
A What-if Engine for Cost-based MapReduce Optimization

Herodotos Herodotou
Microsoft Research

Shivnath Babu
Duke University

Abstract

The Starfish project at Duke University aims to provide MapReduce users and applications with
good performance automatically, without any need on their part to understand and manipulate the nu-
merous tuning knobs in a MapReduce system. This paper describes the What-if Engine, an indispensable
component in Starfish, which serves a similar purpose as a costing engine used by the query optimizer
in a Database system. We discuss the problem and challenges addressed by the What-if Engine. We
also discuss the techniques used by the What-if Engine and the design decisions that led us to these
techniques.

1 Introduction

Modern organizations are collecting data (“big data”) at an unprecedented scale. MapReduce systems like
Hadoop have emerged to help these organizations store large datasets and run analytics on the data to generate
useful insights [15]. Getting good performance from a MapReduce system can be a nontrivial exercise due to
the large number of tuning knobs present in the system. Practitioners of big data analytics like business analysts,
computational scientists, and systems researchers usually lack the expertise to tune these knobs.

The Starfish project at Duke University aims to provide MapReduce users and applications with good perfor-
mance automatically, without any need on their part to understand and manipulate the numerous tuning knobs.
Starfish uses a “profile-predict-optimize” approach:

1. Profile: Starfish observes and records the actual run-time behavior of MapReduce workloads executing on
the system. This part is handled by the Profiler in Starfish.

2. Predict: Starfish analyzes and learns from these observations, and reasons about hypothetical tuning
choices. This part is handled by the What-if Engine in Starfish.

3. Optimize: Optimizers in Starfish choose appropriate settings for the various tuning knobs in order to
improve workload performance along one or more dimensions (e.g., completion time, resource utilization,
pay-as-you-go monetary costs on cloud platforms).

Optimizers have been developed or are being developed in Starfish for setting a number of tuning knobs in-
cluding: (i) choice of query execution plans for SQL-like queries run over MapReduce, (ii) degree of task-level
parallelism for MapReduce jobs, (iii) physical design choices such as partitioning, ordering, and compression,

Copyright 0000 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE.
Bulletin of the IEEE Computer Society Technical Committee on Data Engineering

1



(iv) provisioning of resources on the cluster, (v) selection of the virtual machine type on cloud platforms like
Amazon Web Services, (vi) choice of job and task scheduling policies, and others.

The effectiveness of the Optimizers in finding close-to-optimal settings of the various tuning knobs depends
heavily on the accuracy of the What-if Engine in predicting performance for different settings of these knobs.
Thus, the What-if Engine is a critical component in a big data ecosystem. Unfortunately, the importance of the
What-if Engine is often underestimated and undervalued.

In this paper, we focus on the “predict” piece of the “profile-predict-optimize” approach and describe
Starfish’s What-if Engine. We will first describe the overall problem and challenges that the What-if Engine
addresses, and then outline the approach taken to solve them. We also report an experimental evaluation of the
What-if Engine.

2 Design of Starfish’s What-if Engine
2.1 Problem and Design Decisions
Consider a MapReduce job j = 〈p, d, r, c〉 that runs program p on input data d and cluster resources r using
configuration parameter settings c. Job j’s performance can be represented as:

perf = F1(p, d, r, c) (1)

Here:

• perf is some performance metric (e.g., execution time) of interest for jobs that is captured by the perfor-
mance model F1.

• The MapReduce program p is written directly in terms of map and reduce functions by a user or generated
from a higher-level query specified in languages like HiveQL and Pig Latin [15].

• The input dataset d is represented by information such as d’s size, the block layout of files that comprise
d in the distributed file-system used by MapReduce, and whether d is stored compressed.

• The cluster resources r are represented by information such as the number of nodes and node types in r,
the number of map and reduce task execution slots per node, and the maximum memory available per task
slot.

• The job configuration c includes parameters such as the number of map and reduce tasks, the partitioning
function, settings for memory-related parameters, the use of compression, and the use of the combine
function [15].

Tuning knobs to optimize the performance of the MapReduce job j = 〈p, d, r, c〉 are present in each one of p, d,
r, and c. For example, if p represents a join operation, then a map-side join or a reduce-side join can be done
[1]. The data layout can be tuned by using row-based or column-based layouts [8]. The cluster resources can
be tuned by choosing appropriate virtual machine types [6]. The job configuration can be tuned by adjusting the
number of reduce tasks [5].

If the function F1 from Equation 1 can be estimated accurately by the What-if Engine, then Starfish’s Opti-
mizers can be very effective at finding optimal settings for the above tuning knobs. However, accurate modeling
of F1 has to overcome many challenges that arise in distributed processing such as task parallelism, scheduling,
and interactions among the large number of tuning knobs involved.

Furthermore, MapReduce jobs usually run as part of a MapReduce workflow W , where W is a directed
acyclic graph (DAG) GW that represents a set of MapReduce jobs and their dataflow dependencies. Consider
a MapReduce workflow W that runs the programs {pi} from the corresponding jobs ji in GW on input base

2



What-if Questions on MapReduce Job Execution
WIF1 How will the execution time of job j change if I increase the number of reduce

tasks from the current value of 20 to 40?
WIF2 What is the new estimated execution time of job j if 5 more nodes are added to

the cluster, bringing the total to 20 nodes?
WIF3 How will the execution time of job j change when I execute j on the production

cluster instead of the development cluster, and the input data size increases by
60%?

WIF4 What is the estimated execution time of job j if I execute j on a new cluster with
10 EC2 nodes of type m1.large rather than the current in-house cluster?

Table 1: Example questions the What-if Engine can answer.

datasets {bi} and cluster resources r using configuration parameter settings {ci}. W ’s performance can be
represented as:

perf = F2({pi}, {bi}, r, {ci}) (2)

Building the performance model F2 to predict workflow performance brings in additional complications due to
concurrent execution of independent jobs in W on the cluster resources r.

It is quite clear that performance prediction is a very hard problem. At the same time, it is a problem that
needs a reasonable solution if we want to generate good settings for tuning knobs automatically. One of the
contributions we have made in Starfish is to identify an abstraction of the prediction problem that strikes a good
balance between being applicable and admitting to good solutions. This abstraction can be characterized by the
following three design decisions:

1. Address relative prediction problems instead of absolute prediction problems.

2. Develop profiles that capture the salient aspects of MapReduce execution. Use profiles consistently to rep-
resent the observed performance of actual MapReduce jobs that run as well as the predicted performance
of hypothetical MapReduce jobs.

3. Break the overall prediction problem into composable components and attack each component with the
best modeling technique available among analytical models, black-box models, and simulation models.

2.2 Relative What-if Questions

Starfish’s What-if Engine can answer any what-if question of the following general form:1

Given the profile of a job j = 〈p, d1, r1, c1〉 that runs a MapReduce program p over input data d1
and cluster resources r1 using configuration c1, what will the performance of program p be if p is
run over input data d2 and cluster resources r2 using configuration c2? That is, how will job j′ =
〈p, d2, r2, c2〉 perform?

Note the relative format in which the what-if question is specified. Being relative here means that the What-if
Engine is given complete information about the execution of the job j, and then asked about how a related, but
different, job j′ will perform. Intuitively, relative what-if questions are easier to answer than absolute questions.
In the relative case, only an estimate of the change in performance is needed; whereas the absolute case as
represented by Equation 1 needs a prediction starting from scratch with limited input information provided.

Table 1 lists several interesting what-if questions that users or applications can express directly to the Starfish
What-if Engine. For example, consider question WIF1 from Table 1. Here, the performance of a MapReduce

1For simplicity of presentation, this specification considers a single MapReduce job instead of a workflow.

3



Algorithm for predicting MapReduce workflow performance
Input: Profile of jobs in workflow, Cluster resources, Base dataset properties, Configuration settings
Output: Prediction for the MapReduce workflow performance

For each (job profile in workflow in topological sort order) {
Estimate the virtual job profile for the hypothetical job (Sections 3.1, 3.2, and 3.3);
Simulate the job execution on the cluster resources (Section 3.4);
Estimate the data properties of the hypothetical derived dataset(s) and the overall job performance;

}

Figure 1: Overall process used by the What-if Engine to predict the performance of a MapReduce workflow.

job j = 〈p, d, r, c〉 is known when 20 reduce tasks are used to run j. The number of reduce tasks is one of the
job configuration parameters in c. WIF1 asks for an estimate of the execution time of a hypothetical job j′ =
〈p, d, r, c′〉whose configuration c′ is the same as c except that c′ specifies using 40 reduce tasks. The MapReduce
program p, input data d, and cluster resources r remain unchanged in j′.

As indicated in Table 1, the What-if Engine can answer questions on real and hypothetical input data as well
as cluster resources. Furthermore, as we will describe in Section 3, the What-if Engine can answer what-if
questions for MapReduce workflows composed of multiple jobs that exhibit producer-consumer relationships or
are run concurrently.

2.3 Profiles

Note that a relative what-if question needs the profile of a MapReduce job as input. A profile consists of fields
that together form a concise summary of the job’s execution. These fields are partitioned into four categories:2

• Cost fields: These fields capture information about execution time at the level of tasks as well as phases
within the tasks for a MapReduce job execution. Some example fields are the execution time of the Collect
and Spill phases of a map task.

• Cost statistics fields: These fields capture statistical information about execution time for a MapReduce
job—e.g., the average time to read a record from the distributed file-system, or the average time to execute
the map function per input record—that is expected to remain unchanged across different executions of
the job unless the CPU and/or I/O resources available per node change.

• Dataflow fields: These fields capture information about the amount of data, both in terms of bytes as well
as records (key-value pairs), flowing through the different tasks and phases of a MapReduce job execution.
Some example fields are the number of map output records and the amount of bytes shuffled among the
map and reduce tasks.

• Dataflow statistics fields: These fields capture statistical information about the dataflow—e.g., the average
number of records output by map tasks per input record (the Map selectivity) or the compression ratio of
the map output—that is expected to remain unchanged across different executions of the MapReduce job
unless the data distribution in the input dataset changes significantly across these executions.

3 MapReduce Performance Prediction
Figure 1 shows the What-if Engine’s overall process for predicting the performance of a MapReduce workflow.
The DAG of job profiles in the workflow is traversed in topological sort order to ensure that the What-if Engine

2Due to space constraints, we refer the reader to [4] for the full listing and description of fields in all four categories.

4



Figure 2: Overall process used by the What-if Engine to estimate a virtual job profile.

respects the dataflow dependencies among the jobs. For each job profile, a virtual job profile is estimated for
the new hypothetical job j′ based on the new configuration settings, the cluster resources, and the properties of
the data processed by j′ (Sections 3.1, 3.2, and 3.3). The virtual profile is then used to simulate the execution
of j′ on the (perhaps hypothetical) cluster (Section 3.4). Finally, the simulated execution is used to estimate the
data properties for the derived dataset(s) produced by j′ as well as the overall performance of j′. The overall
workflow performance is predicted by combining the performance predictions for each job in the workflow.

The process of virtual profile estimation forms the foundation on which Starfish’s ability to answer what-if
questions is based. Specifically, given the profile of a job j = 〈p, d1, r1, c1〉 and the properties of input data d2,
cluster resources r2, and configuration parameter settings c2 of a hypothetical job j′ = 〈p, d2, r2, c2〉, the virtual
profile of j′ has to be estimated. Our solution for virtual profile estimation is based on a mix of black-box
and white-box models. The overall estimation process has been broken down into smaller steps as shown in
Figure 2, and a suitable modeling technique was picked for each step. These smaller steps correspond to the
four categories of fields in a job profile. We use conventional cardinality (white-box) models from database
query optimization to estimate dataflow statistics fields (described in Section 3.1), relative black-box models
to estimate the cost statistics fields (described in Section 3.2), and new analytical (white-box) models that we
developed to estimate the dataflow fields, and in turn, the cost fields (described in Section 3.3).

3.1 Cardinality Models to Estimate Dataflow Statistics Fields
Database query optimizers keep fine-grained, data-level statistics such as histograms to estimate the dataflow in
execution plans for declarative queries. However, MapReduce frameworks lack the declarative query semantics
and structured data representations of Database systems. Thus, the common case in the What-if Engine is to not
have detailed statistical information about the input data d2 in the hypothetical job j′. By default, the What-if
Engine makes a dataflow proportionality assumption which says that the logical dataflow sizes through the job’s
phases are proportional to the input data size. It follows from this assumption that the dataflow statistics fields
in the virtual profile of j′ will be the same as those in the profile of job j given as input. When additional in-
formation is available, the What-if Engine allows the default assumption to be overridden by providing dataflow
statistics fields of the virtual profile directly as input.

3.2 Relative Black-box Models to Estimate Cost Statistics Fields
Clusters with identical resources will have the same CPU and I/O (local and remote) costs. Thus, if the cluster
resource properties of r1 are the same as those of r2 in the what-if question, then the cost statistics fields in the
virtual profile of the hypothetical job j′ can be copied directly from the profile of job j given as input. This
copying cannot be used when r1 6= r2, in particular, when job j′ will run on a target cluster containing nodes
with a different type from the source cluster where job j was run to collect the profile that was given as input.

5



The technique we use when r1 6= r2 is based on a relative black-box model Msrc→tgt that can predict the
cost statistics fields CStgt in the virtual profile for the target cluster from the cost statistics fields CSsrc in the job
profile for the source cluster.

CStgt = Msrc→tgt(CSsrc) (3)

Generating training samples for the Msrc→tgt model: Let rsrc and rtgt denote the cluster resources respec-
tively for the source and target clusters. Suppose some MapReduce program p is run on input data d and
configuration parameter settings c on both the source and target clusters. That is, we run the two jobs jsrc =
〈p, d, rsrc, c〉 and jtgt = 〈p, d, rtgt, c〉. From these runs, we can generate the profiles for each individual task in
these two jobs by direct measurement. Therefore, from the ith task in these two jobs,3 we get a training sample
〈CS(i)

src,CS(i)
tgt,〉 for the Msrc→tgt model.

The above training samples were generated by running a related pair of jobs jsrc and jtgt that have the
same MapReduce program p, input data d, and configuration parameter settings c. We can generate a complete
set of training samples by using a training benchmark containing jobs with different 〈p, d, c〉 combinations.
Selecting an appropriate training benchmark is nontrivial because the two main requirements of effective black-
box modeling have to be satisfied. First, for accurate prediction, the training samples must have good coverage
of the prediction space. Second, for efficiency, the time to generate the complete set of training samples must
be small. Both actual and synthetic jobs can be used to generate the training samples. Different methods to
generate the training benchmark are described in [4].
Learning all the Msrc→tgt models needed: It is important to note that the training benchmark has to be run
only once (or with a few repetitions) per target cluster resource; giving only a linear number of benchmark runs,
and not quadratic as one might expect from the relative nature of the Msrc→tgt models. The training samples
for each source-to-target cluster pair are available from these runs. For example, to address question WIF3 from
Table 1 (i.e., planning for workload transition from a development cluster to production), one run each of the
training benchmark on the development and the production cluster will suffice.

Once the training samples are generated, there are many supervised learning techniques available for gen-
erating the black-box model in Equation 3. Since cost statistics are real-valued, we selected the M5 Tree Model
[12]. An M5 Tree Model first builds a regression-tree using a typical decision-tree induction algorithm. Then,
the tree goes through pruning and smoothing phases to generate a linear regression model for each leaf of the
tree.

In summary, given the cost statistics fields CSsrc in the job profile for the source cluster rsrc, the relative
black-box model Msrc→tgt is used to predict the cost statistics fields CStgt in the virtual profile for the target
cluster rtgt when rsrc 6= rtgt.

3.3 Analytical Models to Estimate Dataflow and Cost Fields
The What-if Engine uses a detailed set of analytical (white-box) models to calculate the dataflow fields in the
virtual profile given (i) the dataflow statistics fields estimated above, and (ii) the configuration parameter settings
c2 in the hypothetical job j′. These models give good accuracy by capturing the subtleties of MapReduce job
execution at the fine granularity of phases within map and reduce tasks. The current models were developed for
Hadoop, but the overall approach applies to any MapReduce implementation. A second set of analytical models
combines the estimated cost statistics and dataflow fields in order to estimate the cost fields in the virtual profile.
The full set of models is described in [4].

3Ensuring that the tasks have the same input data d and configuration parameter settings c ensures that there is a one-to-one corre-
spondence between the tasks in these two jobs.

6



Figure 3: Map and reduce time breakdown for Word Co-occurrence jobs from (A) an actual run and (B) as
predicted by the What-if Engine.

3.4 Simulating the Execution of a MapReduce Workload
The virtual job profile contains detailed dataflow and cost information estimated at the task and phase level
for the hypothetical job j′. The What-if Engine uses a Task Scheduler Simulator, along with the job profiles
and information on the cluster resources, to simulate the scheduling and execution of map and reduce tasks
in j′ (recall Figure 1). The Task Scheduler Simulator is a pluggable component that takes into account the
dataflow and resource dependencies among the MapReduce jobs in a workflow. Our current implementation is
a lightweight discrete event simulation of Hadoop’s default FIFO scheduler.

The final output—after all jobs have been simulated—is a description of the complete (hypothetical) work-
flow execution in the cluster. The desired answer to the what-if question—e.g., predicted workflow running time,
amount of local I/O, or a visualization of the task execution timeline—can be computed from the workflow’s
simulated execution.

4 Accuracy of What-if Analysis
We report some empirical results on the accuracy of the What-if Engine in predicting the overall execution
time of different MapReduce workflows. In our evaluation, we used Hadoop clusters running on Amazon EC2
nodes of various sizes and node types. Figure 3 compares the actual MapReduce task and phase timings with
the corresponding predictions from the What-if Engine for a Word-Cooccurrence MapReduce program run over
10GB of real data obtained from Wikipedia. Note that even though the predicted timings are slightly different
from the actual ones, the relative percentage of time spent in each MapReduce phase is captured fairly accurately.

We also ran multiple MapReduce workflows under 40 different configuration settings. We then asked the
What-if Engine to predict the job execution time for each setting. Figures 4(a)-(c) show scatter plots of the
actual and predicted times for these 40 jobs. Observe the proportional correspondence between the actual and
predicted times, and the clear identification of settings with the top-k best and worst performance (indicated by
the green and red dotted circles respectively).

The fairly uniform gap between the actual and predicted timings in Figure 4 is due to inaccuracies in the
profiles given as input to the What-if Engine. These inaccuracies are caused by the overhead of the Java profiling
technology that Starfish uses currently. The gap is largest when the MapReduce program runs under CPU
contention—which was the case when the Word Co-occurrence job was profiled. Unlike the case of Word Co-
occurrence in Figure 4(a), the predicted values in Figures 4(b) and 4(c) are closer to the actual values; indicating
that the profiling overhead is reflected less in the costs captured in the job profile. We expect to close this gap
using commercial Java profiling technology.

Another common use case we considered in our evaluation is the presence of a development cluster, and
the need to stage jobs from the development cluster to the production cluster. In our evaluation, we used a

7



Figure 4: Actual Vs. predicted running times for (a) Word Co-occurrence, (b) WordCount, and (c) TeraSort jobs
running with different configuration parameter settings.

Figure 5: Actual and predicted running times for MapReduce jobs when run on the production cluster. The
predictions used job profiles obtained from the development cluster.

10-node Hadoop cluster with m1.large EC2 nodes (4 EC2 units CPU4, 7.5 GB memory, 850 GB storage) as
the development cluster, and a 30-node Hadoop cluster with m1.xlarge EC2 nodes (8 EC2 units CPU, 15 GB
memory, 1690 GB storage) as the production one. We profiled a number of MapReduce programs on the
development cluster. We then executed the MapReduce programs on the production cluster using three times as
much data as used in the development cluster.

Figure 5 shows the actual and predicted running times for each job when run on the production cluster. The
What-if Engine used job profiles obtained from the development cluster for making the predictions. Apart from
the overall running time, the What-if Engine can also predict several other aspects of the job execution like
the amount of I/O and network traffic, the running time and scheduling of individual tasks, as well as data and
computational skew.

Overall, the What-if Engine is capable of capturing the performance trends when varying the configuration
parameter settings or the cluster resources.

5 Related Work
MapReduce is emerging rapidly as a viable competitor to existing systems for big data analytics, even though it
currently trails existing systems in peak query performance [11]. When users are asked to tune the performance
of their MapReduce workloads, they have to rely on their experience, knowledge of the data being processed, and
rules of thumb from human experts or tuning manuals to complete the task [15]. Automated approaches for such

4One EC2 Compute Unit provides the equivalent CPU capacity of a 1.0-1.2 GHz processor.

8



performance tuning are based typically on white-box models, black-box models, or simulation. Our approach is
unique as it using a carefully-designed combination of all three aforementioned techniques to achieve the task.

White-box models are created by human experts who have detailed knowledge of how workload execution
is affected by the properties of cluster resources, input data, system configuration, and scheduling policies.
If the models are developed correctly, then the predictions from them will be accurate; as is the case in the
epiC system, which supports System-R-style join ordering in Hive using white-box modeling [16]. However,
white-box models can quickly become inaccurate if they have to capture the impact of evolving features such as
hardware properties [6].

There has been considerable interest recently in using black-box models like regression trees to build work-
load performance predictors [2]. These models can be trained automatically from samples of system behavior,
and retrained when major changes happen. However, these models are only as good as the predictive behavior
of the independent variables they use and how well the training samples cover the prediction space. Relative
(fitness) modeling is a black-box approach proposed recently for complex storage devices [9]. These models
drastically simplify the model-learning process as long as actual workload performance can be measured on the
devices. The What-if Engine borrows ideas from relative modeling and applies them to MapReduce clusters.

Simulation is often a valid alternative to modeling, but developing accurate simulators faces many of the
same challenges as analytical white-box models. Some discrete event simulators have been proposed for Hadoop
(e.g., Mumak [13] and MRPerf [14]), but none of them meet the needs of the What-if Engine. Mumak needs a
job execution trace as input, and cannot simulate job execution with a different cluster size, network topology,
or even different numbers of map or reduce tasks from what the execution trace contains. MRPerf is able to
simulate job execution at the task level like our What-if Engine. However, MRPerf uses an external network
simulator to simulate the data transfers and communication among the cluster nodes; which leads to a per-job
simulation time on the order of minutes. Such a high simulation overhead prohibits MRPerf’s use by a cost-
based optimizer that needs 100-1000s of what-if calls done over different configuration parameter settings.

A MapReduce program has semantics similar to a Select-Project-Aggregate (SPA) in SQL with User-defined
functions (UDFs) for the selection and projection (map) as well as the aggregation (reduce). HadoopToSQL and
Manimal perform static analysis of MapReduce programs in order to extract declarative constructs like filters
and projections, which are then used for database-style optimizations [3, 7]. Manimal does not perform profiling,
what-if analysis, or cost-based optimization; it uses rule-based optimization instead. MRShare performs multi-
query optimization by running multiple SPA programs in a single MapReduce job [10]. MRShare proposes
a (simplified) cost model for this application. Overall, previous work related to MapReduce job optimization
targets semantic optimizations for MapReduce programs and is either missing or lacks comprehensive profiling
and what-if analysis.

6 Summary
In this paper, we described the design and implementation of the Starfish What-if Engine. Such a What-if
Engine is an indispensable component of any optimizer for MapReduce systems, just like a costing engine is
for a query optimizer in a Database system. The uses of the What-if Engine go beyond optimization: it may
be used by physical design tools for deciding data layouts and partitioning schemes; it may be used as part of
a simulator that helps make critical design decisions during a Hadoop setup—like the size of the cluster, the
network topology, and the node compute capacity; or it may help make administrative decisions—like how to
allocate resources effectively or which scheduling algorithm to use.

9



References

[1] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J. Shekita, and Y. Tian. A Comparison of Join Algorithms
for Log Processing in MapReduce. In Proc. of the 2010 ACM SIGMOD Intl. Conf. on Management of
Data, pages 975–986. ACM, 2010.

[2] P. Bodik, R. Griffith, C. Sutton, A. Fox, M. Jordan, and D. Patterson. Statistical Machine Learning Makes
Automatic Control Practical for Internet Datacenters. In Proc. of the 1st USENIX Conf. on Hot Topics in
Cloud Computing. USENIX Association, 2009.

[3] M. J. Cafarella and C. Ré. Manimal: Relational Optimization for Data-Intensive Programs. In Proc. of the
13th Intl. Workshop on the Web and Databases, pages 10:1–10:6. ACM, 2010.

[4] H. Herodotou. Automatic Tuning of Data-Intensive Analytical Workloads. PhD thesis, Duke University,
May 2012.

[5] H. Herodotou and S. Babu. Profiling, What-if Analysis, and Cost-based Optimization of MapReduce
Programs. Proc. of the VLDB Endowment, 4(11):1111–1122, 2011.

[6] H. Herodotou, F. Dong, and S. Babu. No One (cluster) Size Fits All: Automatic Cluster Sizing for Data-
intensive Analytics. In Proc. of the 2nd Symposium on Cloud Computing. ACM, 2011.

[7] M.-Y. Iu and W. Zwaenepoel. HadoopToSQL: A MapReduce Query Optimizer. In Proc. of the 5th Euro-
pean Conf. on Computer Systems, pages 251–264. ACM, 2010.

[8] A. Jindal, J.-A. Quian-Ruiz, and J. Dittrich. Trojan Data Layouts: Right Shoes for a Running Elephant. In
Proc. of the 2nd Symposium on Cloud Computing. ACM, 2011.

[9] M. Mesnier, M. Wachs, R. Sambasivan, A. Zheng, and G. Ganger. Modeling the Relative Fitness of
Storage. SIGMETRICS, 35(1):37–48, 2007.

[10] T. Nykiel, M. Potamias, C. Mishra, G. Kollios, and N. Koudas. MRShare: Sharing Across Multiple Queries
in MapReduce. Proc. of the VLDB Endowment, 3(1):494–505, 2010.

[11] A. Pavlo, E. Paulson, A. Rasin, D. Abadi, D. DeWitt, S. Madden, and M. Stonebraker. A Comparison of
Approaches to Large-Scale Data Analysis. In Proc. of the 2009 ACM SIGMOD Intl. Conf. on Management
of Data, pages 165–178. ACM, 2009.

[12] R. J. Quinlan. Learning with Continuous Classes. In Proc. of the 5th Australian Joint Conference on
Artificial Intelligence, pages 343–348. Springer Berlin / Heidelberg, 1992.

[13] H. Tang. Mumak: Map-Reduce Simulator, 2009. https://issues.apache.org/jira/browse/
MAPREDUCE-728.

[14] G. Wang, A. Butt, P. Pandey, and K. Gupta. A Simulation Approach to Evaluating Design Decisions in
MapReduce Setups. In Proc. of the IEEE Intl. Symp. on Modeling, Analysis & Simulation of Computer
and Telecommunication Systems, pages 1–11. IEEE, 2009.

[15] T. White. Hadoop: The Definitive Guide. Yahoo! Press, 2010.

[16] S. Wu, F. Li, S. Mehrotra, and B. C. Ooi. Query Optimization for Massively Parallel Data Processing. In
Proc. of the 2nd Symposium on Cloud Computing. ACM, 2011.

10


