, ACM.

Bruno, N., Chaudhuri, S., and Ramamurthy, R. (2009), “Power Hints for Query
Optimization,” in Proc. of the 25th IEEE Intl. Conf. on Data Engineering, pp.
469–480, IEEE.

BTrace (2012), “BTrace: A Dynamic Instrumentation Tool for Java,” http://

kenai.com/projects/btrace.

Bu, Y., Howe, B., Balazinska, M., and Ernst, M. (2010), “HaLoop: Efficient Iterative
Data Processing on Large Clusters,” Proc. of the VLDB Endowment, 3, 285–296.

Cafarella, M. J. and Ré, C. (2010), “Manimal: Relational Optimization for Data-
Intensive Programs,” in Proc. of the 13th Intl. Workshop on the Web and
Databases, pp. 10:1–10:6, ACM.

Cantrill, B. M., Shapiro, M. W., and Leventhal, A. H. (2004), “Dynamic Instru-
mentation of Production Systems,” in Proc. of the USENIX Annual Technical
Conference, USENIX Association.

Cascading (2011), “Cascading,” http://www.cascading.org/.

Ceri, S. and Gottlob, G. (1986), “Optimizing Joins Between two Partitioned Rela-
tions in Distributed Databases,” Journal of Parallel and Distributed Computing,
3, 183–205.

255

http://rbodkin.wordpress.com/2010/07/14/facebook-on-hadoop-hive-hbase-and%C2%A0ab%C2%A0testing/
http://rbodkin.wordpress.com/2010/07/14/facebook-on-hadoop-hive-hbase-and%C2%A0ab%C2%A0testing/
http://rbodkin.wordpress.com/2010/07/14/facebook-on-hadoop-hive-hbase-and%C2%A0ab%C2%A0testing/
http://kenai.com/projects/btrace
http://kenai.com/projects/btrace
http://www.cascading.org/

Chaiken, R., Jenkins, B., Larson, P.-Å., Ramsey, B., Shakib, D., Weaver, S., and
Zhou, J. (2008), “SCOPE: Easy and Efficient Parallel Processing of Massive Data
Sets,” Proc. of the VLDB Endowment, 1, 1265–1276.

Chaudhuri, S. and Narasayya, V. R. (2007), “Self-Tuning Database Systems: A
Decade of Progress,” in Proc. of the 33rd Intl. Conf. on Very Large Data Bases,
pp. 3–14, VLDB Endowment.

Chaudhuri, S., Ganesan, P., and Narasayya, V. R. (2003), “Primitives for Workload
Summarization and Implications for SQL,” in Proc. of the 29th Intl. Conf. on Very
Large Data Bases, pp. 730–741, VLDB Endowment.

Chaudhuri, S., Narasayya, V., and Ramamurthy, R. (2008), “A Pay-As-You-Go
Framework for Query Execution Feedback,” in Proc. of the 34th Intl. Conf. on
Very Large Data Bases, pp. 1141–1152, VLDB Endowment.

Chen, C. M. and Roussopoulos, N. (1994), “Adaptive Selectivity Estimation using
Query Feedback,” ACM SIGMOD Record, 23, 161–172.

Chohan, N., Castillo, C., Spreitzer, M., Steinder, M., Tantawi, A., and Krintz, C.
(2010), “See Spot Run: Using Spot Instances for MapReduce Workflows,” in Proc.
of the 2nd USENIX Conf. on Hot Topics in Cloud Computing, pp. 7–7, USENIX
Association.

Cohen, J., Dolan, B., Dunlap, M., Hellerstein, J. M., and Welton, C. (2009), “MAD
Skills: New Analysis Practices for Big Data,” Proc. of the VLDB Endowment, 2,
1481–1492.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2003), Introduction to
Algorithms, The MIT Press and McGraw-Hill Osborne Media, 2nd edn.

Dageville, B., Das, D., Dias, K., Yagoub, K., Zait, M., and Ziauddin, M. (2004),
“Automatic SQL Tuning in Oracle 10g,” in Proc. of the 30th Intl. Conf. on Very
Large Data Bases, pp. 1098–1109, VLDB Endowment.

Dai, D. (2011), “PigMix Benchmark,” https://cwiki.apache.org/confluence/

display/PIG/PigMix.

Dean, J. and Ghemawat, S. (2004), “MapReduce: Simplified Data Processing on
Large Clusters,” in Proc. of the 6th Conf. on Operating Systems Design and Im-
plementation, pp. 137–149, USENIX Association.

Dean, J. and Ghemawat, S. (2008), “MapReduce: Simplified Data Processing on
Large Clusters,” Communications of the ACM, 51, 107–113.

256

https://cwiki.apache.org/confluence/display/PIG/PigMix
https://cwiki.apache.org/confluence/display/PIG/PigMix

Deshpande, A., Guestrin, C., Hong, W., and Madden, S. (2005), “Exploiting Cor-
related Attributes in Acquisitional Query Processing,” in Proc. of the 21st IEEE
Intl. Conf. on Data Engineering, pp. 143–154, IEEE.

Deshpande, A., Ives, Z. G., and Raman, V. (2007), “Adaptive Query Processing,”
Foundations and Trends in Databases, 1, 1–140.

Dittrich, J., Quiané-Ruiz, J.-A., Jindal, A., Kargin, Y., Setty, V., and Schad, J.
(2010), “Hadoop++: Making a Yellow Elephant Run Like a Cheetah,” Proc. of
the VLDB Endowment, 3, 515–529.

Duan, S., Thummala, V., and Babu, S. (2009), “Tuning Database Configuration
Parameters with iTuned,” Proc. of the VLDB Endowment, 2, 1246–1257.

Friedman, E., Pawlowski, P., and Cieslewicz, J. (2009), “SQL/MapReduce: A Prac-
tical Approach to Self-Describing, Polymorphic, and Parallelizable User-Defined
Functions,” Proc. of the VLDB Endowment, 2, 1402–1413.

Gantz, J. and Reinsel, D. (2011), “Extracting Value from Chaos,” http://www.emc.

com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.

pdf.

Gates, A. (2010), Comparing Pig Latin and SQL for Constructing Data Pro-
cessing Pipelines, http://developer.yahoo.com/blogs/hadoop/posts/2010/

01/comparing_pig_latin_and_sql_fo/.

Gates, A. F., Natkovich, O., Chopra, S., Kamath, P., Narayanamurthy, S. M., Olston,
C., Reed, B., Srinivasan, S., and Srivastava, U. (2009), “Building a High-Level
Dataflow System on top of Map-Reduce: The Pig Experience,” Proc. of the VLDB
Endowment, 2, 1414–1425.

Giakoumakis, L. and Galindo-Legaria, C. (2008), “Testing SQL Server’s Query Opti-
mizer: Challenges, Techniques and Experiences,” IEEE Data Engineering Bulletin,
31, 37–44.

Gittins, J. C. and Jones, D. M. (1974), “A Dynamic Allocation Index for the Sequen-
tial Design of Experiments,” Progress in Statistics (European Meeting of Statisti-
cians), 1, 241.

Goldberg, D. (1989), Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley.

Graefe, G. and DeWitt, D. J. (1987), “The EXODUS Optimizer Generator,” in
Proc. of the 1987 ACM SIGMOD Intl. Conf. on Management of Data, pp. 160–
172, ACM.

Greenplum (2012), “Greenplum,” http://www.greenplum.com.

257

http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf
http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf
http://www.emc.com/collateral/analyst-reports/idc-extracting-value-from-chaos-ar.pdf
http://developer.yahoo.com/blogs/hadoop/posts/2010/01/comparing_pig_latin_and_sql_fo/
http://developer.yahoo.com/blogs/hadoop/posts/2010/01/comparing_pig_latin_and_sql_fo/
http://www.greenplum.com

Gunda, P. K., Ravindranath, L., Thekkath, C. A., Yu, Y., and Zhuang, L. (2010),
“Nectar: Automatic Management of Data and Computation in Datacenters,” in
Proc. of the 9th Conf. on Operating Systems Design and Implementation, pp. 1–8,
USENIX Association.

Haas, P. J., Ilyas, I. F., Lohman, G. M., and Markl, V. (2009), “Discovering and
Exploiting Statistical Properties for Query Optimization in Relational Databases:
A Survey,” Statistical Analysis and Data Mining, 1, 223–250.

Hadoop (2012), “Apache Hadoop,” http://hadoop.apache.org/.

Hadoop Perf UI (2011), “Hadoop Performance Monitoring UI,” http://code.

google.com/p/hadoop-toolkit/wiki/HadoopPerformanceMonitoring.

Hadoop Tutorial (2011), “Hadoop MapReduce Tutorial,” http://hadoop.apache.

org/common/docs/r0.20.2/mapred_tutorial.html.

Hadoop Vaidya (2011), “Hadoop Vaidya,” http://hadoop.apache.org/mapreduce/

docs/r0.21.0/vaidya.html.

Hamilton, J. (2008), “Resource Consumption Shaping,” http://perspectives.

mvdirona.com/2008/12/17/ResourceConsumptionShaping.aspx.

Herodotou, H. and Babu, S. (2009), “Automated SQL Tuning through Trial and
(Sometimes) Error,” in Proc. of the 2nd Intl. Workshop on Testing Database Sys-
tems, pp. 1–6, ACM.

Herodotou, H. and Babu, S. (2010), “Xplus: A SQL-Tuning-Aware Query Opti-
mizer,” Proc. of the VLDB Endowment, 3, 1149–1160.

Herodotou, H. and Babu, S. (2011), “Profiling, What-if Analysis, and Cost-based
Optimization of MapReduce Programs,” Proc. of the VLDB Endowment, 4, 1111–
1122.

Herodotou, H., Dong, F., and Babu, S. (2011a), “MapReduce Programming and
Cost-based Optimization? Crossing this Chasm with Starfish,” in Demonstration
at the 37th Intl. Conf. on Very Large Data Bases, VLDB Endowment.

Herodotou, H., Dong, F., and Babu, S. (2011b), “No one (cluster) size fits all: auto-
matic cluster sizing for data-intensive analytics,” in Proc. of the 2nd Symposium
on Cloud Computing, ACM.

Herodotou, H., Borisov, N., and Babu, S. (2011c), “Query Optimization Techniques
for Partitioned Tables,” in Proc. of the 2011 ACM SIGMOD Intl. Conf. on Man-
agement of Data, pp. 49–60, ACM.

258

http://hadoop.apache.org/
http://code.google.com/p/hadoop-toolkit/wiki/HadoopPerformanceMonitoring
http://code.google.com/p/hadoop-toolkit/wiki/HadoopPerformanceMonitoring
http://hadoop.apache.org/common/docs/r0.20.2/mapred_tutorial.html
http://hadoop.apache.org/common/docs/r0.20.2/mapred_tutorial.html
http://hadoop.apache.org/mapreduce/docs/r0.21.0/vaidya.html
http://hadoop.apache.org/mapreduce/docs/r0.21.0/vaidya.html
http://perspectives.mvdirona.com/2008/12/17/ResourceConsumptionShaping.aspx
http://perspectives.mvdirona.com/2008/12/17/ResourceConsumptionShaping.aspx

Herodotou, H., Lim, H., Luo, G., Borisov, N., Dong, L., Cetin, F. B., and Babu, S.
(2011d), “Starfish: A Self-tuning System for Big Data Analytics,” in Proc. of the
5th Biennial Conf. on Innovative Data Systems Research.

Herodotou, H., Babu, S., Reed, B., and Chen, J. (2012), “Interaction-Aware Opti-
mization of MapReduce Workflows for Improved Cluster Utilization,” Tech. Rep.
CS-2012-02, Duke Computer Science.

IBM Corp. (2007), Partitioned tables, IBM Corporation2, http://publib.

boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.

partition.doc/doc/c0021560.html.

IBM Corp. (2009), Configuring DB2 to Use an Optimization Profile, IBM Corpo-
ration, http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.

ibm.db2.udb.admin.doc/doc/t0024533.htm.

IBM Corp. (2010), DB2 SQL Performance Analyzer, IBM Corporation,
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.

ibm.db2tools.anl.doc.iug/anlhome.htm.

IBM Corp. (2011a), Giving Optimization Hints to DB2, IBM Corpo-
ration, http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/

com.ibm.db2.doc.admin/p9li375.htm.

IBM Corp. (2011b), IBM DB2 Database for Linux, UNIX, and Windows Informa-
tion Center, IBM Corporation, http://publib.boulder.ibm.com/infocenter/
db2luw/v9/index.jsp.

Isard, M., Budiu, M., Yu, Y., Birrell, A., and Fetterly, D. (2007), “Dryad: Dis-
tributed Data-Parallel Programs from Sequential Building Blocks,” ACM SIGOPS
Operating Systems Review, 41, 59–72.

Isard, M., Prabhakaran, V., Currey, J., Wieder, U., Talwar, K., and Goldberg, A.
(2009), “Quincy: Fair Scheduling for Distributed Computing Clusters,” in Proc. of
the 22nd ACM SIGOPS Symposium on Operating Systems Principles, pp. 261–276,
ACM.

Iu, M.-Y. and Zwaenepoel, W. (2010), “HadoopToSQL: A MapReduce Query Op-
timizer,” in Proc. of the 5th European Conf. on Computer Systems, pp. 251–264,
ACM.

Jiang, D., Ooi, B. C., Shi, L., and Wu, S. (2010), “The Performance of MapReduce:
An In-depth Study,” Proc. of the VLDB Endowment, 3, 472–483.

Jindal, A., Quian-Ruiz, J.-A., and Dittrich, J. (2011), “Trojan Data Layouts: Right
Shoes for a Running Elephant,” in Proc. of the 2nd Symposium on Cloud Com-
puting, ACM.

259

http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.partition.doc/doc/c0021560.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.partition.doc/doc/c0021560.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.partition.doc/doc/c0021560.html
http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.admin.doc/doc/t0024533.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9/topic/com.ibm.db2.udb.admin.doc/doc/t0024533.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.anl.doc.iug/anlhome.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2tools.anl.doc.iug/anlhome.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2.doc.admin/p9li375.htm
http://publib.boulder.ibm.com/infocenter/dzichelp/v2r2/topic/com.ibm.db2.doc.admin/p9li375.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp

Kabra, N. and DeWitt, D. J. (1998), “Efficient Mid-Query Re-Optimization of Sub-
Optimal Query Execution Plans,” ACM SIGMOD Record, 27, 106–117.

Kambatla, K., Pathak, A., and Pucha, H. (2009), “Towards Optimizing Hadoop
Provisioning in the Cloud,” in Proc. of the 1st USENIX Conf. on Hot Topics in
Cloud Computing, USENIX Association.

Karjoth, G. (2003), “Access Control with IBM Tivoli Access Manager,” ACM Trans-
actions on Information and System Security (TISSEC), 6, 232–257.

Kemper, A., Moerkotte, G., and Peithner, K. (1993), “A Blackboard Architecture
for Query Optimization in Object Bases,” in Proc. of the 19th Intl. Conf. on Very
Large Data Bases, pp. 543–543, Morgan Kaufmann Publishers Inc.

Kreps, J. (2009), “TeraByte-scale Data Cycle at LinkedIn,” http://tinyurl.com/

lukod6.

Kwon, Y., Balazinska, M., Howe, B., and Rolia, J. (2010), “Skew-Resistant Parallel
Processing of Feature Extracting Scientific User-Defined Functions,” in Proc. of
the 1st Symposium on Cloud Computing, ACM.

Lee, R., Luo, T., Huai, Y., Wang, F., He, Y., and Zhang, X. (2011), “YSmart:
Yet Another SQL-to-MapReduce Translator,” in Proc. of the 31st Intl. Conf. on
Distributed Computing Systems, pp. 25–36, IEEE.

Levy, A. Y., Mumick, I. S., and Sagiv, Y. (1994), “Query Optimization by Predicate
Move-Around,” in Proc. of the 20th Intl. Conf. on Very Large Data Bases, pp.
96–107, Morgan Kaufmann Publishers Inc.

Li, A., Yang, X., Kandula, S., and Zhang, M. (2010), “CloudCmp: Shopping for a
Cloud Made Easy,” in Proc. of the 2nd USENIX Conf. on Hot Topics in Cloud
Computing, USENIX Association.

Lin, J. and Dyer, C. (2010), Data-Intensive Text Processing with MapReduce, Morgan
and Claypool.

Lipcon, T. (2009), “Cloudera: 7 tips for Improving MapRe-
duce Performance,” http://www.cloudera.com/blog/2009/12/

7-tips-for-improving-mapreduce-performance/.

Louth, W. (2009), “OpenCore Vs. BTrace,” http://opencore.jinspired.com/

?page_id=588.

Macbeth, S. (2011), “Why YieldBot Chose Cascalog over Pig for Hadoop Processing,”
http://tech.backtype.com/52456836.

260

http://tinyurl.com/lukod6
http://tinyurl.com/lukod6
http://www.cloudera.com/blog/2009/12/7-tips-for-improving-mapreduce-performance/
http://www.cloudera.com/blog/2009/12/7-tips-for-improving-mapreduce-performance/
http://opencore.jinspired.com/?page_id=588
http://opencore.jinspired.com/?page_id=588
http://tech.backtype.com/52456836

Markl, V., Raman, V., Simmen, D., Lohman, G., Pirahesh, H., and Cilimdzic, M.
(2004), “Robust Query Processing through Progressive Optimization,” in Proc. of
the 2004 ACM SIGMOD Intl. Conf. on Management of Data, pp. 659–670, ACM.

Markl, V., Haas, P. J., Kutsch, M., Megiddo, N., Srivastava, U., and Tran, T. M.
(2007), “Consistent Selectivity Estimation via Maximum Entropy,” The VLDB
Journal, 16, 55–76.

Morales, T. (2007), Oracle Database VLDB and Partitioning Guide 11g Release
1 (11.1), Oracle Corporation, http://docs.oracle.com/cd/B28359_01/server.
111/b32024.pdf.

Neugebauer, C. Z. R., Sutyanyong, N., Qian, X., and Berger, R. (2002),
“Partitioning in DB2 Using the UNION ALL View,” IBM Develop-
erWorks, http://www.ibm.com/developerworks/data/library/techarticle/

0202zuzarte/0202zuzarte.pdf.

Nykiel, T., Potamias, M., Mishra, C., Kollios, G., and Koudas, N. (2010), “MRShare:
Sharing Across Multiple Queries in MapReduce,” Proc. of the VLDB Endowment,
3, 494–505.

Olken, F. and Rotem, D. (1995), “Random Sampling from Databases: A Survey,”
Statistics and Computing, 5, 25–42.

Olston, C., Reed, B., Silberstein, A., and Srivastava, U. (2008a), “Automatic Op-
timization of Parallel Dataflow Programs,” in Proc. of the 2008 USENIX Annual
Technical Conference, pp. 267–273, USENIX Association.

Olston, C., Reed, B., Srivastava, U., Kumar, R., and Tomkins, A. (2008b), “Pig
Latin: A Not-So-Foreign Language for Data Processing,” in Proc. of the 2008
ACM SIGMOD Intl. Conf. on Management of Data, pp. 1099–1110, ACM.

Oozie (2010), “Oozie: Workflow Engine for Hadoop,” http://yahoo.github.com/

oozie/.

Ozsu, T. M. and Valduriez, P. (1999), Principles of Distributed Database Systems,
Prentice Hall.

Papadomanolakis, S. and Ailamaki, A. (2004), “AutoPart: Automating Schema De-
sign for Large Scientific Databases Using Data Partitioning,” in Proc. of the 2004
Intl. Conf. on Scientific and Statistical Database Management, pp. 383–392, IEEE.

Pavlo, A., Paulson, E., Rasin, A., Abadi, D., DeWitt, D., Madden, S., and Stone-
braker, M. (2009), “A Comparison of Approaches to Large-Scale Data Analysis,”
in Proc. of the 2009 ACM SIGMOD Intl. Conf. on Management of Data, pp.
165–178, ACM.

261

http://docs.oracle.com/cd/B28359_01/server.111/b32024.pdf
http://docs.oracle.com/cd/B28359_01/server.111/b32024.pdf
http://www.ibm.com/developerworks/data/library/techarticle/0202zuzarte/0202zuzarte.pdf
http://www.ibm.com/developerworks/data/library/techarticle/0202zuzarte/0202zuzarte.pdf
http://yahoo.github.com/oozie/
http://yahoo.github.com/oozie/

Polyzotis, N. (2005), “Selectivity-based Partitioning: A Divide-and-union Paradigm
for Effective Query Optimization,” in Proc. of the 14th ACM Intl. Conf. on Infor-
mation and Knowledge Management, pp. 720–727, ACM.

Quinlan, R. J. (1992), “Learning with Continuous Classes,” in Proc. of the 5th Aus-
tralian Joint Conference on Artificial Intelligence, pp. 343–348, Springer Berlin /
Heidelberg.

Qureshi, A., Weber, R., Balakrishnan, H., Guttag, J. V., and Maggs, B. V. (2009),
“Cutting the Electric Bill for Internet-scale Systems,” in Proc. of the ACM SIG-
COMM Conf. on Data Communication, pp. 123–134, ACM.

Rao, J., Zhang, C., Megiddo, N., and Lohman, G. M. (2002), “Automating Physical
Database Design in a Parallel Database,” in Proc. of the 2002 ACM SIGMOD
Intl. Conf. on Management of Data, pp. 558–569, ACM.

Ratzesberger, O. (2010), “Agile Enterprise Analytics,” SMDB 2010 Keynote by
Oliver Ratzesberger.

Romeijn, H. and Smith, R. (1994), “Simulated annealing and adaptive search in
global optimization,” Probability in the Engineering and Informational Sciences.

Selinger, P. G., Astrahan, M. M., Chamberlin, D. D., Lorie, R. A., and Price, T. G.
(1979), “Access Path Selection in a Relational Database Management System,” in
Proc. of the 1979 ACM SIGMOD Intl. Conf. on Management of Data, pp. 23–34,
ACM.

Shankar, S. and Dewitt, D. J. (2007), “Data Driven Workflow Planning in Cluster
Management Systems,” in Proc. of the 16th Intl. Symposium on High Performance
Distributed Computing, pp. 127–136, ACM.

Sheers, K. R. (1996), “HP OpenView Event Correlation Services,” Hewlett-Packard
Journal, 47, 31–33.

Sood, A. (2010), “How to dynamically assign reducers to a
Hadoop Job at runtime,” http://www.hadoop-blog.com/2010/12/

how-to-dynamically-assign-reducers-to.html.

Stillger, M., Lohman, G. M., Markl, V., and Kandil, M. (2001), “LEO - DB2’s
Learning Optimizer,” in Proc. of the 27th Intl. Conf. on Very Large Data Bases,
pp. 19–28, Morgan Kaufmann Publishers Inc.

Talmage, R. (2009), Partitioned Table and Index Strategies Using SQL Server 2008,
Microsoft, http://msdn.microsoft.com/en-us/library/dd578580.aspx.

Tang, H. (2009), “Mumak: Map-Reduce Simulator,” https://issues.apache.org/

jira/browse/MAPREDUCE-728.

262

http://www.hadoop-blog.com/2010/12/how-to-dynamically-assign-reducers-to.html
http://www.hadoop-blog.com/2010/12/how-to-dynamically-assign-reducers-to.html
http://msdn.microsoft.com/en-us/library/dd578580.aspx
https://issues.apache.org/jira/browse/MAPREDUCE-728
https://issues.apache.org/jira/browse/MAPREDUCE-728

Teradata (2012), “Teradata,” http://www.teradata.com.

Thain, D., Tannenbaum, T., and Livny, M. (2005), “Distributed Computing in Prac-
tice: The Condor Experience,” Concurrency and Computation: Practice and Ex-
perience, 17, 323–356.

Thusoo, A., Sarma, J. S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H.,
Wyckoff, P., and Murthy, R. (2009), “Hive: A Warehousing Solution over a Map-
Reduce Framework,” Proc. of the VLDB Endowment, 2, 1626–1629.

TPC (2009), TPC Benchmark H Standard Specification, http://www.tpc.org/

tpch/spec/tpch2.9.0.pdf.

Urhan, T., Franklin, M., and Amsaleg, L. (1998), “Cost-based Query Scrambling for
Initial Delays,” ACM SIGMOD Record, 27, 130–141.

Wang, G., Butt, A., Pandey, P., and Gupta, K. (2009), “A Simulation Approach to
Evaluating Design Decisions in MapReduce Setups,” in Proc. of the IEEE Intl.
Symp. on Modeling, Analysis & Simulation of Computer and Telecommunication
Systems, pp. 1–11, IEEE.

White, T. (2010), Hadoop: The Definitive Guide, Yahoo! Press.

Wu, S., Li, F., Mehrotra, S., and Ooi, B. C. (2011), “Query Optimization for Mas-
sively Parallel Data Processing,” in Proc. of the 2nd Symposium on Cloud Com-
puting, ACM.

Ye, T. and Kalyanaraman, S. (2003), “A Recursive Random Search Algorithm for
Large-scale Network Parameter Configuration,” in Proc. of the 2003 ACM SIG-
METRICS Intl. Conf. on Measurement and Modeling of Computer Systems, pp.
196–205, ACM.

Yu, Y., Gunda, P. K., and Isard, M. (2009), “Distributed Aggregation for Data-
parallel Computing: Interfaces and Implementations,” in Proc. of the 22nd ACM
SIGOPS Symposium on Operating Systems Principles, pp. 247–260, ACM.

Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, K., Shenker, S., and Stoica,
I. (2010), “Delay Scheduling: A Simple Technique for Achieving Locality and
Fairness in Cluster Scheduling,” in Proc. of the 5th European Conf. on Computer
Systems, pp. 265–278, ACM.

Zeller, B. and Kemper, A. (2002), “Experience Report: Exploiting Advanced
Database Optimization Features for Large-Scale SAP R/3 Installations,” in Proc.
of the 28st Intl. Conf. on Very Large Data Bases, pp. 894–905, VLDB Endowment.

263

http://www.teradata.com
http://www.tpc.org/tpch/spec/tpch2.9.0.pdf
http://www.tpc.org/tpch/spec/tpch2.9.0.pdf

Zheng, W., Bianchini, R., Janakiraman, J., Santos, J. R., and Turner, Y. (2009),
“JustRunIt: Experiment-Based Management of Virtualized Data Centers,” in
Proc. of the 2009 USENIX Annual Technical Conference, pp. 18–18, USENIX
Association.

Zhou, J., Larson, P.-Å., and Chaiken, R. (2010), “Incorporating Partitioning and
Parallel Plans into the SCOPE Optimizer,” in Proc. of the 26th IEEE Intl. Conf.
on Data Engineering, pp. 1060–1071, IEEE.

Zilio, D., Jhingran, A., and Padmanabhan, S. (1994), “Partitioning Key Selection
for a Shared-Nothing Parallel Database System,” IBM Research Report RC 19820.

Zilio, D. C., Rao, J., Lightstone, S., Lohman, G., Storm, A., Garcia-Arellano, C., and
Fadden, S. (2004), “DB2 Design Advisor: Integrated Automatic Physical Database
Design,” in Proc. of the 30th Intl. Conf. on Very Large Data Bases, pp. 1087–1097,
VLDB Endowment.

264

Biography

Herodotos Herodotou was born on September 5th, 1983 in Nicosia, Cyprus. He re-

ceived his Ph.D. degree in Computer Science from Duke University in May 2012. His

dissertation work focused on the ease-of-use, manageability, and automated tuning

of both centralized and distributed data-intensive computing systems. He received

his M.S. degree in Computer Science from Duke University in May 2009. His M.S.

thesis focused on automating the process of SQL tuning in an efficient manner using

an experiment-driven approach. His research work resulted in two public software

releases for (i) Xplus, a SQL-tuning-aware query optimizer, and (ii) Starfish, a self-

tuning system for Big Data analytics.

While at Duke, he was a recipient of the Steele Endowed Fellowship in 2008.

In addition, he has had extensive industry exposure as both a researcher and a

software engineer through multiple internships, with esteemed companies like Yahoo!

Research, Microsoft Corporation, and Aster Data.

Before joining Duke, he completed his undergraduate studies as a double major

in Computer Science and Mathematics at the University of Maryland, Baltimore

County (UMBC). He was the recipient of the Cyprus-America Scholarship (awarded

by the Cyprus Fulbright Commission) and the UMBC President’s Scholar Award.

Upon completion of his graduate studies at Duke University, Herodotos will join

the eXtreme Computing Group (XCG) at Microsoft Research, where he will engage

in research related to cloud computing and large-scale data analytics.

265

	Abstract
	List of Tables
	List of Figures
	Acknowledgements
	1 Analytical Processing in the Big Data Era
	1.1 MADDER Principles in Big Data Analytics
	1.2 Two Approaches to Big Data Analytics
	1.3 Big Data Analytics Systems are Becoming MADDER
	1.4 Challenges in Tuning MADDER Systems
	1.5 Contributions

	2 A Tuning Approach for MADDER Systems
	2.1 Current Approaches to Optimization and Tuning
	2.1.1 Self-tuning Database Systems
	2.1.2 Optimizing Dataflow Systems

	2.2 Overview of a MADDER Tuning Approach
	2.2.1 Tuning MapReduce Workloads with Starfish
	2.2.2 Tuning SQL Queries with Xplus

	3 Primer on Tuning MapReduce Workloads
	3.1 MapReduce Job Execution
	3.2 Impact of Configuration Parameter Settings
	3.3 MapReduce on the Cloud
	3.4 Use Cases for Tuning MapReduce Workloads

	4 Dynamic Profiling of MapReduce Workloads
	4.1 Job and Workflow Profiles
	4.2 Using Profiles to Analyze Execution Behavior
	4.3 Generating Profiles via Measurement
	4.4 Task-level Sampling to Generate Approximate Profiles

	5 A Declarative Query Interface to Access Performance Predictors and Optimizers
	5.1 Declarative Interface to Express Workload Tuning Queries
	5.2 Overview of How Starfish Answers a Workload Tuning Query
	5.3 Starfish Visualizer

	6 Predicting MapReduce Workload Performance
	6.1 Overview for Predicting MapReduce Workload Performance
	6.2 Cardinality Models to Estimate Dataflow Statistics Fields
	6.3 Relative Black-box Models to Estimate Cost Statistics Fields
	6.4 Analytical Models to Estimate Dataflow and Cost Fields
	6.4.1 Modeling the Read and Map Phases in the Map Task
	6.4.2 Modeling the Collect and Spill Phases in the Map Task
	6.4.3 Modeling the Merge Phase in the Map Task
	6.4.4 Modeling the Shuffle Phase in the Reduce Task
	6.4.5 Modeling the Merge Phase in the Reduce Task
	6.4.6 Modeling the Reduce and Write Phases in the Reduce Task

	6.5 Simulating the Execution of a MapReduce Workload
	6.6 Estimating Derived Data Properties and Workflow Performance
	6.7 Evaluating the Predictive Power of the What-if Engine
	6.7.1 Accuracy of What-if Analysis
	6.7.2 Tuning the Cluster Size
	6.7.3 Transitioning from Development to Production
	6.7.4 Evaluating the Training Benchmarks

	7 Cost-based Optimization for MapReduce Workloads
	7.1 Current Approaches to MapReduce Optimization
	7.2 Cost-based Optimization of MapReduce Jobs
	7.2.1 Subspace Enumeration
	7.2.2 Search Strategy within a Subspace
	7.2.3 Evaluating Cost-based Job Optimization

	7.3 Cost-based Optimization of MapReduce Workflows
	7.3.1 Dataflow and Resource Dependencies in Workflows
	7.3.2 MapReduce Workflow Optimizers
	7.3.3 Evaluating Cost-based Workflow Optimization

	7.4 Cost-based Optimization of Cluster Resources
	7.4.1 Cluster Resource Optimizer
	7.4.2 Evaluating Cost-based Cluster Provisioning

	8 An Experiment-driven Approach to Tuning Analytical Queries
	8.1 New Representation of the Physical Plan Space
	8.2 New Search Strategy over the Physical Plan Space
	8.2.1 Enumerating Neighborhoods and Plans
	8.2.2 Picking the Neighborhoods to Cover
	8.2.3 Picking the Plan to Run in a Neighborhood

	8.3 Implementation of Xplus
	8.3.1 Architecture
	8.3.2 Extensibility Features
	8.3.3 Efficiency Features

	8.4 Comparing Xplus to Other SQL-tuning Approaches
	8.5 Experimental Evaluation
	8.5.1 Overall Performance of Xplus
	8.5.2 Comparison with Other SQL-tuning Approaches
	8.5.3 Internal Comparisons for Xplus

	9 Increasing Partition-awareness in Cost-based Query Optimization
	9.1 Optimization Opportunities for Partitioned Tables
	9.2 Related Work on Table Partitioning
	9.3 Query Optimization Techniques for Partitioned Tables
	9.3.1 Matching Phase
	9.3.2 Clustering Phase
	9.3.3 Path Creation and Selection
	9.3.4 Extending our Techniques to Parallel Database Systems

	9.4 Experimental Evaluation
	9.4.1 Results for Different Partitioning Schemes
	9.4.2 Studying Optimization Factors on Table Partitioning
	9.4.3 Impact on Cardinality Estimation

	10 The Future of Big Data Analytics
	10.1 Starfish: Present and Future
	10.2 Xplus: Present and Future

	Bibliography
	Biography

