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Abstract

The amount of data collected by modern industrial, government, and acade-

mic organizations has been increasing exponentially and will continue to grow

at an accelerating rate for the foreseeable future. At companies across all in-

dustries, servers are overflowing with usage logs, message streams, transaction

records, sensor data, business operations records and mobile device data. Ef-

fectively analyzing these massive collections of data (“Big Data”) can create

significant value for the world economy by enhancing productivity, increasing

efficiency, and delivering more value to consumers.

The need to convert raw data into useful information has led to the de-

velopment of advanced and unique data storage, management, analysis, and

visualization technologies, especially over the last decade. This monograph

is an attempt to cover the design principles and core features of systems for

analyzing very large datasets for business purposes. In particular, we organize

systems into four main categories based on major and distinctive technological

innovations. Parallel databases dating back to 1980s have added techniques

like columnar data storage and processing, while new distributed platforms like

MapReduce have been developed. Other innovations aimed at creating alterna-

tive system architectures for more generalized dataflow applications. Finally,

the growing demand for interactive analytics has led to the emergence of a new

class of systems that combine analytical and transactional capabilities.
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1 Introduction

Modern industrial, government, and academic organizations are collecting massive

amounts of data (“big data”) at an unprecedented scale and pace. Many enter-

prises continuously collect records of customer interactions, product sales, results

from advertising campaigns on the Web, and other types of information. Power-

ful telescopes in astronomy, particle accelerators in physics, and genome sequencers

in biology are putting massive volumes of data into the hands of scientists (Cohen

et al., 2009; Thusoo et al., 2009). The ability to perform timely and cost-effective

analytical processing of such large datasets to extract deep insights is now a key in-

gredient for success. These insights can drive automated processes for advertisement

placement, improve customer relationship management, and lead to major scientific

breakthroughs (Frankel and Reid, 2008).

The set of techniques, systems, and tools that transform raw data into meaningful

and useful information for business analysis purposes is collectively known as Business

Intelligence (BI) (Chen et al., 2012). In addition to the underlying data processing

and analytical techniques, BI includes business-centric practices and methodologies

that can be applied to various high-impact applications such as e-commerce, market

intelligence, healthcare, and security. The more recent explosion of data has lead to

the development of advanced and unique data storage, management, analysis, and

visualization technologies—termed big data analytics—in order to serve applications

that are so large (from terabytes to exabytes) and complex (from sensor to social

media data) that could not be served effectively with the previous technologies. Big

data analytics can give organizations an edge over their rivals and lead to business

rewards, including more potent promotion and enhanced revenue.

Existing database systems are adapting to the new status quo while large-scale

data analytics systems, like MapReduce (Dean and Ghemawat, 2008) and Dryad

(Isard et al., 2007), are becoming popular for analytical workloads on big data. In-

dustry leaders such as Teradata, SAP, Oracle and EMC/Greenplum have addressed

this explosion of data volumes by leveraging more powerful and parallel hardware

in combination with sophisticated parallelization techniques in the underlying data

management software. Internet services companies such as Twitter, LinkedIn, Face-

book, Google, and others address the scalability challenge by leveraging a combina-

tion of new technologies in their clusters: key-value stores, columnar storage, and the

MapReduce programming paradigm (Wu et al., 2012; Thusoo et al., 2010; Lee et al.,

2012; Melnik et al., 2010). Finally, small and medium enterprises are slowly adopting

the new technologies to satisfy their needs for identifying, developing and otherwise

creating new strategic business opportunities.

This monograph is an attempt to cover the design principles and core features of

systems for analyzing very large datasets for business purposes. We organize systems

into four main categories—Parallel Databases, MapReduce, Dataflow, and Interactive

3



Analytics—each with multiple subcategories, based on some major and distinctive

technological innovations. The categories loosely correspond to the chronological

evolution of systems as the requirements for large-scale analytics have evolved over

the last few decades. Table 1 lists all categories and subcategories we discuss along

with some example systems for each subcategory.

1.1 Evolution of Data Analytics Systems

The need for improvements in productivity and decision making processes has led to

considerable innovation in systems for large-scale data analytics. Parallel databases

dating back to 1980s have added techniques like columnar data storage and processing

(Boncz et al., 2006; Lamb et al., 2012), while new distributed platforms like MapRe-

duce (Dean and Ghemawat, 2008) have been developed. Other innovations aimed at

creating alternative system architectures for more generalized dataflow applications,

including Dryad (Isard et al., 2007) and Stratosphere (Alexandrov et al., 2014). More

recently, the growing demand for interactive analytics has led to the emergence of a

new class of systems, like SAP HANA (Färber et al., 2012) and Spanner (Corbett

et al., 2012), combine analytical and transactional capabilities.

Parallel Database Systems: Row-based parallel databases were the first systems to

make parallel data processing available to a wide class of users through an intuitive

high-level programming model, namely SQL. High performance and scalability were

achieved through partitioning tables across the nodes in a shared-nothing cluster.

Such a horizontal partitioning scheme enabled relational operations like filters, joins,

and aggregations to be run in parallel over different partitions of each table stored

on different nodes. On the other hand, columnar databases pioneered the concept of

storing data tables as sections of columns rather than rows and performing vertical

partitioning. Systems with columnar storage and processing have been shown to use

CPU, memory, and I/O resources more efficiently in large-scale data analytics com-

pared to row-oriented systems (Lamb et al., 2012). Some of the main benefits come

from reduced I/O in columnar systems by (a) reading only the needed columns du-

ring query processing and (b) offering better compression. Row-based and columnar

systems are discussed in Section 2.

MapReduce Systems: MapReduce is a programming model and an associated

implementation developed by Google for processing massive datasets on large clusters

of thousands of commodity servers (Dean and Ghemawat, 2008). Parallel databases

have traditionally struggled to scale to such levels. MapReduce systems pioneered

the concept of building multiple standalone scalable distributed systems and then

composing two or more of these systems together in order to run analytic tasks on

large datasets. Typical MapReduce systems such as Hadoop (White, 2010) store

data in a standalone block-oriented distributed file system and run computational
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tasks in a MapReduce execution engine. The MapReduce model, although highly

flexible, has been found to be too low-level for routine use by practitioners such as

data analysts, statisticians, and scientists (Olston et al., 2008; Thusoo et al., 2009).

As a result, the MapReduce framework has evolved rapidly over the past few years

into a MapReduce stack that includes a number of higher-level layers added over the

core MapReduce engine. Prominent examples of these higher-level layers include Hive

(with an SQL-like declarative interface), Pig (with an interface that mixes declarative

and procedural elements), Cascading (with a Java interface for specifying workflows),

Cascalog (with a Datalog-inspired interface), and BigSheets (includes a spreadsheet

interface). MapReduce systems are covered in Section 3.

Dataflow Systems: As MapReduce systems were being adopted for a large number

of data analysis tasks, a number of shortcomings became apparent. The MapReduce

programming model is too restrictive to express certain data analysis tasks easily,

e.g., joining two datasets together. More importantly, the execution techniques used

by MapReduce systems are suboptimal for many common types of data analysis

tasks such as relational operations, iterative machine learning, and graph processing.

Some of these problems have been addressed by replacing MapReduce with a more

generalized MapReduce execution model that contains extra operators in addition to

Map and Reduce (e.g., Hyracks (Borkar et al., 2011), Nephele (Battré et al., 2010)).

A different class of dataflow systems such as Dryad (Isard et al., 2007) and Spark

(Zaharia et al., 2012) use the directed acyclic graph model that can express a wide

range of data access and communication patterns. Finally, graph processing systems

like Pregel (Malewicz et al., 2010) are specialized in running iterative computations

and other analytics tasks over data graphs. Dataflow systems are described in Section

4.

Systems for Interactive Analytics: The need to reduce the gap between the ge-

neration of data and the generation of analytics results over this data has required

system developers to constantly raise the bar in large-scale data analytics. On one

hand, this need has led to the emergence of scalable distributed storage and compute

systems that support mixed analytical and transactional workloads, such as Spanner

(Corbett et al., 2012) and Megastore (Baker et al., 2011). Support for transactions

enables storage systems in particular to serve as the data store for online services

while making the data available concurrently in the same system for analytics. The

same need led to the emergence of distributed SQL query engines that run over dis-

tributed file systems and support ad-hoc analytics. For instance, Cloudera Impala

(Wanderman-Milne and Li, 2014) enables users to issue low-latency SQL queries to

data stored in HDFS (Shvachko et al., 2010) and Apache HBase (George, 2011) wit-

hout requiring data movement or transformations. Finally, stream processing systems

are driven by a data-centric model that allows for near real-time consumption and

analysis of data. We discuss systems for interactive analytics in Section 5.

5



(Sub)Category Example Systems

Parallel Databases

Row-based Parallel

Databases

Aster nCluster, DB2 Parallel Edition, Green-

plum, Netezza, Teradata

Columnar Databases C-Store, Infobright, MonetDB, ParAccel, Sy-

base IQ, VectorWise, Vertica

MapReduce

Distributed File

Systems

Ceph, GFS, HDFS, Kosmos, MapR, Quantcast

MapReduce Execution

Engines

Google MapReduce, Hadoop, HadoopDB, Ha-

doop++

MapReduce-based

Platforms

Cascading, Clydesdale, Hive, Jaql, Pig

Dataflow

Generalized

MapReduce

ASTERIX, Hyracks, Nephele, Stratosphere

Directed Acyclic

Graph Systems

Dryad, DryadLINQ, SCOPE, Shark, Spark

Graph Processing

Systems

GraphLab, GraphX, HaLoop, Pregel, PrIter,

Twister

Interactive Analytics

Mixed Analytical and

Transactional

Bigtable, HBase, HyPer, HYRISE, Megastore,

SAP HANA, Spanner

Distributed SQL

Query Engines

Apache Drill, Cloudera Impala, Dremel, Presto,

Stinger.next

Stream Processing

Systems

Aurora, Borealis, Muppet, S4, Storm,

STREAM

Table 1: The system categories, subcategories, and example systems (in alphabetical

order) for large-scale data analytics.
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2 Parallel Database Systems

Traditionally, Enterprise Data Warehouses (EDWs) and Business Intelligence (BI)

tools built on top of database systems have been providing the means for retrieving

and analyzing large amounts of data. In this monograph, we focus on Massive Parallel

Processing (MPP) Database Management Systems (DBMSs) that run on clusters of

commodity servers and provide support for big data analytics. As these systems were

developed based on centralized DBMSs, they use the Structured Query Language

(SQL) for accessing, managing, and analyzing data. Users can specify an analysis

task using a SQL query, while the DBMS will optimize and execute the query.

In addition, database systems require that data conforms to a well-defined schema

and is stored in a specialized data store. The storage format is the main differentiator

between the two categories of parallel database systems we consider, namely row-

oriented and column-oriented systems. For both categories, we concentrate on the

technological innovations that differentiate them from earlier centralized database

systems and from each other.

2.1 Row-based Parallel Databases

A number of research prototypes and industry-strength parallel database systems

have been built using a shared-nothing architecture over the last three decades. Ex-

amples include Gamma (DeWitt et al., 1990), Pivotal Greenplum Database (Green-

plum, 2013), IBM DB2 Parallel Edition (Baru et al., 1995), Netezza (IBM Netezza,

2012), and Teradata (Teradata, 2012). Given the parallel nature of the aforementio-

ned systems, we focus primarily on two key system aspects: (i) parallel data storage

and (ii) parallel query execution.

Parallel Data Storage: The relational data model and SQL query language have

the crucial benefit of data independence; that is, SQL queries can be executed cor-

rectly irrespective of how the data in the tables is physically stored in the system.

There are four noteworthy aspects of physical data storage in parallel databases: (a)

partitioning, (b) declustering, (c) collocation, and (d) replication.

Table partitioning refers to the technique of distributing the tuples of a table

across disjoint fragments (or, partitions) and is a standard feature in parallel database

systems today (IBM Corporation, 2007; Morales, 2007; Talmage, 2009). The most

common types of partitioning are:

• Range partitioning, where tuples are assigned to tables based on value ranges

of one or more attributes.
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• Hash partitioning, where tuple assignment is based on the result of a hash

function applied to one or more attributes.

• List partitioning, where the unique values of one or more attributes in each

partition are specified.

• Random partitioning, where tuples are assigned to partitions in a random

fashion.

• Round-robin partitioning, where tuples are assigned to partitions in a round-

robin fashion.

• Block partitioning, where each consecutive block of tuples (or bytes) written

to a table forms a partition.

Benefits of partitioning range from more efficient loading and removal of data on a

partition-by-partition basis to finer control over the choice of physical design, statistics

creation, and storage provisioning based on the workload. Deciding how to partition

tables, however, is now an involved process where multiple objectives—e.g., getting

fast data loading along with good query performance—and constraints—e.g., on the

maximum size or number of partitions per table—may need to be met (Herodotou

et al., 2011). Various table partitioning schemes as well as techniques to find a good

partitioning scheme automatically have been proposed as part of database physical

design tuning (Agrawal et al., 2004; Rao et al., 2002).

The next task after table partitioning is deciding which node or nodes in the

cluster should store each partition of the tables in the database. The number of

nodes across which a table is distributed is called the degree of declustering. When

that number equals to the number of nodes in the system, the table is said to be

fully declustered; otherwise it is partially declustered (DeWitt et al., 1990). With

partial declustering, nodes are typically grouped in sets—called nodegroups (Baru

et al., 1995) or relation clusters (Hsiao and DeWitt, 1990)—that can be referenced

by name. Each table is then assigned to one such group. Note that it is possible to

have multiple tables assigned to the same group but one table cannot be assigned to

multiple groups.

Having selective overlap among the nodes (or the group) on which the partitions

of two or more tables are stored can be beneficial, especially for join processing.

Consider two tables R(a, b) and S(a, c), where a is a common attribute. Suppose

both tables are hash partitioned on the respective attribute a using the same hash

function and the same number of partitions. Further, suppose the partitions of tables

R and S are both stored on the same group of nodes. In this case, there will be a

one-to-one correspondence between the partitions of both tables that can join with

one another on attribute a. That is, any pair of joining partitions will be stored on
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the same node of the group. Under these conditions, the two tables R and S are said

to be collocated. The advantage of collocation is that tables can be joined without

the need to move any data from one node to another.

In addition to collocation, data replication can often provide performance benefits,

both for join processing and for the concurrent execution of multiple queries. Repli-

cation is usually done at the table level in two scenarios. When a table is small, it

can be replicated on all nodes in the cluster or a group. Such replication is common

for dimension tables in star and snowflake schemas so that they can easily join with

the partitions of the distributed fact table(s). Replication can also be done such that

different replicas are partitioned differently. For example, one replica of the table

may be hash partitioned while another may be range partitioned for speeding up

multiple workloads with different access and join patterns. Apart from performance

benefits, replication also helps reduce unavailability or loss of data when faults arise in

the parallel database system (e.g., a node fails permanently or becomes disconnected

temporarily from other nodes due to a network failure).

The diverse mix of partitioning, declustering, collocation, and replication techni-

ques available can make it confusing for users of parallel database systems to identify

the best data layout for their workload. This problem has motivated research on

automated ways to recommend good data layouts based on the workload (Mehta and

DeWitt, 1997; Rao et al., 2002) and on partition-aware optimization techniques to

generate efficient plans for SQL queries over partitioned tables (Herodotou et al.,

2011).

Parallel Query Execution: When a SQL query is submitted to the database sy-

stem, the query optimizer is responsible for generating a parallel execution plan for

the query. The plan is composed of operators that support both intra- and inter-

operator parallelism, as well as mechanisms to transfer data from producer operators

to consumer operators. The plan is broken down into schedulable tasks that are run

on the nodes in the system. Upon completion of the plan, the results are transferred

back to the user or application that submitted the query.

Parallel database systems employ multiple forms of parallelism in execution plans,

including join, partitioned, pipelined, and independent parallelism. Join parallelism

refers to the type of join used to execute table joins and depends primarily on the

partitioning, declustering, collocation, and replication techniques used for storing the

data. We discuss four main join types (illustrated in Figure 1) for joining two tables

R and S based on the equi-join condition R.a = S.a.

• Collocated join: A collocated join can be used only when tables R and S are

both partitioned on attribute a and the partitions are assigned such that any

pair of joining partitions is stored on the same node. A collocated join operator
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Figure 1: Parallel join types.

is often the most efficient way to perform the join because it performs the join

in parallel on each node while avoiding the need to transfer data between nodes.

• Directed join: Suppose tables R and S are both partitioned on attribute a

but the respective partitions are not collocated. In this case, a directed join

can transfer each partition of one table (say, R) to the node where the joining

partition of the other table is stored. Once a partition from R is brought

to where the joining partition in S is stored, a local join can be performed.

Compared to a collocated join, a directed join incurs the cost of transferring

one of the tables across the network.

• Repartitioned join: If tables R and S are not partitioned on the joining

attribute, then the repartitioned join is used. This join simply repartitions the

tuples in both tables using the same partitioning condition (e.g., hash). Joining

partitions are brought to the same node where they can be joined. This operator

incurs the cost of transferring both tables across the network.

• Broadcast join: When tables R and S are not partitioned on the joining

attribute but one of them (say, R) is very small, then the broadcast join will

transfers R in full to every node where any partition of the other table (S) is

stored. The join is then performed locally. This operator incurs a data transfer

cost equal to the size of R times the degree of declustering of S.
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A typical issue with join processing is the presence of skew in partition sizes. Hash

or range partitioning can produce skewed partition sizes if the attribute used in the

partitioning function has a skewed distribution. The load imbalance created by such

skew can severely degrade the performance of join operators such as the repartitioned

join. This problem can be addressed by identifying the skewed join keys and handling

them in special ways. In particular, tuples in a table with a join key value v that has

a skewed distribution can be further partitioned across multiple nodes. The correct

join result will be produced as long as the tuples in the joining table with join key

equal to v are replicated across the same nodes. In this fashion, the resources in

multiple nodes can be used to process the skewed join keys (DeWitt et al., 1992).

While our discussion focused on the parallel execution of joins, the same principles

apply to the parallel execution of other relational operators like filtering and group-

by. The unique approach used here to extract parallelism is to partition the input

into multiple fragments, and to process these fragments in parallel. This form of

parallelism is called partitioned parallelism (DeWitt and Gray, 1992).

Another form of parallelism employed commonly in execution plans in parallel

database systems is the pipelined parallelism. A query execution plan may contain a

sequence of operators linked together by producer-consumer relationships where all

operators can be run in parallel as data flows continuously across every producer-

consumer pair. For example, suppose an execution plan contains three operators: a

table scan S, a filter F , and a hash aggregator H. S starts scanning the table and

places the tuples in F ’s input queue. At the same time, F reads from its input queue,

performs the filtering, and writes to H’s input queue. Finally, H starts building the

hash table. Thus, S, F , and H can be working concurrently on stages from different

iterations, thereby increasing performance.

Finally, independent parallelism refers to the parallel execution of independent

operators in a query plan. For example, consider a query that joins together four

tables R, S, T , and U . This query can be processed by an execution plan where R

is joined with S, T is joined with U , and then the results from both joins are joined

together to produce the final result [(R ./ S) ./ (T ./ U)]. In this plan, R ./ S and

T ./ U can be executed independently in parallel.

2.2 Columnar Databases

Columnar systems excel at data-warehousing-type applications, where (i) data is lo-

aded in bulk but typically not modified much and (ii) the typical access pattern is

to scan through large parts of the data to perform aggregations and joins. The first

columnar database systems that appeared in the 1990s were MonetDB (Boncz et al.,

2006) and Sybase IQ (MacNicol and French, 2004). The 2000s saw a number of new

columnar database systems such as C-Store (Stonebraker et al., 2005), Infobright (In-
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fobright, 2013), ParAccel (ParAccel, 2013), VectorWise (Zukowski and Boncz, 2012),

and Vertica (Lamb et al., 2012). Similar to the row-based databases discussed above,

we focus on the data storage and query execution of columnar database systems.

Columnar Data Storage: In a pure columnar data layout, each table column is

stored contiguously in a separate file on disk. Each file stores tuples of the form 〈k, v〉
(Boncz et al., 2006), where the key k is the unique identifier for a tuple and v is the

corresponding value. An entire tuple with tuple identifier k can be reconstructed by

bringing together all the attribute values stored for k. It is also possible to eliminate

the explicit storage of tuple identifiers and derive them implicitly based on the position

of each attribute value in the file (Lamb et al., 2012; Stonebraker et al., 2005).

Vertica stores two files per column (Lamb et al., 2012). One file contains the attri-

bute values while the other file, called position index, stores corresponding metadata

such as the start position, minimum value, and maximum value for the attribute va-

lues. The position index helps with tuple reconstruction as well as eliminating reads

of disk blocks during query processing. Furthermore, removing the storage of tuple

identifiers leads to more densely packed columnar storage (Abadi et al., 2009; Lamb

et al., 2012).

C-Store introduced the concept of projections. A projection is a set of columns

that are stored together. The concept is similar to a materialized view that projects

some columns of a base table. However, in C-Store, all the data in a table is stored

as one or more projections. That is, C-Store does not have an explicit differentiation

between base tables and materialized views. Each projection is stored sorted on

one or more attributes. Vertica implemented a similar concept later—called super

projections—that contains every column of the table (Lamb et al., 2012).

An important advantage of columnar data layouts is that columns can be stored

densely on disk using various compression techniques (Abadi et al., 2009; Lamb et al.,

2012; Stonebraker et al., 2005):

• Run Length Encoding (RLE): Sequences of identical values in a column are

replaced with a single pair that contains the value and number of occurrences.

This type of compression is best for sorted, low cardinality columns.

• Delta Value: Each attribute value is stored as the difference from the smallest

value, so it is useful when the differences can be stored in fewer bytes than

the original attribute values. This type of compression is best for many-valued,

unsorted integer or integer-based columns.

• Compressed Delta Range: Each value is stored as a delta from the previous

one. This type of compression is best for many-valued float columns that are

either sorted or confined to a range.
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• Dictionary: The distinct values in the column are stored in a dictionary which

assigns a short code to each distinct value. The actual values are replaced with

the code assigned by the dictionary. Dictionary-based compression is a general-

purpose scheme, but it is good for unsorted, low cardinality columns.

• Bitmap: A column is represented by a sequence of tuples 〈v, b〉 such that v is

a value stored in the column and b is a bitmap indicating the positions in which

the value is stored. RLE can be further applied to compress each bitmap.

Hybrid combinations of the above schemes are also possible. For example, the Com-

pressed Common Delta scheme used in Vertica builds a dictionary of all the deltas

in each block (Lamb et al., 2012). This type is best for sorted data with predicta-

ble sequences and occasional sequence breaks (e.g., timestamps recorded at periodic

intervals or primary keys).

Columnar Query Execution: The columnar data layout gives rise to a distinct

space of execution plans in columnar parallel database systems that provide oppor-

tunities for highly efficient execution: (a) operations on compressed columns, (b)

vectorized operations, and (c) late materialization.

Given the typical use of compression in columnar systems, it is highly desirable

to have (some) operators operate on the compressed representation of their input

whenever possible, in order to avoid the cost of decompression. The ability to operate

directly on compressed data depends on the type of the operator and the compression

scheme used. For example, consider a filter operator whose filter predicate is on a

column compressed using the Bitmap compression technique. This operator can do

its processing directly on the stored unique values of the column and then only read

those bitmaps from disk whose values match the filter predicate. Complex operators

like range filters, aggregations, and joins can also operate directly on compressed

data.

Columnar layouts encourage vectorized processing since it is more efficient for ope-

rators to process their input in large chunks at a time as opposed to one tuple at a

time. A full or partial column of values can be treated as an array (or, a vector) on

which SIMD (single instruction multiple data) instructions in CPUs can be evaluated.

SIMD instructions can greatly increase performance when the same operations have

to be performed on multiple data objects. The X100 project (which was commercia-

lized later as VectorWise) explored a compromise between the classic tuple-at-a-time

pipelining and operator-at-a-time bulk processing techniques (Boncz et al., 2005).

X100 operates on chunks of data that are large enough to amortize function call over-

heads, but small enough to fit in CPU caches and to avoid materialization of large

intermediate results into main memory. X100 shows significant performance benefits

when vectorized processing is combined with just-in-time light-weight compression.
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Tuple reconstruction is expensive in columnar database systems since information

about a tuple is stored in multiple locations on disk, yet most queries access more than

one attribute from a tuple (Abadi et al., 2009). Further, most users and applications

(e.g., using ODBC or JDBC) access query results tuple-at-a-time (not column-at-a-

time). Thus, at some point in a query plan, data from multiple columns must be

materialized as tuples. Many techniques have been developed to reduce such tuple

reconstruction costs (Abadi et al., 2007). For example, MonetDB uses late tuple

reconstruction (Idreos et al., 2012). All intermediate results are kept in a columnar

format during the entire query evaluation. Tuples are constructed only just before

sending the final result to the user or application. This approach allows the query

execution engine to exploit CPU-optimized and cache-optimized vector-like operator

implementations throughout the whole query evaluation. One disadvantage of this

approach is that larger intermediate results may need to be materialized compared

to the traditional tuple-at-a-time processing.
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3 MapReduce Systems

MapReduce is both a programming model and an associated run-time system for

large-scale data processing (Dean and Ghemawat, 2008). Hadoop is the most popu-

lar open-source implementation of a MapReduce framework that follows the design

laid out in the original paper (Dean and Ghemawat, 2004). A number of compa-

nies use Hadoop in production deployments for applications such as Web indexing,

data mining, report generation, log file analysis, machine learning, financial analysis,

scientific simulation, and bioinformatics research. Infrastructure-as-a-Service cloud

platforms like Amazon and Rackspace have made it easier than ever to run Hadoop

workloads by allowing users to instantly provision clusters and pay only for the time

and resources used.

A combination of features contributes to Hadoop’s increasing popularity, including

fault tolerance, data-local scheduling, ability to operate in a heterogeneous environ-

ment, handling of straggler tasks1, as well as a modular and customizable architecture.

In typical Hadoop deployments, data is stored in a block-oriented distributed file sy-

stem (usually HDFS) and processed using either the Hadoop MapReduce execution

engine directly or one of the many MapReduce-based platforms built on top of Hadoop

(e.g., Hive, Pig, Jaql). The Hadoop ecosystem is shown in Figure 2.

3.1 Distributed Storage

The storage layer of a typical MapReduce cluster is an independent distributed file sy-

stem. Typical Hadoop deployments use the Hadoop Distributed File System (HDFS)

running on the cluster’s compute nodes (Shvachko et al., 2010). Alternatively, a

Hadoop cluster can process data from other file systems like the MapR File System

(MapR, 2013), Ceph (Weil et al., 2006), Amazon Simple Storage Service (S3) (Ama-

zon S3, 2013), and Windows Azure Blob Storage (Calder et al., 2011).

As HDFS focuses more on batch processing rather than interactive use, it emp-

hasizes high throughput of data access rather than low latency. An HDFS cluster

employs a master-slave architecture consisting of a single NameNode (the master)

and multiple DataNodes (the slaves), usually one per node in the cluster (see Figure

3). The NameNode manages the file system namespace and regulates access to files

by clients, whereas the DataNodes are responsible for serving read and write requests

from the file system’s clients. HDFS is designed to reliably store very large files across

machines in a large cluster. Internally, a file is split into one or more blocks that are

replicated for fault tolerance and stored in a set of DataNodes.

A number of other distributed file systems are viable alternatives to HDFS and

offer full compatibility with Hadoop MapReduce. The MapR File System (MapR,

1A straggler is a task that performs poorly typically due to faulty hardware or misconfiguration.
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Figure 2: Hadoop ecosystem for big data analytics.

2013) and Ceph (Weil et al., 2006) have similar architectures to HDFS but both offer

a distributed metadata service as opposed to the centralized NameNode on HDFS. In

MapR, metadata is sharded across the cluster and collocated with the data blocks,

whereas Ceph uses dedicated metadata servers with dynamic subtree partitioning

to avoid metadata access hot spots. The Quantcast File System (QFS) (Ovsiannikov

et al., 2013), which evolved from the Kosmos File System (KFS) (KFS, 2013), employs

erasure coding rather than replication as its fault tolerance mechanism. Erasure

coding enables QFS to not only reduce the amount of storage but to also accelerate

large sequential write patterns common to MapReduce workloads.

Distributed file systems are primarily designed for accessing raw files and, there-

fore, lack any advanced features found in the storage layer of database systems. This

limitation has inspired a significant amount of research for introducing (i) indexing,

(ii) collocation, and (iii) columnar capabilities into such file systems.

Indexing: Hadoop++ (Dittrich et al., 2010) provides indexing functionality for data

stored in HDFS using the so-called Trojan Indexes. The indexing information is

created during the initial loading of data onto HDFS and is stored as additional

metadata in the data blocks. Hence, targeted data retrieval can be very efficient at the

expense of increased data loading time. This problem is addressed by HAIL (Dittrich

et al., 2012), which improves query processing speeds over Hadoop++. HAIL creates

indexes during the I/O-bound phases of writing to HDFS so that it consumes CPU

cycles that are otherwise wasted. In addition, HAIL builds a different clustered index

in each replica maintained by HDFS for fault tolerance purposes. The most suitable

index for a query is then selected at run-time, and the corresponding replicas are read

during the MapReduce execution over HAIL.
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Figure 3: Hadoop architecture.

Collocation: In addition to indexing, Hadoop++ provides a data collocation techni-

que in MapReduce systems. Specifically, Hadoop++ allows users to co-partition and

collocate data at load time while writing metadata in the data blocks (Dittrich et al.,

2010). Hence, blocks of HDFS can now contain data from multiple tables. With this

approach, collocated joins can be processed at each node without the overhead of

sorting and shuffling data across nodes. CoHadoop (Eltabakh et al., 2011) provides

a different collocation strategy by adding a file-locator attribute to HDFS files and

implementing a file layout policy such that all files with the same locator are placed

on the same set of nodes. Using this feature, CoHadoop can collocate any related

pair of files, e.g., every pair of joining partitions across two tables that are both hash-

partitioned on the join key; or, a partition and an index on that partition. CoHadoop

can then run joins in a similar manner as collocated joins in parallel database systems.

Columnar layouts: It is also possible to implement columnar data layouts in HDFS.

Llama (Lin et al., 2011) and CIF (Floratou et al., 2011) use a pure column-oriented

design, based on which they partitions attributes into vertical groups like the pro-

jections in C-Store and Vertica (recall Section 2.2). Each vertical group is sorted

based on one of its component attributes. Each column is stored in a separate HDFS

file, which enables each column to be accessed independently and, thus, reduces read

I/O costs, but may incur run-time costs for tuple reconstruction. Unlike Llama, CIF

uses an extension of HDFS to enable collocation of columns corresponding to the

same tuple on the same node and supports some late materialization techniques for

reducing tuple reconstruction costs (Floratou et al., 2011).
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Cheetah (Chen, 2010), RCFile (He et al., 2011), and Hadoop++ (Dittrich et al.,

2010) use a hybrid row-column design based on PAX (Ailamaki et al., 2001). In

particular, each file is horizontally partitioned into blocks but a columnar format is

used within each block. Since HDFS guarantees that all the bytes of an HDFS block

will be stored on a single node, it is guaranteed that tuple reconstruction will not

require data transfer over the network. The intra-block data layouts used by these

systems differ in how they use compression, how they treat replicas of the same block,

and how they are implemented. For example, Hadoop++ can use different layouts in

different replicas, and choose the best layout at query processing time.

3.2 MapReduce Execution Engines

MapReduce execution engines implement the MapReduce programming model for

dealing with data at massive scale (Dean and Ghemawat, 2004). Users specify com-

putations in terms of Map and Reduce functions while the underlying run-time sy-

stem automatically parallelizes the computation across large-scale clusters of commo-

dity servers, handles machine failures, and schedules inter-machine communication to

make efficient use of the network and disk bandwidth.

The MapReduce programming model consists of two functions: map(k1, v1) and

reduce(k2, list(v2)). Users can implement their own processing logic by specifying a

customized map() and reduce() function written in a general-purpose language like

Java or Python. The map(k1, v1) function is invoked for every key-value pair 〈k1, v1〉
in the input data to output zero or more key-value pairs of the form 〈k2, v2〉 (see

Figure 4). The reduce(k2, list(v2)) function is invoked for every unique key k2 and

corresponding values list(v2) in the map output, and outputs zero or more key-value

pairs of the form 〈k3, v3〉. The MapReduce programming model allows for other

functions as well, such as (i) partition(k2), for controlling how the map output key-

value pairs are partitioned among the reduce tasks, and (ii) combine(k2, list(v2)), for

performing partial aggregation on the map side. The keys k1, k2, and k3 as well as

the values v1, v2, and v3 can be of different and arbitrary types.

Hadoop MapReduce (White, 2010) is the most widely used implementation of a

MapReduce execution engine. A Hadoop MapReduce cluster employs a master-slave

architecture where one master node (called JobTracker) manages a number of slave

nodes (called TaskTrackers), as seen in Figure 3. Hadoop launches a MapReduce job

by first splitting (logically) the input dataset into data splits. Each data split is then

scheduled to one TaskTracker node and is processed by a map task. A Task Scheduler

resides in the JobTracker and is responsible for scheduling the execution of map tasks

while taking data locality into account. Each TaskTracker has a predefined number of

task execution slots for running map (reduce) tasks. If the job will execute more map

(reduce) tasks than there are slots, then the map (reduce) tasks will run in multiple
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Figure 4: MapReduce job execution.

waves. When map tasks complete, the run-time system groups all intermediate key-

value pairs using an external sort-merge algorithm. The intermediate data is then

shuffled (i.e., transferred) to the TaskTrackers scheduled to run the reduce tasks.

Finally, the reduce tasks will process the intermediate data to produce the results of

the job.

HadoopDB (Abouzeid et al., 2009) is a hybrid system that combines features from

parallel database systems with Hadoop. Specifically, HadoopDB runs a centralized

database system on each node of the cluster and uses Hadoop primarily as the engine

to schedule query execution plans as well as to provide fine-grained fault tolerance.

The additional storage system provided by the databases gives HadoopDB the ability

to overcome limitations of HDFS such as lack of collocation and indexing. In addition,

HadoopDB includes some advanced partitioning capabilities such as reference-based

partitioning, which enable multi-way joins to be performed in a collocated fashion.

HadoopDB introduced the concept of split query execution where a query sub-

mitted by a user or application will be converted into an execution plan consisting

of some parts that would run as queries in the database and other parts that would

run as map and reduce tasks in Hadoop (Bajda-Pawlikowski et al., 2011). The best

such splitting of work will be identified during plan generation based on metadata

stored in a system catalog. Metadata information includes connection parameters,

schema and statistics of the tables stored, locations of replicas, and data partitioning

properties.
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3.3 MapReduce-based Platforms

The MapReduce model, although highly flexible, has been found to be too low-level

for routine use by practitioners such as data analysts, statisticians, and scientists

(Olston et al., 2008; Thusoo et al., 2009). As a result, the MapReduce framework

has evolved into a MapReduce ecosystem shown at Figure 2, which includes a number

of (i) high-level interfaces added over the core MapReduce engine, (ii) application

development tools, (iii) workflow management systems, and (iv) data collection tools.

High-level Interfaces: The two most prominent examples of higher-level layers

are Apache Hive (Thusoo et al., 2009) with an SQL-like declarative interface (called

HiveQL) and Apache Pig (Olston et al., 2008) with an interface that mixes declarative

and procedural elements (called Pig Latin). Both Hive and Pig will compile the

respective HiveQL and Pig Latin queries into logical plans, which consist of a tree of

logical operators. The logical operators are then converted into physical operators,

which in turn are packed into map and reduce tasks for execution. The execution plan

generated for a HiveQL or Pig Latin query is usually a workflow (i.e., a directed acyclic

graph) of MapReduce jobs. Workflows may be ad-hoc, time-driven (e.g., run every

hour), or data-driven. Yahoo! uses data-driven workflows to generate a reconfigured

preference model and an updated home-page for any user within seven minutes of a

home-page click by the user.

Similar to a data warehouse, Hive organizes and stores the data into partitio-

ned tables (Thusoo et al., 2009). Hive tables are analogous to tables in relational

databases and are represented using HDFS directories. Partitions are then created

using subdirectories while the actual data is stored in files. Hive also includes a sy-

stem catalog—called Metastore—containing schema and statistics, which are useful in

data exploration and query optimization. In particular, Hive employs rule-based ap-

proaches for a variety of optimizations such as filter and projection pushdown, shared

scans of input datasets across multiple operators from the same or different analysis

tasks (Nykiel et al., 2010), reducing the number of MapReduce jobs in a workflow

(Lee et al., 2011), and handling data skew in sorts and joins.

Application Development: Cascading (Cascading, 2011) and FlumeJava (Cham-

bers et al., 2010) are software abstraction layers for MapReduce used to express data-

parallel pipelines. They both offer program-based interfaces that integrate MapRe-

duce job definitions into popular programming languages such as Java, JRuby, and

Clojure. Hence, application developers can develop, test, and run efficient data-

parallel pipelines without worrying about the underlying complexity of MapReduce

jobs. To enable parallel operations to run efficiently, FlumeJava internally constructs

an execution plan as a dataflow graph but defers its evaluation. When the final results

are eventually needed, FlumeJava optimizes the execution plan and then executes the

optimized operations on the underlying MapReduce primitives. Cascading and Flu-
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meJava are most often used for log file analysis, bioinformatics, machine learning,

and predictive analytics.

Workflow Management: A given MapReduce program may be expressed in one

among a variety of programming languages like Java, C++, Python, or Ruby; may

be generated by a query-based interface such as Hive or Pig; or may be generated by

a program-based interface such as Cascading or JavaFlume. All these MapReduce

programs can then be connected to form a workflow of MapReduce jobs using a

workflow scheduler such as Oozie (Islam et al., 2012) and Azkaban (Sumbaly et al.,

2013). Workflow schedulers ease construction of MapReduce workflows, which are

typically defined as a collection of actions (e.g., native MapReduce jobs, Pig, Hive,

and shell scripts) arranged in a control dependency DAG (Directed Acyclic Graph).

The actions are then executed in sequence based on the dependencies described by

the DAG.

Data Collection: MapReduce is designed to work on data stored in a distributed

file system like HDFS. As a result, a number of distributed data collection systems

have been built to copy data into distributed file systems, including Flume (Hoffman,

2015), Scribe (Thusoo et al., 2010), Chukwa (Rabkin and Katz, 2010) and Kafka

(Sumbaly et al., 2013). The basic abstraction for most big data collection pipelines

is the same: there is (i) a source that collects the data and inserts it into the system,

(ii) a sink that delivers and stores the data into the file system, and (iii) a channel

that acts as a conduit between the source and the sink allowing data to be streamed

to a range of destinations. All systems are also designed to be scalable, reliable,

extensible, and robust to failures of the network or any specific machine.
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4 Dataflow Systems

The application domain for data-intensive analytics is moving towards complex data-

processing tasks such as statistical modeling, graph analysis, machine learning, and

scientific computing. While MapReduce can be used for these tasks, its programming

model seems to be too restrictive in certain cases (e.g., joining two datasets together)

and its execution model seems to be suboptimal for some common analysis tasks

such as relational operations and graph processing. Consequently, dataflow systems

such as Nephele (Battré et al., 2010) and Hyracks (Borkar et al., 2011) are extending

the MapReduce framework with a more generalized MapReduce execution model that

supports new primitive operations in addition to Map and Reduce A different class

of dataflow systems such as Dryad (Isard et al., 2007) and Spark (Zaharia et al.,

2012) aim at replacing MapReduce altogether with the directed acyclic graph model

that can express a wide range of data access and communication patterns. Finally,

graph processing systems like Pregel (Malewicz et al., 2010) use the bulk synchronous

parallel processing model for running iterative computations and analysis over data

graphs.

4.1 Generalized MapReduce Systems

Similar to MapReduce, Nephele (Battré et al., 2010) and Hyracks (Borkar et al.,

2011) are two partitioned-parallel software systems designed to run data-intensive

computations on large shared-nothing clusters of computers. However, they offer a

more versatile execution model compared to MapReduce, with more data operators as

well as data connectors. Nephele and Hyracks differ mainly on the type of operators

and connectors that they support.

Nephele uses the Parallelization Contracts (PACT) programming model (Alex-

androv et al., 2010), a generalization of the well-known MapReduce programming

model. The PACT model extends MapReduce with a total of five second-order functi-

ons:

• Map is used to independently process each key-value pair.

• Reduce and Combine partition and group key-value pairs by their keys and

process them together. They both assure that all pairs in a partition have the

same key but Combine does not assure that all pairs with the same key are in

the same partition.

• Cross is defined as the Cartesian product over its input sets (two or more).

The user function is executed for each element of the Cartesian product.

22



• CoGroup partitions the key-value pairs of all input sets according to their

keys. For each input, all pairs with the same key form one subset. Over all

inputs, the subsets with same keys are grouped together and handed to the

user function.

• Match is a relaxed version of the CoGroup contract and is equivalent to an

inner equi-join.

In addition, the PACT model defines optional output contracts that give guarantees

about the behavior of a function:

• Same-Key: Each key-value pair that is generated by the function has the same

key as the key-value pair(s) that it was generated from.

• Super-Key: Each key-value pair that is generated by the function has a su-

perkey of the key-value pair(s) that it was generated from.

• Unique-Key: Each key-value pair that is produced has a unique key.

• Partitioned-by-Key: Key-value pairs are partitioned by key. This property

can be exploited when the contract is attached to a data source that supports

partitioned storage.

Complete PACT programs are directed acyclic graphs (DAGs) of user functions, star-

ting with one or more data sources and ending with one or more data sinks. Finally,

Nephele uses certain declarative aspects of the second-order functions of the PACT

programs to guide a series of transformation and optimization rules for generating an

efficient parallel dataflow plan (Battré et al., 2010).

Nephele is the execution engine for Stratosphere (Alexandrov et al., 2014), a mas-

sively parallel data processing platform. In addition to Nephele and PACT, Strato-

sphere contains the Sopremo layer. A Sopremo program consists of a set of logical

operators connected in a directed acyclic graph (DAG), akin to a logical query plan

in relational DBMSs. Programs for the Sopremo layer can be written in Meteor, an

operator-oriented query language that uses a JSON-like data model to support the

analysis of unstructured and semi-structured data.

Similar to Nephele, Hyracks (Borkar et al., 2011) allows users to express a com-

putation as a DAG of data operators and connectors. Operators process partitions

of input data and produce partitions of output data, while connectors repartition

operator outputs to make the newly-produced partitions available at the consuming

operators. The most important Hyracks operators are:

• Mapper: Evaluates a user-defined function on each item in the input.
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• Sorter: Sorts input records using user-provided comparator functions.

• Joiner: Binary-input operator that performs equi-joins.

• Aggregator: Performs aggregation using a user-defined aggregation function.

Hyracks is the lowest level of ASTERIX (Behm et al., 2011), a scalable platform for

large-scale information storage, search, and analytics. The topmost layer of the AS-

TERIX stack is a parallel DBMS, with a full, flexible data model (ADM) and a query

language (AQL) for describing, querying, and analyzing data. AQL is comparable to

languages such as HiveQL and Pig Latin but supports both native storage and index-

ing of data as well as access to external data residing in a distributed file system (e.g.,

HDFS). In between these layers sits Algebricks, a model-agnostic, algebraic “virtual

machine” for parallel query processing and optimization. Algebricks is the target for

AQL query compilation, but it can also be the target for other declarative languages.

4.2 Directed Acyclic Graph Systems

The directed acyclic graph model replaces the MapReduce or MapReduce-based exe-

cution models in certain dataflow systems, such as Dryad (Isard et al., 2007) and Spark

(Zaharia et al., 2012), offering a wider range of possible analytical tasks. Dryad is the

execution engine used predominantly by Microsoft and utilized by the higher-level

languages DryadLINQ (Isard and Yu, 2009) and SCOPE (Zhou et al., 2012). Spark,

and its SQL-like interface Shark (Xin et al., 2013), have been developed at Berkeley’s

AMP Lab and have a strong emphasis on utilizing the memory on the compute nodes.

Dryad is a general-purpose distributed execution engine for coarse-grain data-

parallel applications. A Dryad job has the form of a DAG, where each vertex defines

the operations that are to be performed on the data and each edge represents the flow

of data between the connected vertices. Vertices can have an arbitrary number of

input and output edges. At execution time, vertices become processes communicating

with each other through data channels (edges) used to transport a finite sequence of

data records. The physical implementation of the channel abstraction is realized by

shared memory, TCP pipes, or disk files. The inputs to a Dryad job are typically

stored as partitioned files in the Cosmos Storage System. Each input partition is

represented as a source vertex in the job graph and any processing vertex that is

connected to a source vertex reads the entire partition sequentially through its input

channel.

Figure 5 shows the Dryad system architecture. The execution of a Dryad job

is orchestrated by a user-provided Job Manager. The primary function of the Job

Manager is to construct the run-time DAG from its logical representation and execute

it in the cluster. The Job Manager is also responsible for scheduling the vertices on
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Figure 5: Dryad system architecture and execution.

the processing nodes when all the inputs are ready, monitoring progress, and re-

executing vertices upon failure. A Dryad cluster has a Name Server that enumerates

all the available compute nodes and exposes their location within the network so that

scheduling decisions can take better account of locality. There is a processing Daemon

running on each cluster node that is responsible for creating processes on behalf of

the Job Manager. Each process corresponds to a vertex in the graph. The Daemon

acts as a proxy so that the Job Manager can communicate with the remote vertices

and monitor the state and progress of the computation.

DryadLINQ (Isard and Yu, 2009) is a hybrid of declarative and imperative lan-

guage layer that targets the Dryad run-time and uses the Language INtegrated Query

(LINQ) model (Meijer et al., 2006). DryadLINQ provides a set of .NET constructs

for programming with datasets. A DryadLINQ program is a sequential program com-

posed of LINQ expressions that perform arbitrary side-effect-free transformations on

datasets. SCOPE (Zhou et al., 2012), on the other hand, offers a SQL-like decla-

rative language with well-defined but constrained semantics. In particular, SCOPE

supports writing a program using traditional nested SQL expressions as well as a

series of simple data transformations.

Spark (Zaharia et al., 2012) is a similar DAG-based execution engine. However,

the main difference of Spark from Dryad is that it uses a memory abstraction—called

Resilient Distributed Datasets (RDDs)—to explicitly store data in memory. An RDD

is a distributed shared memory abstraction that represents an immutable collection

of objects partitioned across a set of nodes. Each RDD is either a collection backed

by an external storage system, such as a file in HDFS, or a derived dataset created
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by applying various data-parallel operators (e.g., map, group-by, hashjoin) to other

RDDs. The elements of an RDD need not exist in physical storage or reside in memory

explicitly; instead, an RDD can contain only the lineage information necessary for

computing the RDD elements starting from data in reliable storage. This notion of

lineage is crucial for achieving fault tolerance in case a partition of an RDD is lost as

well as managing how much memory is used by RDDs. Currently, RDDs are used by

Spark with HDFS as the reliable back-end store.

Shark (Xin et al., 2013) is a higher-level system implemented over Spark and

uses HiveQL as its query interface. Shark supports dynamic query optimization in a

distributed setting via offering support for partial DAG execution (PDE); a technique

that allows dynamic alteration of query plans based on data statistics collected at run-

time. Shark uses PDE to select the best join strategy at run-time based on the exact

sizes of the join’s input as well as to determine the degree of parallelism for operators

and mitigate skew.

4.3 Graph Processing Systems

For a growing number of applications, the data takes the form of graphs that connect

many millions of nodes. The growing need for managing graph-shaped data comes

from applications such as: (a) identifying influential people and trends propagating

through a social-networking community, (b) tracking patterns of how diseases spread,

and (c) finding and fixing bottlenecks in computer networks. Graph processing sys-

tems such as Pregel (Malewicz et al., 2010), GraphLab (Low et al., 2012), and GraphX

(Xin et al., 2013) use graph structures with nodes, edges, and their properties to re-

present and store data.

Many graph databases such as Pregel (Malewicz et al., 2010) use the Bulk Syn-

chronous Parallel (BSP) computing model. A typical Pregel computation consists

of: (i) initializing the graph from the input, (ii) performing a sequence of iterations

separated by global synchronization points until the algorithm terminates, and (iii)

writing the output. Similar to DAG-based systems, each vertex executes the same

user-defined function that expresses the logic of a given algorithm. Within each ite-

ration, a vertex can modify its state or that of its outgoing edges, receive messages

sent to it in the previous iteration, send messages to other vertices (to be received in

the next iteration), or even mutate the topology of the graph.

GraphLab (Low et al., 2012) uses similar primitives (called PowerGraph) but

directly targets asynchronous, dynamic, graph-parallel computations in the shared-

memory setting. In addition, GraphLab contains several performance optimizations

such as using data versioning to reduce network congestion and pipelined distributed

locking to mitigate the effects of network latency. GraphX (Xin et al., 2013) runs on

Spark and introduces a new abstraction called Resilient Distributed Graph (RDG).
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Graph algorithms are specified as a sequence of transformations on RDGs, where a

transformation can affect nodes, edges, or both, and yields a new RDG.

Techniques have also been proposed to support the iterative and recursive com-

putational needs of graph analysis in MapReduce systems. For example, HaLoop

and Twister are designed to support iterative algorithms in MapReduce systems (Bu

et al., 2010; Ekanayake et al., 2010). HaLoop employs specialized scheduling techni-

ques and the use of caching between each iteration, whereas Twister relies on a pu-

blish/subscribe mechanism to handle all communication and data transfers. PrIter

(Zhang et al., 2011), a distributed framework for iterative workloads, enables faster

convergence of iterative tasks by providing support for prioritized iteration. Instead

of performing computations on all data records without discrimination, PrIter pri-

oritizes the computations that help convergence the most, so that the convergence

speed of iterative process is significantly improved.
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5 Systems for Interactive Analytics

The need to reduce the gap between the generation of data and the generation of ana-

lytics results over large-scale data has lead to a new breed of systems for interactive

(i.e., with low latency) analytics. We separate these systems into three distinct ca-

tegories. The first category refers to distributed storage and processing systems that

support mixed analytical and transactional workloads, such as Bigtable (Chang et al.,

2008) and Megastore (Baker et al., 2011). Support for transactions enables storage

systems in particular to serve as the data store for online services while making the

data available concurrently in the same system for analytics. Second, distributed

SQL query engines run over distributed file systems and support ad-hoc analytics.

For instance, Cloudera Impala (Wanderman-Milne and Li, 2014) enables users to issue

low-latency SQL queries to data stored in HDFS (Shvachko et al., 2010) and Apache

HBase (George, 2011) without requiring data movement or transformation. Finally,

stream processing systems such as S4 (Neumeyer et al., 2010) and Storm (Storm,

2013) are driven by a data-centric model that allows for near real-time consumption

and analysis of data.

5.1 Mixed Analytical and Transactional Systems

Traditionally, parallel databases have used different systems to support OLTP and

OLAP. OLTP workloads are characterized by a mix of reads and writes to a few

tuples at a time, typically through index structures like B-Trees. OLAP workloads

are characterized by bulk updates and large sequential scans that read only a few

columns at a time. However, newer database workloads are increasingly a mix of

the traditional OLTP and OLAP workloads, which led to the development of new

systems that can support both. On one hand, multiple distributed storage systems

like Bigtable (Chang et al., 2008) and Megastore (Baker et al., 2011) provide various

degrees of transactional capabilities, enabling them to serve as the data store for online

services while making the data available concurrently in the same system for analytics.

On the other hand, processing systems like SAP HANA (Färber et al., 2012) and

HYRISE (Grund et al., 2012) can execute both OLTP and OLAP workloads.

Mixed Storage Systems: The most prominent example of a mixed storage system

is Google’s Bigtable, which is a distributed, versioned, and column-oriented system

that stores multi-dimensional and sorted datasets (Chang et al., 2008). Each Bigtable

table is stored as a multidimensional sparse map, with rows and columns, where each

cell contains a timestamp and an associated arbitrary byte array. A cell value at

a given row and column is uniquely identified by the tuple <table, row, column-

family:column, timestamp>. All table accesses are based on the aforementioned

primary key, while secondary indices are possible through additional index tables.

Bigtable provides atomicity at the level of individual tuples.
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Bigtable has motivated popular open-source implementations like HBase (George,

2011) and Cassandra (Lakshman and Malik, 2010). Both systems offer compression,

secondary indexes, use data replication for fault tolerance within and across data

centers, and have support for Hadoop MapReduce. However, Cassandra has a vastly

different architecture: all nodes in the cluster have the some role and coordinate

their activities using a pure peer-to-peer communication protocol. Hence, there is no

single point of failure. Furthermore, Cassandra offers a tunable level of consistency

per operation, ranging from weak, to eventual, to strong consistency. HBase, on the

other hand, offers strong consistency by design.

Bigtable also led to the development of follow-up systems from Google such as

Megastore (Baker et al., 2011) and Spanner (Corbett et al., 2012). Megastore and

Spanner provide more fine-grained transactional support compared to Bigtable wit-

hout sacrificing performance requirements in any significant way. Megastore supports

ACID transactions at the level of user-specified groups of tuples called entity groups,

and looser consistency across entity groups. Spanner, on the other hand, supports

transactions at a global scale across data centers.

Mixed Processing Systems: Systems like SAP HANA, HYRISE, and HyPer, aim

to support OLTP and OLAP in a single system. SAP HANA (Färber et al., 2012)

is an in-memory relational database management system that can handle both high

transaction rates and complex query processing. Figure 6 gives an overview of the

general SAP HANA architecture. At the core, SAP HANA has a set of in-memory

processing engines, each specialized in a different category of data formats. Relational

data resides in tables in column or row layout in the combined column and row engine

and can be converted from one layout to the other to allow query expressions with

tables in both layouts. Graph data (e.g., XML, JSON) and text data reside in the

graph engine and the text engine, respectively; more engines are possible due to the

extensible architecture.

All engines in SAP HANA keep all data in main memory as long as there is

enough space available. All data structures are optimized for cache-efficiency instead

of being optimized for organization in traditional disk blocks. Furthermore, the en-

gines compress the data using a variety of compression schemes. When the limit of

available main memory is reached, entire data objects, e.g., tables or partitions, are

unloaded from main memory under the control of application semantics and reloaded

into main memory when they are required again. While virtually all data is kept

in main memory by the processing engines for performance reasons, data is stored

by the persistence layer for backup and recovery in case of a system restart after an

explicit shutdown or a failure (Färber et al., 2012).

HYRISE (Grund et al., 2012) is a main memory hybrid database system, which

automatically partitions tables into vertical groups of varying widths depending on

how the columns of the table are accessed. Smaller column groups are preferred
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Figure 6: SAP HANA architecture.

for OLAP-style data access because, when scanning a single column, cache locality

is improved when the values of that column are stored contiguously. On the other

hand, wider column groups are preferred for OLTP-style data access because such

transactions frequently insert, delete, update, or access many of the fields of a row,

and co-locating those fields leads to better cache locality. Being an in-memory system,

HYRISE identifies the best column grouping based on a detailed cost model of cache

performance in mixed OLAP/OLTP settings.

HyPer (Kemper et al., 2012) is also a main memory database system that com-

plements columnar data layouts with sophisticated main-memory indexing structures

based on hashing, balanced search trees (e.g., red-black trees), and radix trees. Hash

indexes enable exact match (e.g., primary key) accesses that are the most common

in transactional processing, while the tree-structured indexes are essential for small-

range queries that are also encountered here. Finally, HyPer uses adaptive compres-

sion techniques for separating cold (i.e. immutable) data for aggressive compression

from the hot (i.e. mutable) working set data that remains uncompressed and readily

available to mission-critical OLTP queries.

5.2 Distributed SQL Query Engines

The demand for more interactive analysis of large datasets has led to the development

of new SQL-like query engines that run on top of distributed file systems and are

optimized for ad-hoc analytics. Dremel (Melnik et al., 2010) is such a system that

runs on top of GFS (Ghemawat et al., 2003) and Bigtable (Chang et al., 2008). Dremel
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Figure 7: Dremel architecture and execution inside a server node.

exposes a SQL-like interface with extra constructs to query read-only data stored in

a new columnar storage format that supports nested data. Each SQL statement in

Dremel (and the algebraic operators it translates to) takes as input one or multiple

nested tables and the input schema, and produces a nested table and its output

schema. The two core technologies of Dremel are columnar storage for nested data

and the tree architecture for query execution.

Dremel’s data model is based on strongly-typed nested records with a schema that

forms a tree hierarchy, originating from Protocol Buffers (Protocol Buffers, 2012).

The key ideas behind the nested columnar format are: (i) a lossless representation

of record structure by encoding the structure directly into the columnar format, (ii)

fast encoding of column stripes by creating a tree of writers whose structure matches

the field hierarchy in the schema, and (iii) efficient record assembly by utilizing finite

state machines (Melnik et al., 2010).

Dremel—with corresponding open-source systems, Cloudera Impala (Wanderman-

Milne and Li, 2014) and Apache Drill (Hausenblas and Nadeau, 2013)—uses the

concept of a multi-level serving tree borrowed from distributed search engines (Croft

et al., 2010) to execute queries. Figure 7 shows Dremel’s architecture and execution

inside a server node. When a root server receives an incoming query, it will rewrite the

query into appropriate subqueries based on metadata information, and then route the

subqueries down to the next level in the serving tree. Each serving level performs a

similar rewriting and re-routing. Eventually, the subqueries will reach the leaf servers,

which communicate with the storage layer or access the data from local disk. On the

way up, the intermediate servers perform a parallel aggregation of partial results until

the result of the query is assembled back in the root server.
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Compared to Dremel that can query only single tables, Cloudera Impala supports

both join and aggregate queries over multiple tables. Cloudera Impala can query data

stored in HDFS or Apache HBase and uses the same metadata, SQL syntax (HiveQL),

and user interface as Apache Hive; providing a unified platform for batch-oriented or

real-time queries. Unlike Cloudera Impala that was developed to fit nicely with the

Hadoop ecosystem, Apache Drill is meant to provide distributed query capabilities

across multiple big data platforms including MongoDB, Cassandra, Riak and Splunk.

Finally, Presto (Traverso, 2013) is a distributed SQL query engine developed at Face-

book and, unlike Cloudera Impala and Apache Drill, supports standard ANSI SQL,

including complex queries, aggregations, joins, and window functions.

5.3 Stream Processing Systems

Timely analysis of activity and operational data is critical for companies to stay com-

petitive. Activity data from a company’s Web-site contains page and content views,

searches, as well as advertisements shown and clicked. A user’s activity data, in com-

bination with similar data from social friends, can be analyzed for various purposes

like providing personalized content and recommendations as well as showing targeted

advertisements (Chandramouli et al., 2012). Operational data includes monitoring

data collected from Web applications (e.g., request latency) and cluster resources

(e.g., CPU usage). Proactive analysis of operational data is used to ensure that Web

applications continue to meet all service-level requirements.

The vast majority of analysis over activity and operational data involves conti-

nuous queries processed by stream processing systems. A continuous query is issued

once over streaming data that is constantly updated and is run continuously. Hence,

users get new results as the data changes, without having to issue the same query

repeatedly. Continuous queries arise naturally over activity and operational data be-

cause (a) the data is generated continuously in the form of append-only streams; and

(b) the data has a time component such that recent data is usually more relevant

than older data.

The growing interest in continuous queries is reflected by the engineering resources

that companies have recently been investing in building continuous query execution

platforms. Yahoo! released S4 (Neumeyer et al., 2010) in 2010, Twitter released Storm

(Storm, 2013) in 2011, and Walmart Labs released Muppet in 2012 (Lam et al., 2012).

In addition, systems such as MapReduce Online (Condie et al., 2010) and Facebook’s

real-time analytics system (Borthakur et al., 2011) are adding continuous querying

capabilities to the popular Hadoop platform for batch analytics. These platforms

add to older research projects like Aurora (Abadi et al., 2003), Borealis (Abadi et al.,

2005), and STREAM (Babu and Widom, 2001), and as well as commercial systems

like Infosphere Streams (Biem et al., 2010), and Truviso (Franklin et al., 2009).
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S4 (Neumeyer et al., 2010) is a general-purpose, distributed, scalable platform

that allows programmers to develop applications for processing continuous unbounded

streams of data. S4 implements the actors programming paradigm. A user’s program

is defined in terms of Processing Elements (PEs) and Adapters, while the framework

instantiates one PE for each unique key in the data stream. Each PE consumes the

events and do one or both of the following: (a) emit one or more events which may be

consumed by other PEs, (b) publish results. Execution-wise, S4 uses the push model

for pushing events from one PE to the next. If a receiver buffer gets full, events

are dropped to ensure the system will not get overloaded. Finally, S4 provides state

recovery via uncoordinated checkpointing. When a node crashes, a new node takes

over its task and restarts from a recent snapshot of its state. Events sent after the

last checkpoint and before the recovery are lost.

Storm (Storm, 2013) is another platform for processing continuous unbounded

streams of data but with a different programming paradigm and architecture com-

pared to S4. A program in Storm is defined in terms of spouts (the sources) and

bolts (the processing vertices) arranged in a specific topology. The number of bolts

to instantiate is defined a-priori and each bolt will process a partition of the stream.

Unlike S4, Storm uses a pull model where each bolt pulls events from its source, be it

a spout or another bolt. Event loss can, therefore, happen only at ingestion time in

the spouts when the external event rate is higher than what the system can process.

Finally, the Storm provides guaranteed delivery of events based on which an event

will either traverse the entire pipeline within a time interval or it will be declared as

failed and can be replayed from the start by the spout.
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6 Conclusions

A major part of the challenge in data analytics today comes from the sheer volume of

data available for processing. Data volumes that many companies want to process in

timely and cost-efficient ways have grown steadily from the multi-gigabyte range to

terabytes and now to many petabytes. All data storage and processing systems that

we presented in this monograph were aimed at handling such large datasets. This

challenge of dealing with very large datasets has been termed the volume challenge.

There are two other related challenges, namely, those of velocity and variety (Laney,

2001).

The velocity challenge refers to the short response-time requirements for collecting,

storing, and processing data. Most of the systems in the MapReduce and Dataflow

categories are batch systems. For latency-sensitive applications, such as identifying

potential fraud and recommending personalized content, batch data processing is

insufficient. The data may need to be processed as it streams into the system in order

to extract the maximum utility from the data. Systems for interactive analytics are

typically optimized for addressing the velocity challenge.

The variety challenge refers to the growing list of data types—relational, time

series, text, graphs, audio, video, images, genetic codes—as well as the growing list

of analysis techniques on such data. New insights are found while analyzing more

than one of these data types together using a variety of analytical techniques such

as linear algebra, statistical machine learning, text search, signal processing, natural

language processing, and iterative graph processing.

Several higher-level systems and tools have been built on top of the systems des-

cribed in this monograph for implementing these techniques, which drive automated

processes for spam and fraud detection, advertisement placement, Web-site optimi-

zation, and customer relationship management. Business Intelligence (BI) tools like

SAS, SAP Business Objects, IBM Cognos, SPSS Modeler, Oracle Hyperion, and Mi-

crosoft BI, provide support for reporting, online analytical processing, data mining,

process mining, and predictive analytics based on data stored primarily in Data Ware-

houses. Other software platforms such as Tableau and Spotfire specialize in interactive

data visualization of business data. In particular, these platforms query relational

databases, cubes, cloud databases, and spreadsheets to generate a number of graph

types that can be combined into analytic dashboards and applications. Both plat-

forms also support visualizing large-scale data stored in distributed file systems such

as HDFS. On the other hand, companies like Datameer, Karmasphere, and Platforma

offer business intelligence solutions that specifically target the Hadoop ecosystem.
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W. Lindner, A. Maskey, A. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. B. Zdo-

nik (2005). The Design of the Borealis Stream Processing Engine. In Proc. of the 3rd

Biennial Conf. on Innovative Data Systems Research (CIDR), pp. 277–289.

Abadi, D. J., P. A. Boncz, and S. Harizopoulos (2009). Column Oriented Database Systems.

Proc. of the VLDB Endowment 2 (2), 1664–1665.
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