
Enhancing Virtual Reality Systems with Smart Wearable Devices

Salah Eddin Alshaal∗, Stylianos Michael∗, Andreas Pamboris†,
Herodotos Herodotou‡, George Samaras† and Panayiotis Andreou∗,

∗Department of Computing, University of Central Lancashire, Cyprus/ InSPIRE Center, Cyprus
Email: {sealshaal,smichael,pgandreou}@uclan.ac.uk

†Department of Computer Science, University of Cyprus, Cyprus, Email: {pamboris.andreas,cssamara}@cs.ucy.ac.cy
‡Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus University of Technology, Cyprus

Email: herodotos.herodotou@cut.ac.cy

Abstract—The proliferation of wearable and smartphone
devices with embedded sensors has enabled researchers and
engineers to study and understand user behavior at an ex-
tremely high fidelity, particularly for use in industries such
as entertainment, health, and retail. However, identified user
patterns are yet to be integrated into modern systems with
immersive capabilities, such as VR systems, which still remain
constrained by limited application interaction models exposed
to developers. In this paper, we present SmartVR, a platform
that allows developers to seamlessly incorporate user behavior
into VR apps. We present the high-level architecture of
SmartVR, and show how it facilitates communication, data
acquisition, and context recognition between smart wearable
devices and mediator systems (e.g., smartphones, tablets, PCs).
We demonstrate SmartVR in the context of a VR app for retail
stores to show how it can be used to substitute the requirement
of cumbersome input devices (e.g., mouse, keyboard) with more
natural means of user-app interaction (e.g., user gestures such
as swiping and tapping) to improve user experience.

Keywords-virtual reality systems, smart wearable devices,
wearable app framework

I. INTRODUCTION

Rapid advances in mobile and smart wearable technolo-
gies have recently led researchers and engineers to explore
user behavior in the context of complex interdisciplinary
areas (e.g., artificial intelligence, behavioral sciences). De-
spite having access to an abundance of devices and valuable
data, as well as the know-how to semantically exploit it,
digital immersive environments such as Virtual Reality (VR)
systems are falling behind the high standards set by users
in terms of usability and truly enticing user experience.

The goal of current VR systems is primarily to immerse
users in virtual environments by exposing a 3D visual
setting. However, this is achieved at the expense of usability,
since users are inherently obstructed from viewing and inter-
acting with physical objects. This poses severe limitations to
state-of-the-art VR devices, which typically do not provide
a well integrated input method to complement the high-
standard visual experience they offer. For example, by losing
line of sight of peripheral devices such as the keyboard
and mouse, interacting with such devices is impractical to
say the least. As an alternative, VR systems allow users
to aim with their head (ray-casting approach), which is

more intuitive. Nevertheless, using head movements limits
precision, adversely affects application responsiveness, and
causes discomfort to users after some time.

While the aforementioned limitations have important ram-
ifications for interaction design, typical VR systems also
miss out on the opportunity to leverage valuable informa-
tion regarding runtime user behavior. They merely exploit
sensor readings in order to extrapolate user orientation,
acceleration, and position for controlling the virtual camera.
However, data such as the user’s heart rate, with potentially
significant semantic value to VR apps (e.g., to infer the
emotional and physical status of users at runtime), are
completely overlooked. Partly, this is because VR systems
are built around single standalone devices, with limitations
on the amount of embedded sensors they can include.

However, wearable technology is currently blooming and
all the more wearable devices with advanced capabilities
(e.g., smart watches, rings, and clothes) are released from
production. The main force driving this development lies in
the recent advancements in embedded sensor systems and
microcontrollers, which allows wearable devices to include
an increasing number of sensors that are packaged in small
form-factor devices. We see this as an opportunity to address
the usability concerns of current VR systems by leveraging
wearable technology as a means of interacting with a system
in a more natural manner and inferring additional runtime
information about users to enrich VR app functionality.

To this end, this paper presents a user interaction system,
coined SmartVR, intended to increase the usability and func-
tionality of VR apps using multiple wearable devices. The
main contributions of SmartVR are: (1) it supports intuitive
and user-friendly interaction models with VR systems by
providing a framework for specifying such models with
minimal developer effort; and (2) it enables the seamless
integration of wearable technology and virtual reality sys-
tems by governing the interactions between the different
components involved. It exposes an API that can be easily
ported to a wider range of smart wearable devices on
different platforms, e.g., Android and iOS.

Our demo showcases how wearables can be leveraged
within the VR realm by periodically collecting sensor data

Event Listeners

Wearable
Device

Sensors API

Accel.
Heart
Rate

Mediator Device

Query Manager

Smart Data
Fusion

Context
Manager

8. RetrainingContext
Recognition

Parser

Cloud

Machine
Learning

Algorithms

Predictive
Model

9. Recognition

model

2. Initial Training

VR System

Application

Developer

App
Engine

Rendering
Pipeline

End user

VR EngineOculus Rift

Oculus Rift
Context Mapper

1. Context
definition

&
Mapping

Commands

Context

Notifications

9. Context

Local Context
Recognition

Models

10. Mapping

Figure 1. The SmartVR architecture

to infer user hand gestures, which are then mapped to
program-defined actions in the VR context. In particular,
SmartVR supports VR apps running on desktop machines.
We illustrate SmartVR using a VR retail app where users
can roam within a shop, browse clothing items, and complete
purchases. The demoed setting uses the Oculus Rift headset
and Microsoft Band 2, a hand wearable equipped with nu-
merous sensors. The program will accept hand gestures (e.g.,
swipe left, right, up, and down) as a means of interaction
within the program. As part of the demo, a user will navigate
through the virtual shop, select an article of clothing, and
manipulate its color and size. This will be realized using
only the aforementioned devices and no peripherals.

In Section II, we describe the system architecture of the
SmartVR platform. Section III discusses related work and
Section IV concludes with an overview of the demo.

II. SMARTVR PLATFORM

In this section, we summarize the main architectural
components of the SmartVR platform, shown in Figure 1.

A. System Architecture

SmartVR enables developers to enhance and extend their
VR apps by integrating context information such as gesture
and behavior recognition. This information is acquired by
interpreting sensor data generated by a wearable device,
typically mediated by another device (e.g., smartphone or
computer), and then mapping this data to specific commands
of an app running on a VR system, such as rotating the
camera to the left, selecting an item, etc.

The process of context integration starts during (or after)
application development. During Step 1, the developer de-
fines a list of context recognition events (e.g., move hand to
the left, tap hand) that, when identified by the platform, will
trigger the execution of an application command (e.g., rotate
camera to the left, select item). These context recognition
events are stored in the Context Manager of a Mediator De-
vice (e.g., smartphone) and are then mapped to application

commands in the Context Mapper. Developers can use a
number of predefined local context recognition models to
identify events or alternatively they can define their own by
training new predictive models (Step 2).

During application execution, the Context Manager
queries the wearable device through the Query Manager
(Step 3) for sensor data (e.g., accelerometer, heart rate)
according to context recognition requirements. The Query
Manager first connects to the wearable device (Step 4) and
then transmits a number of low level queries to the local
sensors through the Sensors API (Step 5). The data sent
from the wearable device (Step 6) is first received by the
Smart Data Fusion component, which maps it to a unified
data model and then propagates it to the Context Recognition
component in the desired format (Step 7). The Context
Recognition component can use the Local Context Recog-
nition Models to infer context. If this is not possible, the
associated data may be transmitted to the Cloud component
(Step 8) for model retraining. Finally, the recognized context
events are transmitted to the VR system (Step 9), which are
then mapped to specific commands of the app (Step 10).

B. Query Manager

The Query Manager is responsible for establishing com-
munication with the wearable device and for disseminating
queries using the device’s native Sensors API. The low level
query format used by the Query Manager is in the form:
{(t, f, e)}, where t is the sensor type (e.g., accelerometer,
gyroscope), f is the frequency of data acquisition and e is an
event handler object that will be binded to events raised by
the sensor when data is generated. As the wearable device
executes the query, it propagates its data response to the
Smart Data Fusion component of the Query Manager in a
proprietary to the device format. Finally, the Smart Data
Fusion component parses the received data to transform it
according to a unified data model so that it can be easily
utilized by other components and applications.

C. Context Manager

The Context Manager handles requests to communicate
with wearable devices. In particular, it is responsible for:
i) sending queries to the Query Manager; ii) using the query
response to (re)train machine learning models; and iii) com-
municating context information to the Context Mapper.

The Context Manager communicates natively with the
Query Manager by querying for unified sensor data. We
currently support two different types of queries: i) Basic
queries that return the unprocessed unified data from one
or more sensors; and ii) Event-based queries that allow for
the correlation of data to programmable events. Event-based
queries can also accept a lifetime parameter that defines
the duration for which the query will be executed. The
queries can be provided directly by the developer or can
be communicated through the VR system.

Context recognition based on unified sensor data can be
done locally (for simple recognition tasks) or on the cloud.
For the latter, the extracted features are sent as JSON objects
through an HTTP request to the Cloud component, which
encapsulates its response in a JSON object and sends it
back to the Context Manager. An important use for the
queries’ data is for retraining models defined by developers
to increase the accuracy of context recognition. This is done
by extracting features (e.g., min, max, avg for accelerometer)
relevant to training the model and transmitting them to the
machine learning model for further training.

The Context Manager supports two modes of interaction:
i) context-based mode, which recognizes events and returns
flags to the requester; and ii) raw mode, which enables the
continuous transmission of processed data and is typically
used for free interactions such as binding camera rotation to
processed gyroscope values. The latter includes minimal data
processing, thus offering better real-time experience. Nev-
ertheless, it still contains context recognizers for dynamic
and intuitive alternating between modes (without affecting
user experience by relying on typical peripheral devices
like keyboards); for instance, the developer can specify the
gesture of knocking to be used for switching between modes.

Finally, the Context Manager can also be used to activate
feedback modules such as haptic feedback or sound for
better user experience.

D. Cloud Component

The Cloud component assists the mediator device in the
execution of computationally-intensive tasks. For example,
it can be leveraged for the execution of machine learning
algorithms that are used to train models for context recogni-
tion. These models would be hosted on the cloud so that they
can be reached for retraining and predicting values through
service requests. The use of this component is optional
and the same functionality can be achieved locally on the
mediator device, albeit with degraded performance.

E. Context Mapper

Depending on the app and based on its program state,
specific actions can be interpreted differently at runtime.
The Context Mapper is responsible for providing meaning
to the recognized actions. For example, swiping left in one
context definition might translate to selecting a previous
item, whereas in another it might translate to canceling the
current event. The App Engine is responsible for performing
the actions identified in the Context Mapper. Finally, the VR
Engine translates the app state into a stereoscopic display
that provides an immersing and interactive experience.

F. Communication Layer

SmartVR includes a communication layer for internal
communication to overcome the barrier imposed by different
programming languages, e.g., Java, C#, or Swift, for apps

that execute on the mediator device. This promotes system
modularity and overcomes challenges associated with the
lack of a direct communication channel between the recog-
nition framework and the graphical project language in game
engines like Unity or Unreal. Using SmartVR, developers
are able to write programs using their language of preference
by utilizing the supported libraries.

We chose SignalR as the basis for our communication
layer due to its assurances regarding real-time communica-
tion between components. SignalR is open source and can
be used across all major wearable platform languages such
as C#, Java, Swift, and JavaScript. The main objective of
the SignalR server is to receive messages from the VR app,
which requests to activate the wearable connection or to ex-
ecute a query, before redirecting the messages to the Context
Manager. The communication layer accepts two formats of
communication that correspond to the two aforementioned
modes of interaction in the Context Manager.

III. RELATED WORK

Recent work explores approaches for enhancing the
human-computer interaction within VR environments, which
can be grouped into two main categories. The first one
involves the use of motion sensors, cameras, or depth sensors
for capturing hand gestures and translating them into actions
in VR apps. Leap Motion is a motion-sensor device that can
be mounted on a VR headset such as Oculus Rift to track
hand and finger movements. It has been successfully used to
control avatar movements in VR apps [1] and first-person-
shouter games [2]. Cameras [3] and depth sensors [4] have
also been proposed for performing complex hand gesture
recognition without the use of wearable devices.

Nevertheless, Leap Motion and head-mounted cameras
suffer from a limited field of view (typically 135deg). As a
result, hand gestures may not be detected when the headset is
facing away from the hands. In addition, gesture recognition
using cameras and sensors is too computationally expensive
for smooth real-time usage. Instead, through SmartVR, the
use of wearable devices such as smart wristbands and rings
avoids such limitations and at the same time supports similar
fine-grained hand and finger recognition.

The second category includes specialized (and often ex-
pensive) wearable devices, including gloves, smart arm-
bands, and smart vests, that pair with specific VR headsets
for improving user control and immersion [5], [6], [7]. In
contrast to such approaches, the SmartVR design promotes
the interoperability of VR technologies with common wear-
able devices, which many users may already own (e.g., smart
watches and smart wrist bands).

IV. SMARTVR DEMONSTRATION

A. Demonstration Setup

Equipment: For the demo, we will use the following
devices: (i) a Microsoft Band 2 wristband; (ii) a VR worksta-

Figure 2. The SmartVR prototype: (left) Select mode, (right) Navigation mode

tion; (iii) a high definition monitor; (iv) a Bluetooth 4.0 LE
transceiver; and (v) an Oculus Rift Development Kit 2 (DK2)
headset. The headset and the monitor will be attached to the
VR workstation to allow visitors to view the visual output of
the application both in 2D and 3D. The Bluetooth transceiver
is used to allow communication between the VR workstation
and the wearable device. We chose to use the Microsoft
Band 2 wearable device as it features multiple embedded
sensors such as 3-axis accelerometer, 3-axis gyroscope, UV
and heart rate sensors, which we leverage to recognize a
variety of gestures. In addition, Microsoft Band 2 operates
a proprietary operating system with built-in support for
interoperability with different programming languages such
as C#, Java, or Swift.

Prototype Implementation: Our platform is implemented
using the Band SDK for the Universal Windows Platform in
C#. The gesture recognition model is implemented using
SVM algorithms with the help of scikit-learn library1 in
Python. On the cloud side, we used AzureML2 to handle data
parsing to train our Python model, as well as to automatically
deploy a request service for the predictive model. On the user
end, we employed Unity3 to develop the application and to
support Oculus Rift.The game received recognized context
through a SignalR-based4 communication platform.

B. Use Case Scenario

We will demonstrate a prototype implementation of
SmartVR by showing how, based on wearable signals, rec-
ognizing and using hand gestures can significantly improve
user experience in the context of an online virtual clothing
store. In particular, during the demo, conference attendees
will be able to wear the Oculus Rift headset and enter a
virtual store. Inside the store, a user can perform a number of
actions: navigate through the store; browse different clothing
items; select and view a specific item; and add/remove items
to/from the virtual shopping cart.

The aforementioned actions will be supported through two
distinct gesture modes, i.e., the navigation and the selection
mode. Using the former, a user will be able to explore

1scikit-learn, http://scikit-learn.org/
2Azure Machine Learning Studio, https://studio.azureml.net/
3Unity Game Engine, http://unity3d.com/
4SignalR, http://signalr.net/

her spatial surrounding by swiping her hand accordingly in
different directions to move to the left and right, or back
and forth. Using the selection mode, the camera will remain
static, allowing the user to select an item of interest using a
cursor that moves according to user swipes. When an item
is selected, the user will be provided with additional menus
for customizing it according to size and color preferences.
Finally, the user can gesture a forward press to add the
selected item into the corresponding shopping cart. To
switch between the available modes, the user will need to
perform a special gesture, named knock-knock. Feedback
regarding user gestures will be presented in the form of
overlay messages at the bottom right corner of the screen.

ACKNOWLEDGMENTS

This work was partially supported by the European Com-
mission under project MiraculousLife (FP7-ICT-2013-10).

REFERENCES

[1] C. Khundam, “First Person Movement Control with Palm
Normal and Hand Gesture Interaction in Virtual Reality,” in
Proc. of the 12th Intl. Conf. on Computer Science and Software
Engineering (JCSSE). IEEE, 2015, pp. 325–330.

[2] J. Chastine, N. Kosoris, and J. Skelton, “A Study of Gesture-
based First Person Control,” in Proc. of the 18th Intl. Conf. on
Computer Games (CGAMES). IEEE, 2013, pp. 79–86.

[3] M. Van den Bergh and L. Van Gool, “Combining RGB and ToF
Cameras for Real-time 3D Hand Gesture Interaction,” in Proc.
of the IEEE Workshop on Applications of Computer Vision
(WACV). IEEE, 2011, pp. 66–72.

[4] Z. Ren, J. Yuan, and Z. Zhang, “Robust Hand Gesture
Recognition Based on Finger-earth Mover’s Distance with a
Commodity Depth Camera,” in Proc. of the 19th ACM Intl.
Conf. on Multimedia. ACM, 2011, pp. 1093–1096.

[5] C.-M. Wu, C.-W. Hsu, and S. Smith, “A Virtual Reality
Keyboard with Realistic Key Click Haptic Feedback,” in HCI
International 2015, ser. Comm. in Computer and Information
Science, C. Stephanidis, Ed. Springer International Publish-
ing, 2015, vol. 528, pp. 232–237.

[6] S. Hibbert, “Combining the Virtual and Physical Interaction
Environment,” in Serious Games. Springer, 2015, pp. 191–
194.

[7] E. Vogiatzaki and A. Krukowski, “Virtual Reality Gaming with
Immersive User Interfaces,” in Modern Stroke Rehabilitation
through e-Health-based Entertainment. Springer, 2016, pp.
195–214.

