
Noname manuscript No.
(will be inserted by the editor)

Diverse and Proportional Size-l Object Summaries Using Pairwise
Relevance

Georgios J. Fakas · Zhi Cai · Nikos Mamoulis

the date of receipt and acceptance should be inserted later

Abstract The abundance and ubiquity of graphs (e.g., on-
line social networks such as Google+ and Facebook; bib-
liographic graphs such as DBLP) necessitates the effective
and efficient search over them. Given a set of keywords that
can identify a Data Subject (DS), a recently proposed key-
word search paradigm produces a set of Object Summaries
(OSs) as results. An OS is a tree structure rooted at the DS
node (i.e., a node containing the keywords) with surround-
ing nodes that summarize all data held on the graph about
the DS. OS snippets, denoted as size-l OSs, have also been
investigated. A size-l OS is a partial OS containing l nodes
such that the summation of their importance scores results
in the maximum possible total score. However, the set of n-
odes that maximize the total importance score may result in
an uninformative size-lOSs, as very important nodes may be
repeated in it, dominating other representative information.
In view of this limitation, in this paper we investigate the
effective and efficient generation of two novel types of OS
snippets, i.e. diverse and proportional size-l OSs, denoted
as DSize-l and PSize-l OSs. Namely, besides the importance
of each node, we also consider its pairwise relevance (simi-
larity) to the other nodes in the OS and the snippet. We con-
duct an extensive evaluation on two real graphs (DBLP and
Google+). We verify effectiveness by collecting user feed-

Georgios J. Fakas
Department of Computer Science and Engineering
Hong Kong University of Science and Technology, Hong Kong
E-mail: gfakas@cse.ust.hk

Zhi Cai
College of Computer Science
Beijing University of Technology, China
E-mail: caiz@bjut.edu.cn

Nikos Mamoulis
Department of Computer Science
University of Hong Kong, Hong Kong
E-mail: nikos@cs.hku.hk

Example 1 The OS for Michalis Faloutsos
Author: Michalis Faloutsos
...Paper: On Power-law Relationalships of the Internet Topology.
......Conference: SIGCOMM. Year: 1999.
......Co-Author(s): Christos Faloutsos, Petros Faloutsos.
......Cites: Building Shared..., ...Cited by: The Structure...,
...Paper: BLINC: Multilevel Traffic Classification in the Dark.
......Conference: ACM SIGCOMM Computer Comm. Review Year:2005.
......Co-Author(s): T. Karagiannis, K. Papagiannaki.
......Cites: A Parametrizable methodology..., ...Cited by: P4P: Provider...,
...Paper: Transport Layer Identification of P2P Traffic.
......Conference: SIGCOMM. Year:2004.
......Co-Author(s): T. Karagiannis, A. Broido.
......Cites: Their Share: Diversity..., Cited by: Internet Traffic......
...
...

back, e.g. by asking DBLP authors (i.e. the DSs themselves)
to evaluate our results. In addition, we verify the efficien-
cy of our algorithms and evaluate the quality of the snippets
that they produce.

1 Introduction

Keyword search on the web has dominated our lives, as it
facilitates users to find easily and effectively information us-
ing only keywords. For instance, the result for query q =“Faloutsos”
consists of a set of links to web pages containing the key-
word(s) together with their respective snippets. Snippets are
short fragments of text extracted from the search results (e.g.,
web pages); they significantly enhance the usability of search
results as they provide an intuition about which results are
worth accessing and which can be ignored. Furthermore, s-
nippets may provide the complete answer to the searcher’s
actual information needs (if, for example, the user is only in-
terested in whether Michalis Faloutsos is a Professor), thus
preventing the need to retrieve the actual result [27].

The keyword search paradigm has also been introduced
in relational databases. (e.g., [20]), where the objective is to
find networks of tuples connected via foreign key links that
collectively contain the keywords. For example, the query

2 Georgios J. Fakas et al.

“Faloutsos”+“Agrawal” over the DBLP database returns tu-
ples Faloutsos and Agrawal from the Author table and their
associations through co-authored papers. However, relation-
al keyword search may not be very effective when search-
ing information about a particular data subject (DS) (e.g.,
Faloutsos and his papers, co-authors, etc.). A DS is an entity
(e.g. an individual, paper, product, etc.) which has its iden-
tity in a tuple which is the result (i.e. subject) of the key-
word search. Relational keyword search only returns tuples
containing the keywords (in this case only Faloutsos Author
tuples), and hence fails to address search for the context of
most important tuples around a central tuple (i.e., a DS).

In view of this, in [13,12] the concept of object sum-
mary (OS) was introduced; an OS summarizes all data held
in a database about a particular DS, searched by some key-
word(s). More precisely, an OS is a tree with the tuple nDS con-
taining the keywords (e.g., Author tuple M. Faloutsos) as the
root node and its neighboring tuples, containing additional
information (e.g., his papers, co-authors etc.), as child or de-
scendant nodes. The precise definition of an OS is discussed
in Section 2; in a nutshell, a tuple is included in the OS if it
is of high affinity (based on link properties in the tuple net-
work graph of the database) and it is connected to nDS via
a short path. For instance, the result for q is a set of OS-
s: one for each Faloutsos brother. Example 1 illustrates the
OS for Michalis Faloutsos. Note that the OS paradigm is
in more analogy to web keyword search, compared to rela-
tional keyword search. For instance, Example 1 resembles a
web page (as it includes comprehensive information about
the DS). Therefore, for the non-technical users with experi-
ence only on web keyword search, the OS paradigm will be
friendlier and also closer to their expectations. In general,
an OS is a concise summary of the context around any piv-
ot database tuple or graph node, finding application in (in-
teractive) data exploration, schema extraction, etc. Anoth-
er application of this summarization concept is on semantic
knowledge graphs [26,6].

In [15,16], OS snippets were proposed (denoted as size-l
OSs). Size-l OSs are composed of only l important nodes so
that (1) the summation of their scores is maximized and (2)
all l nodes are connected to the OS root (i.e. nDS). Example
2 illustrates the size-l OS for M. Faloutsos with l = 15 on
the DBLP database. According to [15], a size-l OS should
be a standalone sub-graph of the complete OS so that the
user can comprehend it without any additional information.
For this reason, the l nodes should form a connected graph
that includes the root of the OS.

However, this selection criterion (i.e., maximizing im-
portance score) can render such snippets ineffective. For in-
stance, in Example 2, the co-authorship of Michalis with
Christos Faloutsos, who is a very important author monop-
olizes the snippet with papers co-authored only with Chris-
tos. Thus, we argue that the diversity of constituent nodes

Example 2 The size-15 OS for Michalis Faloutsos
Author: Michalis Faloutsos
...Paper: On Power-law Relationalships of the Internet Topology.
......Co-Author: Christos Faloutsos,...
...Paper: Power Laws and the AS-Level Internet Topology.
......Co-Author: Christos Faloutsos,...
...Paper: ACM SIGCOMM‘ 99.Co-Author: Christos Faloutsos,...
...Paper: Information survival thr.... .Co-Author: Christos Faloutsos,...
...Paper: The Connectivity and Fault... .Co-Author: Christos Faloutsos,...
...Paper: BGP-lens: Patterns and An... .Co-Author: Christos Faloutsos,...
...Paper: The eBay Graph: How Do.... .Co-Author: Christos Faloutsos,...

Example 3 The DSize-15 OS for Michalis Faloutsos
Author: Michalis Faloutsos
...Paper: On Power-law Relationalships of the Internet Topology.
.......Conference: SIGCOMM. Year: 1999.
.......Co-Author: Christos Faloutsos,
...Paper: Information Survival Threshold in Sensor and P2P Networks.
......Co-Author: S. Madden, ..., Conference: INFOCOM.
...Paper: Power Laws and the AS-Level Internet Topology.
.......Conference: IEEE/ACM Tr. Netw. Year: 2003.
.......Co-Author: Christos Faloutsos,..
...Paper: Network Monitoring Using Traffic Dispersion Graphs.
......Co-Author: M. Mitzenmacher, ...Conference: SIGCOMM.

Example 4 The PSize-15 OS for Michalis Faloutsos
Author: Michalis Faloutsos
...Paper: On Power-law Relationalships of the Internet Topology.
.......Conference: SIGCOMM. Year: 1999.
.......Co-Author: Christos Faloutsos,
...Paper: Denial of Service Attacks at the MAC Layer...
......Co-Author: S. Krishnamurthy, ..., Conference: MILCOM.
...Paper: Power Laws and the AS-Level Internet Topology.
.......Conference: IEEE/ACM Tr. Netw.
.......Co-Author: Christos Faloutsos,..
...Paper: Reducing Large Internet Topologies for Faster Simulations
......Co-Author: S. Krishnamurthy, L. Cui,...Conference: NETWORKING.

will improve the snippet’s effectiveness. In addition, we ar-
gue that frequent appearances of nodes in an OS should also
be proportionally represented in an effective snippet.

Hence, in this paper we propose two novel snippets, name-
ly diverse and proportional size-l OSs denoted as DSize-l
OS and PSize-l OS respectively. More precisely, in a DSize-
l OS we favor diversity by penalizing repetitions of relevant
nodes. For instance, the DSize-l OS of Example 3 includes
C. Faloutsos only twice, allowing the appearance of other
important co-authors as well. In a PSize-l OS, we favor pro-
portionality, i.e., a frequent relevant node should be analo-
gously represented, facilitating diversity at the same time.
Similarly, the PSize-l OS of Example 4 includes also fre-
quent co-authors S. Krishnamurthy and L. Cui who do not
appear at all in the DSize-l OS. To compute them, we cal-
culate a combined score per node, which integrates (1) im-
portance, (2) affinity to the data subject node nDSand (3)
diversity or proportionality.

For the diversity and proportionality scores calculation,
we employ two types of pairwise relevance: Similarity (de-
noted also as sim) and Equality (denoted as equi). More
precisely, sim is the textual similarity between nodes (e.g.
Jaccard similarity); e.g. two papers with common keywords
are similar. Note that textual similarity on Author’s names
makes little sense here; e.g. two authors with a common sur-

Diverse and Proportional Size-l Object Summaries Using Pairwise Relevance 3

name are still two different persons. Thus, we also use equi
as a binary relevance function, i.e. two OS nodes that corre-
spond to the same graph node (e.g. the same Author appear-
ing many times in an OS) have equi-relevance 1, otherwise
their equi-relevance is 0. We say that a snippet is an equi
size-l OS if it considers only equi relevance (e.g. an equi
DSize-l); we say that a snippet is a sim size-l OS if it con-
siders both sim and equi relevance (e.g. sim DSize-l).

The efficient generation of DSize-l or PSize-l OSs is a
challenging problem since information about the repetitions
and frequencies of nodes is required and incremental com-
putation is not possible (as opposed to the original size-l OS
computation problem [15]). We discuss a brute force algo-
rithm, BF-l, that produces optimal solutions but scales bad-
ly. Then, we propose a greedy algorithm (LASP) and its op-
timization (2-LASPe). Both algorithms are general and can
address both DSize-l and PSize-l OS snippet types (with mi-
nor modifications), based on either similarity or equivalence
relevance. In addition, we propose two preprocessing tech-
niques for the two snippet types (PPrelim-l and DPrelim-l)
that prune the input OSs before processing them.

We conducted an extensive experimental study on the
DBLP bibliographic and Google+ social network datasets.
We verify effectiveness by collecting user feedback, e.g., by
asking DBLP authors (i.e., the DSs themselves) to evaluate
our size-l OSs. The users suggested that the results produced
by our method are very close to their expectations and that
DSize-l and PSize-l are more usable than the respective size-
ls OSs, which disregard diversity. In addition, we investigat-
ed in detail and verified the efficiency and approximation
quality of our algorithms.

The contributions of this paper can be summarized as
follows: (1) the introduction of two novel OS snippets, DSize-
l and PSize-l OS, which capture diversity and proportional-
ity respectively; (2) the introduction of efficient greedy al-
gorithms for their generation; (3) a theoretical analysis for
the greedy algorithms including proofs of lower approxima-
tions bounds; (4) an extensive experimental evaluation that
verifies the proposed concepts and techniques.

A preliminary version of this paper introduces DSize-l
and PSize-l OSs using only equality relevance [17]. Here,
we generalize our relevance measure by also considering
pairwise textual similarity (sim); this dictates significant a-
mendments of our greedy algorithms. As we demonstrate in
Sections 8, this generalization is significantly better in terms
of usability. In addition, in this paper we enrich the theoret-
ical analysis of our greedy algorithms by including proof-
s of the lower bounds of their approximations. Finally, we
provide a more comprehensive evaluation for the usability,
quality and efficiency of size-l OSs.

The rest of the paper is structured as follows. Section 2
describes background and related work. Section 3 describes
the semantics of DSize-l and PSize-l OSs. Section 4 intro-

duces the optimal solution; whereas Sections 5 and 6 present
the greedy algorithms. Section 7 introduces preprocessing
algorithms for DSize-l and PSize-l OS computation. Section
8 presents experimental results. Finally, Section 10 provides
concluding remarks.

2 Background Work

In this section, we describe background work that we build
upon in this paper; namely, we describe the concepts of an
object summary (OS) and size-l OS.

2.1 Object Summaries

According to the keyword search paradigm of [13], an ob-
ject summary (OS) is generated for each node (tuple) nDS

found in a graph (database) that contains the query key-
word(s) (e.g., “Michalis Faloutsos” node of Author relation
in the DBLP database). An OS is a tree having nDS as a
root, the nodes that link to nDS through foreign keys as its
children, the nodes that link to the children recursively as de-
scendant nodes. To construct an OS, the relation RDS (e.g.,
the Author relation) that holds nDS and those that link to
RDS via foreign keys are used. First, a Data Subject Schema
Graph GDS is generated. Figure 2 illustrates the GDS for
the Author relation of the DBLP database, whose schema
is shown in Figure 1. A GDS is a directed labeled tree with
a fixed maximum depth that has an RDS as a root node and
captures the subset of the schema surroundingRDS; any sur-
rounding relations participating in loop or many to many
relationships are replicated accordingly. In other words, a
GDS is a “treelization” of the database schema, whereRDS be-
comes the root, RDS’s neighboring relations become child
nodes and so on. In order to generate the OS, the relations
from GDS, which have high affinity with RDS are used. The
affinity of a relation Ri to RDS can be calculated by the for-
mula:

af(Ri) =
∑
j

mwj ·mj · af(RParent), (1)

where j ranges over a set of measures (m1,m2, . . . ,mn)
and their corresponding weights (mw1,mw2, . . . ,mwn), and
af(RParent) is the affinity of Ri’s parent to RDS. The mea-
sures’ scores range in [0, 1] and the corresponding weights
sum to 1; thus, the affinity score of a node is monotonically
non-increasing with respect to the node’s parent. More pre-
cisely we use four measures: m1 considers the distance of
Ri toRDS, i.e., the shorter the distance the bigger the affinity
between the two relations. The remaining measures consider
the connectivity ofRi on both the database schema and data-
graph. m2 measures the relative cardinality, i.e., the average
number of tuples of Ri that are connected with each tuple
in RParent whereas m3 measures their reverse relative car-
dinality, i.e., the average number of tuples of RParent that

4 Georgios J. Fakas et al.

Paper AuthorConfYearConference

Fig. 1 The DBLP Database Schema

Conference

(0.78, sim)

Co-author

(0.82, equi)

ConfYear

(0.83, equi)

PaperCites

(0.77, sim)

PaperCitedBy

(0.77, sim)

Paper

(0.92, sim)

Author

(1, equi)

Fig. 2 The DBLP Author GDS (Affinity, Relevance type)

are connected with a tuple in Ri. m4 considers the schema
connectivity of Ri (i.e., the number of relations it is con-
nected to in the relation graph). Given a threshold θ, a subset
of GDS can be produced that includes only the relations of
affinity at least θ to RDS. The OS for a tuple nDS in RDS is
generated by traversing the GDS starting from nDS (e.g., by
joining nDS with the neighboring relations ofRDS; Algorith-
m 4). For instance, for q=“Faloutsos”, and for nDS=“Michalis
Faloutsos” in the Author RDS of the DBLP database, the OS
presented in Example 1 will be generated.

Every tuple vi in the database carries a global impor-
tance weight gi(vi), calculated using PageRank-inspired mea-
sures such as ObjectRank [3] and ValueRank [14]. Due to
the “treelization” of the schema graph by GDS, multiple tu-
ples in an OS may correspond to the same tuple in the database.
For instance, the same co-author (e.g., Christos Faloutsos)
may appear multiple times (e.g., 12) in the OS of Michalis.
Formally, for a node ni of an OS, we use function g(ni) to
denote the corresponding tuple v in the database. Thus, for
two OS nodes ni and nj , we may have g(ni) = g(nj) = v.
We also denote as fr(v) (i.e., fr(g(ni)), or simply fr(ni))
the frequency of tuple v in the given OS.

2.2 Size-l OSs

According to [15], given an OS and an integer l, a candi-
date size-l OS is any subset of the OS composed of l n-
odes, such that the l nodes form a tree rooted at nDS. In [15],
we argue that a good size-l OS should be a standalone and
meaningful synopsis of the most important and representa-
tive information about the particular DS (so that users can
understand it as is, without any additional nodes). In par-
ticular, any intermediate nodes that connect nDS (e.g., M.
Faloutsos) with other important nodes (e.g., C. Faloutsos) in
the size-l OS guarantee that the size-l remains standalone,
since these connecting nodes (e.g., co-authored papers) in-

clude the semantics of the associations. For instance, in Ex-
ample 2, if we exclude the paper “On Power-law . . . ” but
only include the co-authors, we exclude the semantic asso-
ciation between nDS and co-author(s), which in this case is
their common paper.

The holistic importance Im(Sl) of any candidate size-l
OS Sl is defined as the sum of the local importance scores
of its nodes, i.e. Im(Sl) =

∑
ni∈Sl li(ni). The local impor-

tance of a node ni is the affinity-weighted global importance
of ni, i.e., li(ni) = af(ni) · gi(ni). The affinity af(ni) of a
node ni equals the affinity of the relation where ni belongs
(Equation 1); global importance was defined in Section 2.1.
A candidate size-l OS is an optimal size-l OS, if it has the
maximum Im(Sl) over all candidate size-l OSs.

The generation of a size-l OS is a challenging task be-
cause we need to select l nodes that are connected to nDS

and at the same time result in the maximum score. An op-
timal dynamic programming algorithm (requiring O(nl2)

time where n is the amount of nodes in the OS) and greedy
algorithms were proposed in [15].

3 DSize-l and PSize-l Snippets

We propose two types of size-l OSs, namely diverse DSize-l
OSs and proportional PSize-l OSs, which extend the size-l
OS definition [15] to capture diversity and proportionality,
respectively. Similarly to size-l OSs, both DSize-l OSs and
PSize-l OSs should be standalone sub-trees of the OS, com-
posed of l important and representative nodes only, so that
the user can understand them without any additional infor-
mation. Thus, the l nodes should form a connected graph
that includes the root of the OS (i.e., nDS). We argue that
an effective DSize-l (PSize-l) OS should gracefully com-
bine diversity (proportionality) and the local importance s-
cores of constituent nodes. Hence, we propose that for each
OS node ni, we estimate a respective score for diversity,
proportionality and local importance, denoted by dv(ni),
pq(ni) and li(ni), respectively. dv(ni) (pq(ni)) and li(ni)
are combined to a single score dw(ni) (pw(ni)) for a DSize-
l (PSize-l) OS, simply denoted by w(ni) when the context
(i.e., diversity or proportionality) is clear. The notations fre-
quently used throughout this section and in the rest of the
paper are summarized in Table 1.

Then, the objective is to select the l nodes that (1) in-
clude nDS and form a connected subtree of the OS and (2)
the sum of their w(.) scores is maximized. Local impor-
tance (i.e., li(.)) can be calculated as in the original size-l
OS problem (i.e., by multiplying affinity with global impor-
tance [15]), thus hereby we discuss only diversity and pro-
portionality.

We investigate two relevance types among OS nodes,
namely similarity (denoted as sim) and equality (denoted
as equi). More precisely, we consider relevance among n-
odes belonging to the same relation; thus, we classify each

Diverse and Proportional Size-l Object Summaries Using Pairwise Relevance 5

Table 1 Notations

Notation Definition
gi(vi) The global importance of a graph node vi
li(ni) The local importance of an OS node ni

fr(vi) The frequency a graph node vi appears in an OS
z(vi) The amount of times that a graph node vi has been

added on the snippet
dv(ni) The diversity score of an OS node ni

dw(ni) The diversity weight score: li(ni) ∗ dv(ni)
pq(ni) The proportionality quotient of an OS node ni

pw(ni) The proportional weight score: li(ni) ∗ pq(ni)
w(ni) A weight score that may represent either dw(ni) or

pw(ni) (when the context is clear)
ap(ni) The average w(.) score of nodes of path ni to root
Im(Sl) The Importance score of a size-l Sl

GDS relation either as sim or equi. We can use a domain
expert to classify each relation in these types. When two n-
odes belong to different relations, then they have relevance
0 (e.g. the similarity between a conference and a paper is al-
ways 0). For nodes belonging to the same sim relation, we
use Jaccard similarity (i.e. sim(ni, nj) =

|ni∩nj |
|ni∪nj | ; we treat

ni and nj as sets of words). We can use an expert to define
which attributes to compare per relation. For instance, Paper
is a sim relation (AuthorGDS , Figure 2) and we define sim-
ilarity between papers using their titles (e.g., “On Power-law
relationships of the Internet Topology” vs. “Power laws and
the AS-Level Internet topology”). (Note that Jaccard simi-
larity is symmetric (i.e. sim(ni, nj) = sim(nj , ni)) and the
respective distance (i.e. 1− sim(ni, nj)) is a metric.) How-
ever, we observe that textual similarity cannot be applied on
all relations meaningfully. For instance consider Authors; it
is not meaningful to define textual similarity between author
names “Christos Faloutsos” vs. “Michalis Faloutsos”. Thus,
for such cases (e.g. DBLP relations Author and ConfYear),
we consider equality relevance, where two different OS n-
odes may either correspond to the same tuple (e.g., g(ni) =
g(nj) = vp) or to two different tuples (e.g., g(ni) 6= g(nj)).
In the former case, we have sim(ni, nj) = 1, whereas in
the latter case we have sim(ni, nj) = 0. Note that in both
relevance types we measure relevance between two nodes
using the same notation, i.e. sim(ni, nj) (even for equi re-
lations). Also note that sim(ni, nj) = 1 indicates that the
two nodes are equal even in the case of sim relations; e.g.
although Conference is a sim relation, an author may have
papers appearing in the same conference more than once.

3.1 Diversity (DSize-l OSs)

We suggest that the l nodes should be diversified by prevent-
ing the domination of very important nodes. For example, in
the Michalis Faloutsos OS, the co-authorship with the very
important author Christos Faloutsos dominates the snippet
and this renders the snippet not representative. A natural cri-
terion objective towards measuring diversity is to maximize
the sum of dissimilarities between nodes. Thus, for a giv-

en graph node ni in a DSize-l DSl, we suggest to estimate
diversity as follows:

dv(ni) =

1−

∑
nj∈DSl,ni 6=nj

sim(ni, nj)

l − 1
R(ni) is sim relation

1−
z(g(ni))− 1

l − 1
R(ni) is equi relation

,

(2)

where R(ni) is the relation ni belongs to, nj is any other
node in DSl and sim(ni, nj) is the similarity between ni
and nj . When g(ni) = g(nj) (i.e. ni and nj correspond
to the same tuple), then sim(ni, nj) = 1 for both sim

and equi relations. For an equi relation, if g(ni) 6= g(nj)

then sim(ni, nj) = 0. Recall also that, if ni and nj do
not belong to the same relations (i.e. R(ni) 6= R(nj)), then
sim(ni, nj) = 0. The summation of similarities of ni to the
rest of the nodes in the snippet will give us the respective
dv(ni) score. For an equi relation, that will be z(g(ni))−1,
where z(g(ni)) is the amount of times g(ni) appears in the
snippet (since for all nodes nj such that g(ni) = g(nj),
sim(ni, nj) = 1). Dividing by l − 1, we normalize dv(ni)
in the range [0,1].

Given a set of nodes, nj1 . . . njx, that have been added
to the DSize-l OS, we denote as dv(ni|nj1, . . . njx) the di-
versity score of an unselected node ni considering these
added nodes. For instance, the score dv(P1|P5) in Table 2
denotes the score of P1 after the addition of P5 in the snip-
pet. For short, when the context is clear, we also denote as
dv(ni|njx) the score of ni given that njx has been appended
as the last (i.e. xth) node on the snippet. We also denote as
dv(ni|∅) the maximum diversity score a node ni can get,
i.e. dv(ni|∅) = 1; e.g. when ni is the first to be added.
This notation will be useful when describing our greedy al-
gorithms; where after each node addition, the score of unse-
lected nodes is affected accordingly.

For equi nodes for short, we also denote as dv[z](g(ni))
the diversity score of a graph node ni considering it appears
for the zth time in the snippet. For instance, in Table 3, dv[1]
indicates the score of a node assuming it appears for the first
time; where dv[1](ni) = 1 is the maximum diversity score
(which corresponds to dv(ni|∅) = 1). As another example,
consider l = 10 and that C. Faloutsos appears 2 times (i.e.,
z =2); dv[2] = 1 − 2−1

10−1 = 8
9 = 0.89 (Table 3). Note that

this score corresponds to the graph node g(ni); thus, both
nodes will have the same dv(.), i.e 0.89 (an alterative way
would be to score the first occurrence as 1 and the second as
0.78, since 1 + 0.78 = 0.89 + 0.89).

Our equation is inspired by (1) max-sum diversification
that maximizes the sum of the relevance and dissimilarity
of a set and by (2) the use of a mono-objective formula-
tion, which, similarly to our equation, combines relevance
and dissimilarity to a single value for each document [18].

6 Georgios J. Fakas et al.

Table 2 Sim Relevance of Selected Papers of Michalis Faloutsos

Name li(.)
dv(. dw(. dv(. dw(. dv(. dw(. pq(. pw(. pq(. pw(. pq(. pw(.
|∅) |∅) |P5) |P5) |P8) |P8) |∅) |∅) |P5) |P5) |P8) |P8)

P1: Aggregated Multicast for Scalable QoS Mu.. 0.17 1.00 0.17 1.00 0.17 0.99 0.16 0.69 0.11 0.69 0.11 0.59 0.10
P2: Aggregated Multicast with Inter-Group Tr.. 0.18 1.00 0.18 1.00 0.18 0.99 0.18 0.56 0.10 0.56 0.10 0.48 0.09
P3: BGP-lens: Patterns and Anomalies in Inte.. 0.16 1.00 0.16 0.99 0.16 0.98 0.16 0.58 0.09 0.49 0.08 0.43 0.07
P4: Bounds for the On-line Multicast Problem.. 0.19 1.00 0.19 1.00 0.19 0.99 0.19 0.68 0.13 0.68 0.13 0.59 0.11
P5: On Power-law Relationships of the Intern.. 0.61 1.00 0.61 - - - - 1.15 0.71 - - - -
P6: Power Laws and the AS-Level Internet Top.. 0.19 1.00 0.19 0.93 0.17 0.92 0.17 1.15 0.21 0.49 0.09 0.46 0.08
P7: QoS-aware Multicast Routing for the Inte.. 0.18 1.00 0.18 0.99 0.18 0.96 0.18 1.15 0.21 0.99 0.18 0.69 0.13
P8: QoSMIC: Quality of Service Sensitive Mu.. 0.31 1.00 0.31 0.99 0.31 - - 0.93 0.29 0.79 0.24 - -
P9: Reducing Large Internet Topologies for F.. 0.27 1.00 0.27 0.98 0.26 0.97 0.26 0.69 0.19 0.48 0.13 0.43 0.12
P10: The Effect of Asymmetry on the On-Line.. 0.17 1.00 0.17 1.00 0.17 0.99 0.16 0.86 0.14 0.86 0.14 0.74 0.12

Table 3 Equi Relevance of Selected Co-Authors of Michalis (Ranked descending their pw[1])

Name li(.) fr(.) dv[1](.) dw[1](.) dv[2](.) dw[2](.) pq[1](.) pw[1](.) pq[2](.) pw[2](.)

Srikanth V. Krishnamurthy 0.60 37 1.00 0.60 0.89 0.53 12.33 7.40 7.40 4.44
Christos Faloutsos 1.80 12 1.00 1.80 0.89 1.60 4.00 7.20 2.40 4.32
Jun-Hong Cui 0.81 11 1.00 0.81 0.89 0.72 3.67 2.97 2.20 1.78
Thomas Karagiannis 0.70 10 1.00 0.70 0.89 0.62 3.33 2.33 2.00 1.40
Michael Mitzenmacher 1.40 3 1.00 1.40 0.89 1.24 1.00 1.40 0.60 0.84
George Varghese 1.38 2 1.00 1.38 0.89 1.23 0.67 0.92 0.40 0.55
Konstantina Papagiannaki 0.61 4 1.00 0.61 0.89 0.54 1.33 0.81 0.80 0.49
Samuel Madden 1.61 1 1.00 1.61 0.89 1.43 0.33 0.54 0.20 0.32
Marek Chrobak 0.33 4 1.00 0.33 0.89 0.29 1.33 0.44 0.80 0.27
Jakob Eriksson 0.15 7 1.00 0.15 0.89 0.13 2.33 0.35 1.40 0.21

Note that, in general, diversification approaches trade off (1)
the similarity of results with the given query and (2) the
dissimilarity among such results using a similarity measure
(e.g., IR techniques). For instance, given a query “Internet
Topology”, papers “On Power-law relationships of the Inter-
net Topology” and “Power laws and the AS-Level Internet
topology” have some similarity to this query but they also
have some similarity among them; both types can be esti-
mated using a common IR measures such as Jaccard simi-
larity. This is not the case here, since we do not consider the
similarity of nodes to the query but a local importance score
in relation to nDS . Thus, local importance and similarity are
not meaningfully comparable. Note also that their respective
values may not be in the same range (e.g., local importance
may range in [0,10] whereas dv(.) always ranges in [0,1]).
Hence, unlike most diversification approaches, in the com-
bining function dw(.) (to be defined in Section 3.3) we do
not sum up local importance and dissimilarity, but multiply
them.

3.2 Proportionality (PSize-l OSs)

We observe that in an OS we often find equi graph nodes
(i.e., database tuples) multiple times. For instance, in the
Michalis Faloutsos OS (see Table 3), we have 37 instances
of S. Krishnamurthy, 12 instances of C. Faloutsos, 18 papers
in INFOCOM, etc. We denote the frequency of a graph node
vi in an OS as fr(vi) (or simply by fr when the context is
clear). Graph nodes appear in an OS multiple times could
sometimes be comparatively weak in terms of importance,

but still given their frequency in the OS, they should be rep-
resented analogously in an effective snippet. Thus, we sug-
gest that in a PSize-l snippet, disregarding local importance
(i.e., assuming that all nodes have the same li(.)), we should
include nodes in proportion of their frequency. For example,
if a graph node vi appears 37 times in the total of 1,259 OS
nodes, then vi should ideally appear bl · 37/1, 259c times in
the respective PSize-l OS. (Note that this may not practical-
ly possible as in-between nodes may also be required, i.e.,
the co-authored papers in our example.)

Analogously, we observe that the topic of sim nodes
may appear multiple times; a node may be very similar to
many other nodes in the OS. For instance, in Table 2, we
find 6 out of 10 papers including the word “Multicast” (e.g.
P1, P2, P4, etc.) and 2 papers including a pair of words “Ag-
gregated Multicast”. Thus, papers have some similarity due
to the frequent common topics (e.g. “Aggregated Multicas-
t”) and hence they should also be analogously represented.

For this purpose, for a given graph node ni in a PSize-
l PSl, we propose the use of the proportional quotient as
follows:

pq(ni) =

∑
nj∈OS

sim(ni, nj)

α ·
∑

nj∈PSl

sim(ni, nj) + 1
R(ni) is sim relation

fr(g(ni))

α · z(g(ni)) + 1
R(ni) is equi relation

,

(3)

Diverse and Proportional Size-l Object Summaries Using Pairwise Relevance 7

where R(ni) is the relation where ni belongs, sim(ni, nj)

is the similarity between the two nodes (as defined in Equa-
tion 2) and α is a constant that can tune proportionality. For
equi relations, z(g(ni)) is the amount of times that node ni
appears in the snippet and fr(g(ni)) is the frequency that
the node appears in the OS. We use analogous notations as in
dv(ni). We denote by pq(ni|nj1, . . . njx) the proportional
quotient of ni when nodes nj1, . . . njx have been appended
to the snippet. For equi nodes, we also denote as pq[z](ni)
the proportional score considering ni appears z times (Table
3).

This equation is inspired by the Sainte-Laguë Algorithm
[8] (with α = 2) and empirically we found that it is very ef-
fective for our problem (other equations can also be consid-
ered, e.g., [7,29]). The rationale of this quotient is to favor
a frequent node (or nodes including frequent topical words)
and each time a node is added to the snippet its proportional
score is significantly decayed so that other frequent nodes
will be selected, in turn. This way, diversification is also fa-
cilitated. For instance, considering fr = 12 and α = 2 for
C. Faloutsos, by adding this node once we get pq[1](ni) =
12/3 = 4 and twice we get pq[2](ni) = 12/5 = 2.4.

3.3 DSize-l and PSize-l Definitions

Based on the above discussion, for DSize-l OSs, we propose
the following combining score per node:

dw(ni) = li(ni) · dv(ni), (4)

where li(ni) = af(ni) · gi(ni) is the local importance of ni
and dv(ni) is the diversity factor (Equation 2). Tables 2 and
3 depicts examples of how these scores can be obtained by
constituent scores for l = 10. For instance, consider the sim-
plified example where we need to select 5 authors (and thus
an intermediary paper), then we will select twice C. Falout-
sos (i.e., 0.89·1.8+0.89·1.8=1·1.8+0.78·1.8) and once S.
Madden (1·1.6), M.Mitzenmacher (1·1.4) and G.Varghese
(1·1.4). Note that a third addition of C. Faloutsos cannot
compete the total 1.4 score, as the additional score is only
1.12 (i.e., (3·0.78−1−0.78)·1.8=0.56·1.8=1.08).

Definition 1 (DSize-l OS) Given an OS and l, a DSize-l OS
is a subset of OS that satisfies the following:

(1) The size in nodes of DSize-l OS is l (where l ≤ |OS|)
(2) The l nodes form a connected tree rooted at nDS

(3) Each node ni carries a weight dw(ni) (obtained by
Equation 4)

(4) The aggregated score of a DSize-l OS DSl can be
calculated by:

Im(DSl) =
∑

ni∈DSl

dw(ni). (5)

Let a candidate DSize-l OS be any OS subset satisfying
conditions 1-3; then, the optimal DSize-l OS is the candi-
date snippet that has the maximum Im(DSl) among all such
candidates.

Problem 1 (Find an optimal DSize-l OS) Given an OS and
l, find a candidate DSize-l OS of maximum score (according
to Definition 1).

Analogously, we define the proportionality score per n-
ode (i.e., pw(ni) = li(ni) · pq(ni), instead of Equation 4),
PSize-l OS and the optimal PSize-l OS problem (a formal
definition is omitted due to the interest of space). For in-
stance, we observe that our selection policy will favor first
the addition of S. Krishnamurthyan author and the respective
co-authored paper; then, the addition of author C. Faloutsos
with a co-authored paper; then, another round with these two
authors, etc.

Problem Definitions and Algorithms. We have two type-
s of problems, namely PSize-l and DSize-l generation. In
addition, an OS may have only equi relevance or both equi
and sim relevance. Thus, we have four combinations of prob-
lems and thus we propose algorithms that are general to ad-
dress all these combinations. Firstly, we propose a brute-
force algorithm which is prohibitively slow. Then, we pro-
pose two greedy algorithms LASP and 2-LASPe (which is
LASP’s optimization). Finally, we propose pruning algo-
rithms that can produce pruned preliminary results. We can
apply all aforementioned algorithms on these preliminary
OSs.

Notation. For simplicity, we unify dw(.) and pw(.) into
a single notation w(.) and use w(ni) to refer to the corre-
sponding diversity or proportionality score of a node ni in a
DSize-l OS or PSize-l OS, respectively. Analogously to di-
versification and proportionality scores notations, we denote
w(ni|nj1, . . . njx) as the score given nj1, . . . njx have been
added andw[z](ni) as the score when ni is added for the zth

time. In the rest of the paper, whenever the context is clear,
we drop ni or (ni|nj1, . . . njx) from the notation and denote
the diversity/proportionality score of a node simply by w(.).

4 Brute Force (BF-l) Algorithm

A brute force (BF-l) algorithm for computing the optimal
DSize-l (or PSize-l) OS would consider all candidate size-
l trees, compute the respective scores, and eventually find
the optimal solution. BF-l generates all possible candidate
trees by traversing the complete OS in a breadth-first fash-
ion, recursively (alternative traversals such as depth-first can
also be applied). Apparently, this algorithm computes the
optimal results of both DSize-l and PSize-l OS computation
problems (and even the optimal result of the original size-l
OS problem [15]), since it considers all candidate snippets.
The pseudo code and more details can be found in [17].

8 Georgios J. Fakas et al.

The time complexity of BF-l is O(n!
(n−l)!l!), where n is

the number of nodes in OS and l is the required size. Note
that, an application of a dynamic programming algorithm
[15] that could reduce this cost is not possible here, because
the score of a diversified size-l OS (either DSize-l or PSize-
l) is not distributive w.r.t. the scores of the subtrees it is com-
posed of; the reason is that the two subtrees that contain one
or more common tuples are not independent (i.e., they af-
fect each others’ score due to the diversity components of
the scoring formulae). In other words, given an OS tree T
that can be decomposed to subtrees T1, T2, etc., the optimal
diversified size-l OS is not necessarily composed by some
optimal diversified size-l′ OSs (l′ < l) of the subtrees T1,
T2, etc. (which is the case for size-l OSs [15]). This is be-
cause the computation of an optimal diversified size-l′ OS in
a subtree Ti disregards the diversity of its constituent nodes
w.r.t. the snippets chosen from the other subtrees Tj 6= Ti.
If we were to consider all possibilities of graph node fre-
quencies in the snippets of other subtrees, this would require
exponential space.

5 Largest Averaged Score Path (LASP)

The BF-l algorithm can be very expensive even for moderate
values of l or |OS|. Thus, we propose LASP, a greedy algo-
rithm, that can produce a size-l OS of high quality at a much
lower cost. In a nutshell, LASP firstly generates the OS. It
also calculates for each node ni an initial w(ni) score (i.e.
w(ni|∅), using Equation 4) and its corresponding average
w(ni) score per node (denoted as ap(ni)) of the path from
ni to the root. Then, the algorithm iteratively selects and
adds to the size-l OS the path pi of nodes with the largest
ap(.). The rationale behind selecting paths instead of single
nodes with the largest score is that we can include nodes of
very large importance while their ancestors have less impor-
tance as their score is averaged. Algorithm 1 is a pseudocode
of the heuristic and Figure 3 illustrates an example.

LASP is a general algorithm that (1) can compute both
types of size-l OSs (i.e., DSize-l and PSize-l OSs) and (2)
can process both relevance types (i.e., equality and similar-
ity). The difference between the two size-l types is that the
proportionality equation also considers the similarity/equality
(frequency) of each node against all other nodes, which is
calculated during the OS generation process (to be described
in more detail shortly). LASP can process both relevance
types by using the pre-calculated sim matrix (a matrix stor-
ing the similarity among all nodes), which facilitates the ini-
tial calculation ofw(.) and ap(.) and the consequent updates
(to be described in more detail shortly). Thus, given an OS
annotated with w(.) and ap(.) scores, the problem of de-
termining either DSize-l or PSize-l using either equality or
similarity relevance type remains the same for LASP.

More specifically, the LASP algorithm firstly generates
the OS (line 1). During OS Generation(), LASP also calcu-

Algorithm 1 The Largest Averaged Path Algorithm
LASP (l, nDS)

1: OS Generation (nDS) . generates OS, w(.), ap(.), HFr and W
2: while (|size-l| < l) do
3: pi=path from maximum W node
4: add first (l−|size-l|) nodes of pi to size-l
5: if (|size-l| < l) then
6: remove selected path pi from the OS tree and from W

7: UpdateRemPaths (pi)
8: UpdateRelScores (pi)
9: return size-l

UpdateRemPaths (pi)
1: for each child v of nodes in pi do
2: for each node nj in the subtree rooted at v do
3: update ap(nj) on the OS tree
4: update ap(nj) on W

UpdateRelScores (pi)
1: for each node ni in pi do
2: for each unselected OS node nj do
3: if (sim(nj , ni) > 0) then
4: update w(nj) considering sim(nj , ni)
5: for each node nk in the subtree rooted at nj do
6: update ap(nk) on OS tree using w(nj)
7: update ap(nk) on W

lates the w(.) score and the respective ap(.) score per node.
For the DSize-l, the calculation of dv(.) (and thus w(.)) is
straightforward; whereas for the PSize-l, the calculation of
pq(.) is more demanding as it requires the comparison of
each node against all other nodes. Thus, for equi relations,
in order to facilitate faster calculation of pq(.) scores, we al-
so maintain a hash table of graph nodes (denoted as HFr)
containing the frequency of a graph node in the OS tree (de-
noted as fr). HFr can easily be compressed by excluding
nodes appearing only once in the OS; thus, if a node does not
exist inHFr we can infer that it only appears once. For sim
relations, we compare each node against all other nodes as
to obtain their pq(.). Note, that sim comparisons are more
expensive (i.e. (n+1)·n

2 time) in contrast to equi HFr based
comparisons that require only n time. During the OS gen-
eration, we also generate a priority queue W of the initial
ap(.), in order to better manage nodes.

We then select the node with the largest ap(.) and ad-
d the corresponding path to the size-l OS. We remove this
pi from the OS and from W (lines 6). By removing the n-
odes of pi from the OS, the tree now becomes a forest; each
child of a node in pi is the root of a tree. Accordingly, the
ap(.) of affected nodes is updated (1) to disregard the re-
moved nodes in the path (UpdateRemPaths()) (2) and al-
so to consider the revised w(.)s due to relevance to newly
added nodes (UpdateRelScores()). Note that the ap(.) of an
unselected node corresponds to the w(.) score the node will
have if included in the snippet (considering also the similari-
ty loss of already added nodes for the diversity case, i.e. dv).
Thus, w(.) and ap(.) scores of all unselected nodes should

Diverse and Proportional Size-l Object Summaries Using Pairwise Relevance 9

n1 (v1)
30
30

n2 (v2)
30
30

n3 (v3)
35

32.5

n4 (v4)
31

30.5

n5 (v5)
36
33

n6 (v6)
35

32.5

n7 (v7)
80

46.7

n8 (v8)
70

43.3

n9 (v7)
80

48.3

n10(v8)
70

43.7

n11(v7)
80

48.6

n12(v9)
55
40

n13(v10)
30

37.5W

...

...

n13
37.5

n8
43.3

n12
40

n10
43.7

n7
46.7

n9
48.3

ni
w(.)

n11
48.6

vi fr
v7 3
v8 2

HFr

(a) The Initial OS

W

n3
35

...

...

n13
40

n10
44

n12
45

n7
45

n9
47.5

n8
50

ni
w(.)

n1 (v1)
30

n2 (v2)
30
30

n3 (v3)
35
35

n4 (v4)
18
18

n5 (v5)
36

n6 (v6)
35
35

n7 (v7)
60
45

n8 (v8)
70
50

n9 (v7)
60

47.5

n10(v8)
70
44

n11(v7)
80

n12(v9)
55
45

n13(v10)
30
40

(b) First Update

n1 (v1)
30

n2 (v2)
30

n3 (v3)
35
35

n4 (v4)
18
18

n5 (v5)
36

n6 (v6)
35
35

n7 (v7)
60
60

n8 (v8)
70

n9 (v7)
60

47.5

n10(v8)
52.5
35.3

n11(v7)
80

n12(v9)
55
45

n13(v10)
30
40W

n6
35

n3
35

n10
35.3

n13
40

n12
45

n9
47.5

n7
60

ni
w(.)

n4
18

(c) The Final Update

Fig. 3 The LASP Algorithm: The Size-5 OS (Annotated with OS and (graph) node ID, w(.) and ap(.); selected nodes are shaded)

be updated each time a new node is added (by function Up-
dateRelScore()). Also note that this general LASP can be
significantly more expensive than the version of LASP pre-
sented in [17], since for the latter it suffices to simply count
fr and z of added nodes for the estimation of ap(.) and w(.)
scores.

This process (i.e., the selection of the path with the largest
ap(.), the addition to the size-l OS, and the required up-
dates) continues iteratively as long as the selected nodes are
less than l. If less than |pi| nodes are needed to complete
the size-l OS only the top nodes of the path are added to
the size-l OS (because only these nodes are connected to the
current size-l OS). Note that each time a path is selected, it
is guaranteed to be connected with the previously selected
paths (as the root of the selected path should be a child of
a previously selected path), therefore the selected paths will
form a valid size-l OS.

Take for instance the example of Figure 3, where nodes
at level one have similarity relevance and nodes at level two
have equality relevance. More precisely, consider sim(n3, n4)

= sim(n4, n5) = 0.6; whereas equality relevance is an-
notated on the example of figure (e.g. g(n7) = g(n9) =

g(n11) = v7). Node n11 (i.e., graph node v7) has ap(n11)=48.6,
because its path includes nodes n1, n5 and n11 with average
w(.) being (30 + 36 + 80)/3 = 48.6. Assuming that l=5,
at the first iteration, the algorithm selects and appends to
size-l OS the path comprising nodes n1, n5 and n11 with
the largest ap(.), i.e., 48.6. For the remaining nodes, w(.)
and ap(.) are updated to disregard the removed nodes and
also to consider the inclusion of newly added nodes (Figure
3(b)). For instance, the revised ap(n12) is (35+55)/2 = 45,
because its path now includes only n6 and n12. Also, nodes
n7 and n9 which correspond to the same graph node as n11
and node n4 which has similarity with node n5 which have
just been added to the size-l also need to be updated with
new w(.) and ap(.) scores. In general, if such nodes have
descendants, then their descendants should also be updated
because both their ap(.)s and w(.) are affected. The nex-

t path to be selected is that ending at n8, which adds two
more nodes to the size-l OS (Figure 3(c)). Note that ap(ni)
for each node ni corresponds to the path starting from ni to
the root of the corresponding unselected tree (from the un-
selected forest). For instance, during the second update, p8
comprises n2 and n8. Note also that the path’s root (e.g., n2)
is always the child of a node (in the OS) which already ex-
ists in the current size-l OS, e.g., n1 in this case. Thus, each
time we select a path to append to the size-l OS, we always
get a valid OS.

5.1 Analysis

The time complexity of the algorithm is O(nl log(n)), where
n is the size of the complete OS, as at each step the algorithm
may choose only one node which causes the update of O(n)
paths twice (firstly for the path size update and secondly for
the z updates). Each update costs log(n) time using the pri-
ority queue W . In terms of approximation quality, this al-
gorithm empirically produces very good results. Hereby, we
prove the approximation lower bound and cases where this
algorithm will return the optimal DSize-l and PSize-l OSs.

5.1.1 Lower Bound of LASP Approximation

Theorem 1 LASP is a d-approximation algorithm, where d
is the maximum depth of the GDS tree. Namely, the ratio of
the optimal Im(.) (denoted as OPT) over the Im(.) of the
solution by LASP (denoted also as LASP) is at most d.

Proof We analyze the worst case for LASP, by defining t-
wo rival sets of nodes Ni and Nj . As we will show in the
sequel, our definitions of Ni and Nj sets, correspond to the
worst case for LASP, which maximizes the Im(.) ratio be-
tween the optimal result (by including nodes from Ni) and
the approximate solution by LASP (by including nodes from
Nj).

Let Ni be a set of sibling nodes in the OS tree, which
are at depth di. Let Ni,p be the pth node in Ni. Moreover,

10 Georgios J. Fakas et al.

(i) |Ni| ≥ l − di, i.e., the amount of nodes in Ni is at least
l − di and (ii) sim(Ni,p, Ni,q) = 0 for all p, q, i.e., none
of Ni nodes have any similarity. Let us also assume that all
nodes inNi have the samew(Ni,p) score (denoted asw(Ni)

for simplicity). Let ap(.)[z] be the ap(.) of a node after z
paths additions (iterations).

In addition, letNj be also a set of nodes, where |Nj | ≥ l,
with a commonw(Nj) for all nodes and a common ap(Nj)[z]

for all nodes such that ap(Nj)[z] = w(nj) for a z ≥ 1. A-
gain, we assume that none of these nodes are similar. An
example ofNj set will be the analogy of theNi set, i.e. a set
of siblings at depth dj , where |Nj | ≥ l − dj , with a com-
mon w(Nj) for all nodes (Figure 4). Another example of a
valid Nj would be as follows: the Nj,1 is as defined in Fig-
ure 4 (i.e. at path n1, n3, n5, Nj,1) whereasNj,2, ..., Nj,l are
children nodes of the root n1 instead (since after the first
addition of Nj,1, the ap(Nj)[z] of Nj,2, ..., Nj,l becomes
w(nj)).

When, (1) ap(Nj)[z] > ap(Ni)[z] for any z, (2) w(Nj)

> ap(Ni)[z] for z ≥ 1 and (3) w(Ni) > w(Nj), the above
assumptions dictate that LASP would wrongly prefer to iter-
atively select nodes from Nj over nodes from Ni. As illus-
trated by Figure 4, there are two states of the first condition:
the initial state before any updates, i.e. z =0 and the state
after the first update, i.e. z ≥ 1. The latter is after the first s-
election of anNj node where its ancestors are removed from
the OS, leading to new aps, i.e. ap(Ni)[z] = w(Ni)/di (to
be explained shortly) and ap(Nj)[z] = w(Nj), which lead-
s to the second condition: w(Nj) > ap(Ni)[z]. The big-
ger the difference between w(Ni) and w(Nj) the bigger the
approximation loss of LASP over the optimal solution, be-
causeNj nodes will repeatedly be selected (due tow(Nj) >

ap(Ni)[z]) overNi nodes. To see this in an example, consid-
er the OS tree of Figure 4, where each node includes its w(.)
score and the corresponding ap(.)[z] score for z = 0 and 1
(where di = dj = 3). All nodes in group Ni (4 leftmost leaf
nodes) have w(.) scores 100, all nodes in the path from the
OS root to the parent ofNi have 0 w(.) scores, and all nodes
in group Nj (4 rightmost leaf nodes) have w(.) scores 33.4.
ap(Nj)[z] are always marginally larger than the respective
ap(Ni)[z] for all z. E.g. initially we have ap(Nj)[0] = 25.1

and ap(Ni)[0] = 25 and after the first addition of a path to
Nj,1 we have ap(Nj)[z] = 33.4 and ap(Ni)[z] = 33.3 for
z ≥1. In this example, LASP will iteratively select all Nj

nodes before it can pick any Ni node. On the other hand,
the optimal solution would include l − di Ni nodes. Thus,
if |Nj | ≥ l − dj , the approximation loss of LASP will be
(PPari + (l− di) ·w(Ni))− (PParj + (l− dj) ·w(Ni)),
where PPari and PParj are the sum of w(.) scores at the
nodes along the path from the OS root to the parent of Ni

and Nj respectively.
Sets Ni and Nj are rivals, since they compete in the s-

election and LASP wrongly chooses nodes from Nj over

nodes from Ni, resulting to an approximation loss. We say
that two such sets are not valid rivals if they do not meet
the conditions: (1) ap(Nj)[z] > ap(Ni)[z], (2) w(Nj) >

ap(Ni)[z] and (3) w(Ni) > w(Nj) for any z.
Thus, considering an OS contains two rival sets Ni and

Nj , we can estimate the approximation ratio of LASP com-
pared to OPT as follows:

OPT

LASP
=

PPari + (l − di) · w(Ni)

PParj + (l − dj) · w(Nj)
(6)

Lemma 1 For a fixed ap(Ni)[0] and l > di, the summation
of the scores of the nodes of a snippet that includes a subset
of Ni (i.e., Im(DSl(Ni)) = PPari + (l − di) · w(Ni)) is
maximized when PPari = 0.

Proof For a fixed ap(Ni)[0], obviouslyw(Ni) is maximized
when PPari = 0, as ap(Ni)[0] = (PPari + w(Ni))/di
and ap(Ni)[1] = w(Ni). Hence, Im(DSl(Ni)) = PPari+

(l − di) · w(Ni) is also maximized when PPari = 0 and
l > di, for a fixed ap(Ni)[0].

For instance, for ap(Ni)[0] = 25, di = 3 and l = 6, con-
sider the two Ni1 and Ni2 cases with PPari1: ap(Ni1) =

(25 + 25 + 25 + 25)/4 = 25 and PPari2: ap(Ni2) =

(0 + 0 + 0 + 100)/4 = 25. Thus, we have w(Ni) scores 25
and 100 and holistic scores Im(DSl(Ni1)) = 6 · 25 = 150

and Im(DSl(Ni2)) = 0+ 0+ 0+ 100+ 100+ 100 = 300

respectively (i.e. Im(DSl(Ni1)) < Im(DSl(Ni2))).
According to Lemma 1, for a fixed ap(Ni)[0], the to-

tal score Im(DSl(Ni)) due to nodes from Ni is maximized
when PPari = 0. In this case, ap(Ni)[z] = w(Ni)/(di+1)

for z = 0 and ap(Ni)[z] = w(Ni)/(di) for z ≥1. As men-
tioned above, for LASP to repeatedly select nodes from Nj ,
we should have ap(Nj)[z] > ap(Ni)[z], (i.e., ap(Nj)[z] >

w(Ni)/(di+1) for z = 0 and ap(Nj)[z] > w(Ni)/(di) for
z ≥ 1) andw(Nj) > ap(Ni)[z] (i.e.,w(Nj)> w(Ni)/(di+

1) for z =0 and w(Nj) > w(Ni)/di for z ≥1). Follow-
ing the same reasoning as Lemma 1, the contribution of the
Nj nodes in the score of the snippet computed by LASP
is minimized when w(Nj) is minimized (since PParj is
considered only once for all chosen Nj nodes). Thus, as to
minimize the holistic score of the LASP computed snippet
over the optimal score, we should minimize w(Nj) subjec-
t to w(Nj) > w(Ni)/di (i.e. w(Nj) > ap(Ni)[z] for any
z); thus, set w(Ni) ≈ w(Nj) · di. This corresponds to the
worst case for LASP. Now, in order to compute an upper
bound for the optimality ratio OPT/LASP shown in the frac-
tion above, we (i) set PPari = 0, as discussed in Lemma 1,
(ii) set PParj = 0, as this can only increase the ratio, (ii)
set dj = di, as l − dj ≥ l − di, i.e., dj ≤ di (in order to
select at least the same number of nodes from Nj as from
Ni) and setting dj = di minimizes the denominator. Thus,
we get:

Diverse and Proportional Size-l Object Summaries Using Pairwise Relevance 11

Ni,1

100
25

Ni,2

100
25

Ni,3

100
25

Ni,4

100
25

Nj,1

33.4
25.1

Nj,2

33.4
25.1

Nj,3

33.4
25.1

Nj,4

33.4
25.1

Ni Nj

n4

0
0

n5

33
22.2

n1

0
0

n2

0
0

n3

33.8
16.9

(a) The Initial OS

Ni,1

100
33.3

Ni,2

100
33.3

Ni,3

100
33.3

Ni,4

100
33.3

Nj,1

33.4

Nj,2

33.4
33.4

Nj,3

33.4
33.4

Nj,4

33.4
33.4

Ni Nj

n4

0
0

n5

33

n1

0

n2

0
0

n3

33.8

(b) First Update

Fig. 4 LASP: Example of Rival Ni and Nj Sets (annotated with node ID, w(.) and ap(.)[z]; selected nodes are shaded)

OPT

LASP
≤ 0 + (l − di) · w(Nj) · (di)

0 + (l − di) · w(Nj)
≈ di (7)

Obviously, the above ratio is maximized for di = d, i.e.,
Ni is at the maximum depth of the OS tree, thus d is the
worst case ratio between the quality of the snippet computed
by LASP compared to the optimal snippet. Note that in all
our case studies d ≤ 3.

Discussion on Rival Ni and Nj Sets
We now show that the case of rival sets Ni and Nj is the

worst case for LASP and that the relaxation of the assump-
tions about these rival sets can only be in favor of LASP,
thereby establishing the d optimality ratio.

When the rival sets have at least l − di (resp. l − dj)
siblings with common w(.) scores, this will result to the
worst case. In our proof we assume that the two rival sets
consist of at least l − di (resp. l − dj) siblings carrying the
same score. This is because only such sets can maximize the
maximal difference between two sets. Recall that Ni and
Nj represent the optimal and worst case respectively. For
instance, let assume that we have two Ni sets Ni1 and Ni2

consisting of l/2 nodes carrying equal score (i.e. not all Ni

nodes are siblings) corresponding to two respective PPari1
and PPari2. Then, the optimal solution will include the t-
wo respective sub-trees where the additional PPari2 path
will be an overhead we did not have in the original case.
Similarly, if we assume we have only one set Ni where it-
s nodes do not have the same score, then this may dictate
the selection of nodes from other sub-trees (similarly to the
case with two Ni sets) and we will end up again with an ad-
ditional PPari2 overhead. Analogously, we can show that
if the Nj nodes have different parents belonging to different
paths, such that ap(Nj)[z] < w(nj) for a z ≥ 1 this can
only improve the score of LASP’s solution and thus reduce
its approximation loss.

Rival sets should consist of diverse graph nodes (i.e.
impact of Diversity and Proportionality). Let us assume
the case where some nodes in the rival Ni or Nj sets corre-
spond to the same graph node, e.g. g(Nj,p) = g(Nj,q). The
inclusion of a node (from either set Ni or Nj) will still have

no impact on the proved lower bound. The reason is that the
addition of a node in the result can only result to the possi-
ble reduction of the w(.) scores of the unselected nodes and
the respective ap(.) scores. This reduction will disqualify
them against unselected unique nodes which will retain the
same ap(Ni) and w(Ni) scores (resp. ap(Nj) and w(Nj)

scores). Since, we can always construct a worst-case with
unique (l−di)-sized subsets ofNi andNj , the upper bound
of the approximation loss by LASP remains unchanged.

5.1.2 Optimality of LASP

Theorem 2 For equi relevance, if the nodes of an OS have
monotonically decreasing initialw(.) (w(ni|∅)) scores with
respect to their distance from the root (i.e., when the score
of each parent is not smaller than that of its children), then
LASP returns the optimal equi PSize-l OS or equi DSize-l
OS. We denote such an OS as monotonic OS(w).

Proof The optimal PSize-l or DSize-l should include the l
nodes with the largest possible w(.) score. Thus, we need to
prove that our algorithm can achieve this goal when mono-
tonicity on the w(.) scores hold. Firstly, we show that s-
ince monotonicity holds on w(.), the respective ap(.) scores
should also be monotonic. For instance, consider the path
n1, n2, . . . , nk with w(n1) > w(n2) > . . . > w(nk). Then,
ap(n1) > ap(n2) > > ap(nk) since for i < j we have
ap(ni) = w(n1)+...+w(ni)

i and ap(nj) =
w(n1)+...+w(nj)

j .
As a result, j · (w(n1) + . . .+ w(ni)) > i · (w(n1) + ...+

w(nj)) and finallyw(n1)+. . .+w(ni) > i · · ·w(nj). Thus,
we can also easily see that the w(.) score of a node is greater
than the ap(.) scores of all its descendants.

Note that Equation 4 is monotonic for both size-l types
to the repetitions of the same graph nodes; i.e., w(ni)[1] >
w(ni)[2]. Also for equi relevance, we maintain final mono-
tonicity of descendants after repetitions. E.g. consider sib-
ling nodes, n1 and n2, which correspond to the same graph
node (i.e. sim(n1, n2) = 1). Note that, since these two n-
odes are equal, they have common descendants (sub-trees).
E.g. descendants dn1,1, . . . , dn1,l and dn2,1, . . . , dn2,l re-
spectively where sim(dn1,i, dn2,i) = 1 for all i. Thus, if
we add n1 first, this will result to the reduction of w(n2)

12 Georgios J. Fakas et al.

score which can lead to two cases: In the first case, w(n2)
score is still larger than all its descendants and thus we still
have monotonicity on w(.) of the tree. On the second case,
the new score w(n2) is smaller than its descendant’s score;
e.g. w(n2) < w(dn2,i) which also implies that w(n2) <
w(dn1,i). In that case, a child node of n1 will be selected
since it has larger w(.) than n2; e.g. w(dn1,i). Then, the re-
spective descendant of n2 will be reduced (w(dn2,i)) which
should givew(n2) > w(dn2,i). This way, LASP will still in-
clude nodes with monotonicity on w(.). (Note that for sim
relevance, the property of descendants equality may not hold
and thus we no longer have monotonicity on w(.) and thus
LASP will not provide the optimal solution.)

Thus, this algorithm will always select the unselected n-
ode with the maximumw(.) score which is always a child of
an already selected node (i.e., a root of a tree of the unselect-
ed forest). Note that because of the monotonicity properties
mentioned above, only child nodes of already selected nodes
can have the largest score. Thus, progressing iteratively, the
l nodes will comprise the optimal PSize-l or DSize-l OSs
since this set of l nodes will give the maximum score.

Theorem 3 For equi relevance, if the nodes of an OS have
monotonically decreasing local importance (li(.)) to their
distance from the root (we denote such an OS as monotonic
OS(li)), then LASP returns the optimal equi DSize-l OS.

Proof The dv(.) equation (in contrast to pq(.)) is monotonic
to li(.). That is dv(ni)[z] ≤ li(ni) for any z. Thus, if an
OS is monotonic w.r.t. li(.), it will also be monotonic w.r.t.
w(.). Thus, based on Theorem 2, the algorithm will give the
optimal result.

Theorem 4 For equi relevance, and when we have a mono-
tonic OS(li) and all nodes have fr ≤ α + 1, then LASP
returns the optimal equi PSize-l OS.

Proof The pq(.) equation (in contrast to dv(.)) is not always
monotonic to li(.). It is only monotonic when fr ≤ α +

1 that gives a w(.) in [0, 1] and thus for these frequencies
pq[z] ≤ li. Thus, since the OS is monotonic w.r.t. li(.), it is
also monotonic w.r.t. pq(.). Thus, based on Theorem 2, the
algorithm will compute the optimal result also in this case.

6 2-LASPe

The runtime cost of LASP is dominated by the numerous
updates it applies; each time we add a node (or path) to the
snippet, we have to update up to twice each of the remaining
nodes. Thus, we introduce the 2-LASPe algorithm, an en-
hancement of LASP, that aims to reduce where possible such
updates. In a nutshell, 2-LASPe facilitates update reductions

at both UpdateRemPaths() and UpdateRelScores() phas-
es. The algorithm remains, like LASP, general and can ad-
dress both types of size-l and relevance. Algorithm 2 illus-
trates the differences of the two functions from the respec-
tive original functions of the LASP algorithm; whereas Fig-
ure 5 illustrates an example.

We propose to relax LASP by averaging w(.) pairs of
nodes (hence the prefix 2 to the name of the algorithm).
Namely, we take the average between the current node and
the parent instead of the whole path from the current node
to the root. As a consequence of this relaxation, updates will
be required only on the affected pairs rather on the whole
path to the root. Recall that the rationale of considering the
average from each node to the root in LASP was to exploit
nodes lower on the tree with larger scores than their ances-
tors. We observe that because of the proposed equations we
expect recurrent monotonicity in the OSs; i.e., recurrent cas-
es where thew(.) of the parent is bigger than that of its child.
Recall that, li(.) = af(.) · gi(.) where af(.) is monotonic
by definition and additionally both dv(.) and pq(.) equations
are monotonic to z (and additions of similar nodes), where
z is expected to be larger at the bottom levels of the OS tree.

Secondly, we introduce a similarity index on the OS tree,
denoted as simOS tree (see Figure 5) (instead of using the
HFr of LASP and 2-LASP [17]). This simOS tree is gen-
erated during the OS Generation() function (line 1). For
each pair of nodes that there exists a similarity, we add a sim-
ilarity edge carrying the similarity value, denoted as se(ni, nj).
Using the similarity edges, we can limit checks of newly
added nodes against only unselected nodes that we know
they have a similarity (thus the suffix e for edge to the name
of the algorithm). This is in contrast to LASP which checks
against all unselected nodes.

Let us first demonstrate the updates due to removals of
paths. At each addition, we update only pairs of scores, i.e.,
ap(.) between the affected node and its parent (instead of all
remaining paths towards the root). For example, after adding
path p11, in 2-LASPe we only need to update nodes at level
1, except the included n5 node (since node n1 is removed).
Let us now demonstrate the updates due to relevance be-
tween the selected path and unselected nodes. We can easily
determine from the simOS tree that p11 path’s nodes have
similarity with n4, n7 and n9 nodes and thus update them
according to their similarities. Since at each iteration, we
only need to check the similarity between a newly selected
node against all unselected nodes, we delete all similarity
edges of a newly selected node (line 4). Thus, after the first
update and removal of p11 path, similarity edges of n5 and
n11 nodes are deleted from the simOS tree .

Diverse and Proportional Size-l Object Summaries Using Pairwise Relevance 13

n1

30
30

n2

30
30

n3

35
32.5

n4

31
30.5

n5

36
33

n6

35
32.5

n7

80
55

n8

70
50

n9

80
57.5

n10

70
50.5

n11

80
58

n12

55
45

0.6
1 1

1
1

0.6

W

n13
42.5

n12
45

n10
50.5

n8
50

n7
55

n9
57.5

ni
w(.)

n11
58

...

...

n13

30
42.5

(a) The Initial OS (and simOS)

n1

30

n2

30
30

n3

35
35

n4

18
18

n5

36

n6

35
35

n7

60
45

n8

70
50

n9

60
47.5

n10

70
44

n11

80

n12

55
45

W

n13
42.5

n10
44

n7
45

n12
45

n9
47.5

n8
50

ni
w(.)

1

1

0.6

...

...

n3
35

n13

30
42.5

(b) First Update

n1

30

n2

30

n3

35
35

n4

18
18

n5

36

n6

35
35

n7

60
60

n8

70

n9

60
47.5

n10

52.5
35.3

n11

80

n12

55
45

W

n10
35.3

n13
42.5

n9
47.5

n12
45

n7
60

ni
w(.)

n3
35

n6
35

0.6
1

n13

30
42.5

n4
18

(c) Final Update

Fig. 5 2-LASPe Algorithm (Annotated with Similarity Edges of Unselected Nodes)

Algorithm 2 2-LASPe Algorithm
2-LASPe (l, nDS)

UpdateRemPaths (pi)
1: for each child nj of nodes in pi do
2: update ap(nj) on the OS tree
3: update ap(nj) on W

UpdateRelScores (pi)
1: for each node ni in pi do
2: for each similarity edge se(ni, nj) (of ni with an unselected

nj node) do
3: update w(nj) considering sim(nj , ni)
4: deleteEdge(se(ni, nj))
5: for each child nk of nj do
6: update ap(nk) on OS tree using w(nj)
7: update ap(nk) on W

6.1 Analysis

The worst case complexity of this algorithm remains the
same as that of LASP. However, in practice 2-LASPe is
much faster; for instance, for an exemplary OS of size 735
and l=50, LASP conducts 24,267 updates (in 145ms) where-
as 2-LASPe performs only 214 updates (in 14ms), resulting
to snippets of similar quality. We can easily show that al-
l optimality theorems that hold for LASP also hold for 2-
LASPe. Empirically, 2-LASPe provides snippets of almost
the same quality as LASP. Below, we prove the approxima-
tion lower bound of this algorithm.

We also investigated the 3-LASPe algorithm (i.e., aver-
aging the score of a node with that of its parent and grand-
parent). We found that 3-LASPe is slower than 2-LASPe
as it requires more operations, while again giving results
of similar effectiveness and quality as 2-LASPe and LASP.
Note that LASP is in fact a 4-LASPe algorithm for the D-
BLP and Google+ GDSs that we use in our experiments, as
both graphs have a maximum path length 4.

6.1.1 Lower Bound of 2-LASPe Approximation

Theorem 5 The 2-LASPe is a d · l−2
l−1−d -approximation al-

gorithm for l > d+1; where l and d are the required size of
snippets and the maximum depth ofGDS respectively. Name-
ly, the ratio of the optimal Im(.) (denoted as OPT) over the
lower bound of an Im(.) generated by the 2-LASPe (denot-
ed also as 2-LASPe) is only d · l−2

l−1−d times larger.

Proof We follow the same strategy as in LASP lower bound
calculation; namely using rival sets Ni (for the optimal re-
sult) and Nj (for the approximate result) (Figure 6).

Let Ni have the following common properties as in the
LASP proof, i.e. it consists of more than l sibling and di-
verse nodes and all nodes have a common score, w(Ni).
In contrast to the LASP algorithm, where the approxima-
tion error is maximized when Ni is at the lowest depth d
of the OS tree, for 2-LASPe the error is maximized when
Ni is at depth 2. Since, when di is minimised the number
of Ni nodes to be included is maximised and thus the op-
timal snippet score is also maximised. di = 2 is the min-
imum depth that facilitates ap(Ni)[z] = w(Ni) for all z
(even after the addition of the first path to an Ni or Nj n-
ode). Note that for a smaller di, e.g. for di = 1, we have
ap(Ni)[z] = ap(Ni)[0]/2 = w(Ni)/2 for z ≥1 which re-
duces the holistic score. Thus, we assume that Ni is at depth
2. As before, we use PPari (resp, PParj) to refer to the
sums of w(.) scores of all nodes from the OS root until the
parents of Ni (resp. Nj) set. The OPT score is maximised
when PPari = 0, since as discussed in LASP proof, for
a fixed ap(Ni)[0], the PPari = 0 maximizes the score of
the optimal snippet (Lemma 1). Thus, we get the maximum
score for the optimal snippet when PPari = 0, di = 2

and l ≥ 2. For instance for l = 5 and di = 2, we have
Im(DSl(Ni)) = 0 + 0 + 100 + 100 + 100 = 300.

Unlike in LASP algorithm, Nj will result to the worst
case when the Nj nodes are leaves at maximum depth d and
belong to separate paths with PParj = 0, instead of being
siblings (see the example of Figure 6). We assume that the

14 Georgios J. Fakas et al.

Ni,1

100
50

Ni,2

100
50

Ni,3

100
50

Ni,4

100
50

Ni

n2

0
0

Nj,1

100.1
50.1

Nj,2

100.1
50.1

Nj,3

100.1
50.1

Nj,4

100.1
50.1

Nj

n8

0
0

n1

0
0

n7

0
0

n9

0
0

n10

0
0

n4

0
0

n3

0
0

n5

0
0

n6

0
0

(a) The Initial OS

Ni,1

100
50

Ni,2

100
50

Ni,3

100
50

Ni,4

100
50

Ni

n2

0
0

Nj,1

100.1

Nj,2

100.1
50.1

Nj,3

100.1
50.1

Nj,4

100.1
50.1

Nj

n8

0
0

n1

0

n7

0

n9

0
0

n10

0
0

n4

0
0

n3

0

n5

0
0

n6

0
0

(b) First Update

Fig. 6 2-LASPe: Example of Rival Ni and Nj Sets (with di = 2)

w(.) scores of Nj nodes are all equal and marginally larger
than the w(.) scores of the Ni nodes (so that they are select-
ed over Ni nodes), i.e., we assume w(Ni) ≈ w(Nj). Anal-
ogously, when dj is maximised the number of Nj nodes to
be included is minimised and thus the approximate score is
also minimised. Similarly, we have ap(Nj)[z] > ap(Ni)[z]

for any z (even after the addition of the first path to an Nj

node since it does not now affect ap(.) scores). And also,
2-LASPe score is minimised when PParj = 0, since apart
from Nj nodes no other node contributes to the score.

We can easily see that the two sets are rivals and 2-
LASPe will wrongly select Nj nodes. As we can include
only b l−1d c nodes from the Nj set, we have:

OPT

2− LASPe
=

0 + (l − 2) · w(Ni)

0 + b l−1d c · w(Nj)

≈ l − 2

b l−1d c
≤ l − 2

l−1
d − 1

≈ d · l − 2

l − 1− d
.

(8)

Assuming that l > d+1, it makes the denominator in the
above formula positive. Recall that in most cases d ≤ 3 and
l > 10, therefore the assumption is valid in typical settings.

We can see that the discussion in LASP about the effect
of alternative rival sets and non-diverse graph nodes hold
here: rival sets Ni and Nj must consist of (1) at least l − 2

and l − d nodes respectively with common score w(.) and
(2) diverse nodes in order to maximize the approximation
loss of 2-LASPe. Also, the Ni set should consist of sibling
nodes.

7 Prelim-l Algorithms

The aforementioned algorithms operate on the complete OS.
Inspired by the prelim-l approach [15], we propose to pro-
duce a subset of the OS, denoted as DPrelim-l (or PPrelim-l)
OS, that prunes nodes from the OS which have low proba-
bility to be considered for the size-l OS; this saves a lot from
the OS generation time and the consequent size-l OS com-
putation time. Note that the prelim-l generation approach
of [15] considers the inclusion of the top-l nodes, i.e., the l

nodes with the highest li(.) in the OS (allowing their repe-
titions); for clarity, we refer to this algorithm as VPrelim-l.
The direct application of VPrelim-l is inappropriate here,
especially for the PPrelim-l OS, for the following three rea-
sons: (1) it allows the consideration in the top-l set of nodes
repeatedly which is against the diversification requirements
of PSize and DSize; (2) it fails to manage the non-monotonic
relationship between w(ni|.) and li(ni) of proportionality
(e.g., w(ni|∅) > li(ni)), which requires the challenging
estimation of similarity among nodes (and frequency per n-
ode) in the OS; and (3) it does not facilitate further pruning
of nodes that have similarity with already added nodes (or
are included multiple times).

Recall, however, that the two properties, proportionality
and diversity, are based on different equations and thus have
different properties in measuring the w(.) score. More pre-
cisely, the proportionality equation is more challenging as it
requires the apriori knowledge of similarity between nodes
(and frequency of nodes) in an OS in order to produce w(.)
scores. Thus, we first present more comprehensively a gen-
eralized version of the VPrelim-l approach, which addresses
proportionality. This algorithm, denoted as PPrelim-l, con-
siders the similarity/frequency and respective upper bounds
of nodes in an OS, in order to produce the so called PPrelim-
l OS. Then, we present more synoptically the DPrelim-l al-
gorithm with the required specializations and simplifications
in order to produce DPrelim-l OS.

7.1 PPrelim-l

The computation of the optimal PSize-l OS is very expen-
sive and, as a consequence, so is the computation of any
PPrelim-lOS that is guaranteed to include the optimal PSize-
l OS. Thus, we resort to a heuristic that aims to generate a
PPrelim-l OS that includes at least the l diverse graph n-
odes (i.e. nodes that their similarity is less than a threshold
d(θ)) with the largest w(ni|∅) scores (denoted as the topwl
set). The rationale is that while searching for topwl and by
appending the retrieved nodes to the PPrelim-l OS, we will
generate a good superset of the PSize-lOS. The constraint of
including only diverse nodes in topwl is necessary in order
to facilitate eventual diversity. We generate the PPrelim-lOS

Diverse and Proportional Size-l Object Summaries Using Pairwise Relevance 15

n1(a1)
0.60
0.33
0.20

n3(p3)
0.12
0.60
0.07

n4(p4)
0.10
0.33
0.03

n2(p2)
0.22
0.50
0.11

n5(pb1)
0.24
0.33
0.08

n7(pc1)
0.37
0.50
0.18

n9(cy1)
0.25
0.33
0.08

n6(pb2)
0.19
0.60
0.11

n10(ca1)
0.60
0.66
0.40

n15(cy2)
0.90
0.33
0.30

n17(ca3)
0.27
0.66
0.18

n16(ca1)
0.60
0.66
0.40

0.8

0.8

0.7

0.8

11

n8(pc2)
0.17
0.50
0.18

n11(ca2)
0.19
0.33
0.06

n13(pc4)
0.19
0.60
0.11

n12(pc3)
0.24
0.33
0.08

n14(pc5)
0.19
0.33
0.06

n19(pc5)
0.19
0.60
0.11

n21(cy3)
0.19
0.33
0.06

n18(pb3)
0.21
0.33
0.07

n20(pc6)
0.15
0.33
0.05

n22(ca3)
0.27
0.66
0.18

n24(c1)
0.13
0.50
0.07

n25(c2)
0.13
0.70
0.09

n26(c3)
0.15
0.33
0.05

0.80.8

Fig. 7 PPrelim-l Example for l = 5 (The complete OS, the PPrelim-l OS and the topwl set). Edges between nodes indicate their similarity. Nodes
are annotated with their li(.), pq(.) and w(.). Nodes with low transparency are pruned nodes (e.g. n8, n11 etc.), shaded nodes are the topwl set
(e.g. n1, n7 etc.) and the rest are the remaining tuples of the PPrelim-l OS (e.g. n2, n3 etc.)

Author (equi)

1.05, 7.38,

1, 1

(1), 1,1

mw(nDS, Ri)=0.20

mmw(nDS, Ri)=0.4

 Paper (sim)

8.82, 7.38,

1, c(Paper)

(3), 1, ()

mw(nDS, Ri)=0.11

mmw(nDS, Ri)=0.4

Conference (sim)

0.22, 0,

 c(Paper), ()

(), 3, 2

mw(nDS, Ri)=0.09

mmw(nDS, Ri)=0

Co-author (equi)

0.86, 0,

 c(Paper), ()

(), 3, 2

mw(nDS, Ri)=0.4

mmw(nDS, Ri)=0

mw(nDS)=0.4

mFr(nDS)=2

ConfYear (equi)

0.84, 0.22,

 c(Paper),c(Paper)
(3), 3, 2

mw(nDS, Ri)=0.3

mmw(nDS, Ri)=0.09

max(nDS)=0.9

PaperCites (sim)

7.38, 0,

 c(Paper), ()

(), 3, 2

mw(nDS, Ri)=0.18

mmw(nDS, Ri)=0

PaperCitedBy (sim)

7.38, 0,

 c(Paper), ()

(), 3, 2

mw(nDS, Ri)=0.11

mmw(nDS, Ri)=0

Fig. 8 The DBLP Author GDS; annotated with relation indexes: (rel-
evance type), max(Ri), mmax(Ri), UBFr(Ri), c(Ri), and nDS in-
dexes for the example of Figure 7: (c(Ri)), UBFr(Ri), mFr(nDS),
mw(nDS , Ri), etc.)

by extending the complete OS generation algorithm (Algo-
rithm 4, described in Section 2.1 and in [13]) to include three
pruning conditions. We traverse the GDS graph in a breadth
first order, according to Algorithm 3. For this purpose, cheap
pre-computed indexes, variables and data structures are em-
ployed. Hereby, we describe the algorithm by introducing
the (1) pre-computed indexes per relation and nDS, (2) vari-
ables and data structures and (3) the pruning conditions that
are used as to construct the algorithm. We try to describe
these terms, where possible, in the order they appear in the
algorithm. Figures 7 and 8 illustrate an example and Table 4
summarizes the notation we are using.

Table 4 Notations of the PPrelim-l Algorithm

Notation Definition
topwl set The l diverse graph nodes with the largestw scores
max(Ri) The maximum value of li(.) in Ri

mmax(Ri) The maximummax(Ri) in allRi’s descendentant
nodes or 0 if Ri has no descendants

UBFr(Ri) The upper bound of joins a node in Ri can have
with any nDS

mw(nDS ,Ri) The maximumw score ofRi nodes in the nDS OS
mmw(nDS ,Ri) The maximum mw(nDS , Ri) of all Ri’s descen-

dents or 0 if Ri has no descendants
mw(nDS) The maximum w score of nodes in the nDS OS
mFr(nDS) The maximum frequency of any node in the OS
R(ni) The relation ni belongs to
Ri(nj) The subset of Ri that joins with nj

c(Ri) The summation of nodes in Ri that can join nDS

UBw(nj , Ri) The upper bound of w in Ri(nj)
dUBw(nj , Ri) The upper bound of w from all Ri’s

descendentants that join with nj

The calculation of sim relevance requires more time (i.e.
quadratic; as we have to compare each node against all re-
maining nodes); in comparison to equi relevance which sim-
ply requires counting the frequency of graph nodes. Thus,
we address the two relevance types separately. For instance,
for sim relations we rely mainly our pruning on pre-computed
indexes (e.g. mw(nDS , Ri) to be described shortly); where-
as for equi relations we achieve further pruning by using on-
line retrieved information (e.g. cmFr(Ri) to be described
shortly).

Index per GDS Relation. Our PPrelim-l OS generation
technique uses three indexes (i.e. bounds) for each GDS re-
lation Ri, which are pre-computed. max(Ri) is the maxi-
mum value of li(.) in Ri. mmax(Ri) is the maximum val-
ue of max(Ri) of all Ri’s descendant nodes in GDS or 0
if Ri has no descendants (i.e., Ri is a GDS leaf node). Fi-
nally, UBFr(Ri) is the upper bound of joins a node in Ri

can have with any nDS. During pre-processing, we can de-
termine only for some cases these bounds; e.g. when up

16 Georgios J. Fakas et al.

Algorithm 3 The PPrelim-l OS Generation Algorithm
PPrelim-l (l, GDS)

1: t = 0; nj = nDS ; Wl = {};Q = {}
2: addNode(nj)
3: while !IsEmptyQueue(Q) do
4: Xnj = nj ; nj = deQueue(Q)
5: for each child relation Ri of R(nj) in GDS do
6: if (UBFr(Ri)>1) then
7: if (R(nj) 6= R(Xnj)) then . nj ∈ new relation
8: cmFr(Ri) = 0; i = c(RPari)
9: UBFr(nj , Ri)=min{−− i+cmFr(Ri), mFR(nDS)}

10: else
11: UBFr(nj , Ri) = 1
12: UBw(nj , Ri)= min{mw(nDS, Ri), f1(min{max(Ri),

max(nDS)}, min{(mFr(nDS), UBFr(Ri), UBFr(nj ,Ri)})}
13: dUBw(nj , Ri)= min{mmw(nDS, R1),

f2(min{mmax(Ri), max(nDS)}, min{(mFr(nDS),
dUBFr(Ri)})}

14: if !(t≥UBw(nj , Ri) && (t≥dUBw(nj , Ri))) then . Prun.
Cond.1

15: if (t≥dUBw(nj , Ri)) then . Prun. Cond.2
16: Ri(nj): get up to diverse l nodes with UBw(.) > t

where UBw(.) = f3(.)
17: else
18: get Ri(nj)
19: for each tuple ni of Ri(nj) do
20: if Ri is equi relation then
21: if (UBFr(Ri)> 1) then
22: UpdateHFr(ni)
23: UpdatecmFr(ni)
24: w(ni)[1]=f(li(ni), HFr[g(ni)].fr, 1) . Eq.4
25: if !((HFr[g(ni)].fr>1) && (w(ni)[2]<t) &&

(t ≥ dUBw(nj , Ri))) then . Prun. Cond.3
26: addNode(ni)
27: else if Ri is sim relation then
28: addOnHSi(ni)
29: for each nk in HSi do
30: if sim(ni, nk) then
31: Update (w(ni|∅), sim(ni, nk))
32: Update (w(nk|∅), sim(nk, ni))
33: cSim(ni) =true
34: w(ni)[2] = f (w(ni|∅), 2) . Eq.4
35: if !(cSim(ni) && (w(ni)[2] < t) && (t ≥

dUBw(nj , Ri))) then . Prun. Cond.3
36: addNode(ni)
37: return PPrelim-l

addNode (ni)
1: EnQueue (Q, ni)
2: add ni on PPrelim-l as child of nj or as root if ni is nDS

3: if (w(ni)[1] > t) then
4: if ni is not similar with any nodes in Wl then
5: EnQueue (Wl, ni)
6: if (|Wl| > l) then
7: DeQueue(Wl)
8: if (|Wl| < l) then
9: t = 0

10: else
11: t =minimum(Wl)

to 1 node from a relation (e.g. RPaper) can only join with
nDS. Otherwise, we assume infinite joins (e.g. the same co-
author may appear in an unbounded number of papers) and
set UBFr(Co-author)=∞. In order to facilitate the calcu-

lation of UBFr(Ri), we also introduce the c(Ri) variable
which is the summation of tuples from Ri that can join with
nDS. Thus, for N:1 relationships, c(Ri) = c(RPari), where
c(RDS) = 1 and RPari is the parent relation of Ri. Thus,
given c(RPari) for cases where UBFr(Co-author)=∞, we
estimate UBFr(Ri) as a function of c(RPari), i.e., UBFr(Ri)
= c(RPari) (denoted as∞ → c(Ri) in Figure 8); this as-
sociation will be useful later, during the online calculation of
tighter frequency bounds. Also note that since, we only need
c(RPari), we do not need to calculate c(Ri) for leaf nodes
(thus we denote their c(.) as () in Figure 8). Finally, we de-
fine and use index dUBFr(Ri), which is the upper bound of
joins of a node belonging to any descendant relation of Ri

that can have with any nDS.

Index per nDS node. During pre-processing we also main-
tain a number of indexes per nDS. mw(nDS, Ri) is the max-
imum w(ni|∅) of any node in Ri (note that this can be pro-
hibitively expensive to calculate on-line and can render the
pruning ineffective). For instance, in our running example
for Paper, we have mw(nDS, Ri) = 0.11. mmw(nDS, Ri)

is the maximum value of mw(nDS, Ri) of all Ri’s descen-
dants or 0 ifRi has no descendants (leaf node) (it can cheap-
ly be obtained from descendants’ mw(nDS, Ri). For exam-
ple, for the Paper relation, mmw(nDS, Ri) = 0.4 due to
mw(nDS, Ri) = 0.4 of the Co-Author relation. max(nDS)

is the maximum li(.) for all nodes in an OS (excluding nDS);
e.g., in Figure 8, max(nDS) = 0.9 is found in the ConfYear
relation. Note that this score overrides the maximum li(.)

score of all GDS relations (i.e., max(Ri) and mmax(Ri)).
mw(nDS) is the maximum w(ni|∅) of any node in the OS
(excluding nDS). Similarly to max(nDS), this score is con-
sidered as the upper bound of w(.) of all nodes of all re-
lations (e.g., in our running example, mw(nDS) = 0.4 is
found in relation Co-Author). mFr(nDS) is the maximum
frequency of any node in the OS that belongs to a relation
with UBFr(Ri)>1, where mFR(nDS) ≤ UBFr(Ri). For in-
stance, in our example, mFr(nDS) = 2 (since ca1 and ca3
appear twice); which is less than UBFr(Ri)=3, thus we can
use this as a tighter bound and thus override the UBFr(Ri)
bound.

Variables and data structures. Let Ri(nj) be the sub-
set of Ri that joins with nj and R(ni) be the relation where
to ni belongs. While processing nj (in R(nj)) against a re-
lation Ri with UBFr(Ri)> 1, we try to get a tighter bound
than UBFr(Ri) and mFr(nDS), denoted as UBFr(nj , Ri).
For this purpose we maintain the current maximum frequen-
cy, denoted as cmFr(Ri), a node was found so far from Ri

(i.e., from processing predecessor nodes, n1, ..., nj−1, of nj
against Ri, i.e., from their respective Ri(n1), ..., Ri(nj−1)

sets). For instance, consider we are processing node n4 (p4)
against the Co-Author relation, node ca1 is the most fre-
quent among all Ri(n1), ..., Ri(nj−1) sets that was found
so far since it was found twice; thus cmFr(Ri) = 2. Given

Diverse and Proportional Size-l Object Summaries Using Pairwise Relevance 17

cmFr(Ri), UBFr(nj , Ri) assumes that ca1 will appear in
all the remaining sets Ri(nj), ..., Ri(n|Ri|) after processing
nj . At the beginning, UBFr(nj , Ri) can be very loose, so
we compare it with mFr(nDS), to keep the minimum of the
two (lines 6-11).

Another bound we use is UBw(nj , Ri), which is the up-
per bound of the w(ni|∅) score that can be obtained from
Ri(nj) (line 12) (this value will be useful as to facilitate
Pruning Condition 1). It is defined as the minimum of f1(.)
and mw(nDS , Ri). The mw(nDS , Ri) index can be a very
effective pruning tool for both relevance types. f1(.) aims to
facilitate further pruning for equi relations thus is defined as
follows: for sim relations is set to∞ (as we don’t expect to
achieve a better bound than mw(nDS , Ri) that can be prac-
tically useful); whereas for equi relations is calculated using
Equation 4 for z = 1.

We denote as dUB(nj , Ri) the upper bound of w(ni|∅)

of all nodes from Ri’s descendant relations that can join
with nj or 0 if Ri has no descendants (and it will be useful
in facilitating Pruning Condition 2). Similarly to UBw(nj ,
Ri) calculation, dUBw(nj , Ri) can be defined as the mini-
mum of mmw(nDS , Ri) and f2(.). f2(.) is also defined by
Equation 4 for z = 1 (line 13). The mmw(nDS , Ri) in-
dex can be a very effective pruning tool for both relevance
types. Analogously, f2(.) aims to facilitate further pruning
for equi relations thus is defined as follows: for sim rela-
tions is set to ∞; whereas for equi relations is calculated
using the given parameters. Also note that, if Ri is a leaf n-
ode onGDS thenmmax(Ri)=0 and thus dUBw(ni,Ri)= 0.
UBw(nj , Ri) and dUBw(nj , Ri) bounds are specializations
of max(Ri) and mmax(Ri) that have been used in prelim-
l [15] in Pruning Conditions 1 and 2 respectively; however,
they are tighter bounds as they are specific for the given nDS.

Finally, we define the upper bound of w(ni|∅) score of
a node as UBw(ni) (which will be useful during Pruning
Condition 2; line 16). We calculate UBw(ni) using the re-
spective pq(ni|∅) produced by function f3 which is defined
as follows. For an Ri being an equi relation, pq(ni)[1] =
f3(li(ni), UBFr(nj , Ri)). Whereas, for an Ri being a sim
relation, pq(ni|∅) = f3(((|OS(Ri)| −UBFr(nj , Ri)) ·
msim(ni)+UBFr(nj , Ri)·1) · li(ni)); where |OS(Ri)| is
for UBFr(Ri)= 1 the amount of nodes of Ri in the OS
and for UBFr(Ri)>1 c(RPari). msim(ni) is the maximum
similarity of an ni node with any other node in the OS.
Namely, we assume that ni appears UBFr(nj , Ri) times (thus
UBFr(nj , Ri)·1 similarity) and has the maximum similarity
with all OS(Ri) nodes.

As we have already explained, we process sim and equi
relations separately. Thus, while processing equi relation-
s we maintain HFr, a hash table, which indexes for each
graph node the computed frequency in the OS so far (lines
22 and 23). And while processing sim relations, we main-
tainHSi hash table which indexes the similarity of each OS

node against all other OS nodes (i.e.
∑

nj∈OS sim(ni, nj)).
The update of HSi requires quadratic time as we need to
compare the similarity of each node against all previous n-
odes already onHSi (lines 29-32). We also use the cSim(ni)

flag variable to indicate whether ni is similar to other nodes
(line 33). We also denote as w(ni)[2], the w(ni) score given
another node with maximum similarity with ni has previ-
ously been added (lines 16 and 34); maximum similarity is
the equality similarity (thus the common use of the equi no-
tation).

We manage the retrieval of topwl set as follows. Let t be
the current smallest value of the topwl set (or 0 if topwl does
not contain l values yet). If the current tuple ni is greater
than t (line 3, function AddNode) and if ni is diverse to all
topwl nodes then is added to the PPrelim-l and the l-sized
priority queueWl which manages the topwl set (AddNode(),
lines 4-11). For instance, in Figure 7 the shaded nodes com-
prise the final topwl set for the given OS. Note also that, al-
though node n16 has score larger than t = 0.18, it is exclud-
ed as it is similar (equal) with node n10. Note that by con-
sidering the computed similarity/frequency of a node ni so
far, which is less than or equal to actual similarity/frequency
of ni, in fact we consider the lower bound of w(.).

Pruning Conditions. Each time we further process a n-
ode nj we employ three pruning conditions:

– Pruning Condition 1. If t is greater than or equal to the
w(ni|∅) of all tuples of the current relationRi and all it-
s descendants (i.e., t >UBw(nj , Ri) and t >dUBw(nj ,
Ri)), then there is no need to traverse the sub-tree start-
ing at Ri (line 14).

– Pruning Condition 2. We can limit the amount of tuples
returned by an Ri(nj) join (i.e., by avoiding comput-
ing the entire join of nj with Ri), if we can infer that
none of Ri’s descendants (if any) can be fruitful for the
topwl (i.e., when t >dUB(nj , Ri); line 15). Then, we
can extract only nodes that their upper bound w(ni|∅)

score, UBw(ni), is greater than t (line 16).
– Pruning Condition 3. When Pruning Condition 2 holds,

we can safely extract only part of the join. However, it
is still possible that we extracted nodes which are sim-
ilar to already added on the PPrelim-l nodes; and thus
their w(ni|nj1, . . . njx) will be actually used. Thus, we
introduce a new pruning condition that checks first if a
node ni is similar to an added node and then consider
adding it. For equi relations we can easily detect equal-
ity by accessing HFr. Whereas for sim relations this is
more demanding (requiring quadratic time; lines 29-33),
thus we use the cSim(ni) flag variable to detect similar-
ity. For both cases we use a safe bound i.e. w(ni)[2], and
we do not add the node unless it is greater than t (lines
25 and 35). Recall that these scores are actually lower
bounds as they are produced by comparison against on-
ly already retrieved nodes.

18 Georgios J. Fakas et al.

7.2 DPrelim-l OS

We simplify the previous algorithm by excluding all work
concerning calculating or upper bounding the frequencies of
nodes. For instance, indexes such as UBFr(Ri), mFr(nDS)

and calculations of UBFr(nj ,Ri) are not required. We adjust
accordingly our algorithm to include these alterations (e.g.,
exclude calculations of UBFr(nj , Ri); functions (lines 12
and 13) use Equations 2 and 4, etc.).

7.3 Analysis

In terms of cost, in the worst case, we need up to n extrac-
tions of nodes, where n is the amount of nodes in the com-
plete OS. In practice, however, there can be significant sav-
ings if the topwl tuples are found early and large sub-trees of
the complete OS are pruned. The PPrelim-l (resp. DPrelim-
l) OS does not essentially contain the optimal PSize-l (resp.
DSize-l) OS; in practice, however, we found that this is the
case in most problem instances. This means that the PSize-l
(resp. DSize-l) OS computation algorithms most likely give
the same results when applied either on the PPrelim-l (resp.
DPrelim-l) OS or the complete OS. Similarly to LASP and
2-LASPe algorithms, DPrelim-l and PPrelim-l algorithms
will produce optimal results (i.e., supersets of the respective
optimal size-l OSs) when we have a monotonic OS(li) and
monotonic OS(w) respectively. Note that PPrelim-l cannot
return an optimal solution when we have simply a monoton-
ic OS(li(.)) because the proportionality equation (in contrast
to to the diversification equation) is not monotonic to li. The
following theorem proves the lower approximation bound
and that if the li(.) scores of nodes are monotonic then the
computed DPrelim-l OS will be optimal.

7.3.1 Lower Bound of the PPrelim-l (resp. DPrelim-l)
Algorithms

Theorem 6 The PPrelim-l (resp. DPrelim-l) Algorithm is a
d · l−1

l−1−d -approximation algorithm for l > d + 1; where
l and d are the required size of snippets and the maximum
depth ofGDS respectively. Namely, the largest possible score
ratio of the optimal size-l OS (denoted as OPT) that is com-
puted from the complete OS over the optimal size-l OS that
is computed from the PPrelim-l (or DPrelim-l) OS (denoted
as prelim-l) is d · l−1

l−1−d .

Proof We follow an analogous strategy as in LASP and 2-
LASPe lower bound calculation; namely using rival sets Ni

(included in the optimal solution, but not in the PPrelim-
l OS) and Nj (affecting the approximate solution). Recall
that according to the PPrelim-l computation algorithms, the
PPrelim-l OS contains the l diverse nodes with the maxi-
mum w(.), denoted as topwl and all nodes along the paths

from the OS root to these nodes. The worst case happens
when none of the nodes of the topwl set is part of the op-
timal size-l OS at and at the same time this results to the
maximum loss. Thus, we define Ni and Nj as follows.

Ni is defined as a set of l sibling nodes with common
score at depth 1. This minimum depth (di = 1) allows the
inclusion of the maximum amount of Ni nodes. Based on
our analysis for 2-LASPe, this results in the maximum to-
tal score for the snippet. Nj consists of l nodes with com-
mon scores and these are the topwl nodes. Similarly to 2-
LASPe, Nj will result to the worst case when the Nj nodes
are leaves at maximum depth d and belong to separate paths
with PParj = 0, instead of being siblings (see the example
of Figure 9). We assume that the w(.) scores of Nj nodes
are all equal and marginally larger than the w(.) scores of
the Ni nodes (so that they are selected over Ni nodes in
the Prelim-l OS), i.e., we assume that w(Ni) ≈ w(Nj). As
we can include only b l−1d c nodes from the topwl set in the
Prelim-l OS, we can easily see that the score difference be-
tween OPT and prelim-l is maximized when (i) PPari = 0,
such that the root does not count both in the optimal snip-
pet and in the snippet computed from the Prelim-l OS, (ii)
PParj = 0, such that besides Nj nodes no other node con-
tributes to the score of the snippet from the Prelim-l OS and
thus prelim-l is minimized. Thus, we have:

OPT

prelim-l
=
0 + (l − 1) · w(Ni)

0 + b l−1d c · w(Nj)

≈ l − 1

b l−1d c
≤ l − 1

l−1
d − 1

= d · l − 1

l − 1− d

(9)

For instance consider the example of Figure 9, w(Ni) =

100, d = 3 and l = 5; we have OPT : 0 + 100 + 100 +

100 + 100 = 400 and prelim-l: two paths to Nj1 and to n3
respectively: 0 + 0 + 0 + 100.1 + 0 = 100.1.

We assume that l > d + 1, which makes the denomi-
nator in the above formula positive. If l ≤ d + 1, then the
Nj nodes should be chosen at depth l in order to include a
single node from Nj , as opposed to multiple Ni nodes. In
this case, the ratio will be l−1

1 , i.e., l − 1. We can easily
see that as discussed in LASP, rival sets must consist of (1)
diverse nodes (thus, PPrelim-l approximation also holds for
DPrelim-l) and (2) have a common score w(.).

Finally, we can bound the approximation ratios of LASP
and 2-LASPewhich apply on a PPrelim-l OS (or DPrelim-l)
OS, over the optimal solution in the complete OS, by mul-
tiplying the approximation ratios of LASP and 2-LASP re-
spectively stated in Theorems 1 and 5 by the ratio OPT/prelim-
l stated in Theorem 6. For example, a lower upper bound for
the approximation loss of LASP which applies on a PPrelim-
l OS compared to the optimal solution on the complete OS
is d · (d · (l−1)

l−1−d) = d2 · (l−1)
l−1−d .

Diverse and Proportional Size-l Object Summaries Using Pairwise Relevance 19

Nj,1

100.1

Nj,2

100.1

Nj,3

100.1

Nj,4

100.1

Ni

Nj

n7

0

n1

0

n6

0

n8

0

n9

0

Ni,1

100

Ni,2

100

Ni,3

100

Ni,4

100

n3

0

n2

0

n4

0

n5

0

Fig. 9 PPrelim-l: Example of Rival Ni and Nj Sets (with di = 1,
dj = d and Nj (topwl))

7.3.2 Optimality of PPrelim-l (resp. DPrelim-l) Algorithms

Theorem 7 For equi relevance, if the local importance s-
cores of nodes (li(.)) are monotonically non-increasing with
respect to the distance of the nodes to nDS, then DPrelim will
produce the optimal DPrelim-l OS (i.e., a superset of the op-
timal equi DSize-l OS).

Proof The DPrelim OS will include the (1) topwl set, i.e.,
l distinct nodes with the largest w(.)[1] scores where t is
the minimum (topwl) and (2) also all repetitions of topwl
nodes with w(.)[2] > t, denoted as repwl (since we only
prune nodes with w(.)[1] < t and w(.)[2] < t in pruning
condition 2 and 3 respectively). When we have a monotonic
OS, we can produce the optimal DSize-l OS by using the
LASP algorithm (Theorem 3) as follows. Initially, we will
include j distinct nodes with the largest li(.) scores (as they
also correspond to the largest ap(.) since w(.)[1] = li(.),
where j < l); where, a subset of these j nodes may have
fr > 1. All these nodes are members of the topwl by defi-
nition. Then, consider that if the next node to be added (ac-
cording to LASP) is a repetition of a node (i.e., we include it
considering its w(.)[2]); then, this node is member of repwl,
as by contradiction it should have w(.)[2] > t (as otherwise
another distinct node would have been selected). Thus, we
conclude that the optimal DSize-l will comprise nodes from
either topwl or repwl nodes which are included in DPrelim-
l by definition. (Note that for the same reason as in Theorem
2, this algorithm cannot provide an optimal solution for sim
relevance.)

Theorem 8 Similarly, based on Theorems 4 and 7 we can
easily see that the PPrelim can produce an optimal PPrelim-
lOS for equi relevance if we have a monotonic OS(li(.)) and
all nodes have fr(ni) < α+ 1.

8 Experimental Evaluation

We experimentally evaluate the proposed snippets and al-
gorithms. We emphasize on effectiveness comparisons be-
tween the two types of diversified snippets, the two types of

relevance and also against the non-diversified size-l snippets
[15]. Firstly, we thoroughly investigate the effectiveness and
usability of the produced snippets with the help of human e-
valuators. Then, we evaluate the quality of the size-l OSs
produced by the greedy heuristics. Finally, we comparative-
ly investigate the efficiency of the proposed algorithms.

We used two databases: DBLP and Google+. The two
databases have 3M and 14M tuples and occupy 513MB and
800MB on the disk, respectively. Google+ dataset was con-
structed by combining real data extracted from Google+
(i.e., users, activities and reactions which are publicly avail-
able). Followers and circles which were dealt as private by
Google+ (and thus were publicly unavailable) were gener-
ated from the synthetic SNAP dataset1. We calculate glob-
al importance by using global ObjectRank [3]. For the D-
BLP dataset we use the default setting used in [3] and [15],
i.e., the GA shown in Figure 17(a) and d = 0.85 and for
Google+ the GA presented in Figure 17(b) and also d =

0.85. We calculate af(.) as in [15]. We used an expert to
classify each relation as a sim or equi. For sim relations, we
compare the respective naming attributes only (where nam-
ing attributes are as defined in [13], e.g. names, paper’s title).
We used an expert to define these naming attributes (alterna-
tively, we can semi-automate this by using the attribute clus-
tering approach of [13]). More precisely, we used Jaccard
distance on the respective naming attributes (preliminary ex-
perimentation revealed that alternative techniques (such as
IR) have insignificant impact on the overall effectiveness re-
sults; thus we present results only using Jaccard). Recall that
an equi size-l considers only equi relevance whereas a sim
size-l considers both sim and equi relevance. For propor-
tionality, we use α =2. We used Java, MySQL, and a PC
with an AMD Phenom 9650 2.3GHz (Quad-Core) proces-
sor and 8GB of memory.

8.1 Effectiveness

We conducted an effectiveness evaluation with the help of
human evaluators. The evaluators were professors and re-
searchers from our Universities. None of our evaluators were
involved in this paper. Because of the complexity of the eval-
uation (we have to compare five different types of snippets),
we used evaluators with expertise in the topics we investi-
gate. In particular, since the DBLP database includes data
about real people, we asked the DSs themselves where pos-
sible (i.e., eleven authors or students of authors listed in D-
BLP) to participate in this evaluation. The rationale of this
evaluation is that the DSs themselves (even their students)
have the best knowledge of their work and can therefore
provide accurate summaries. For Google+, we presented 10
random OSs to nine evaluators. First, we familiarized them
with the concepts of OSs in general and the five types of

1 http://snap.stanford.edu/data/egonets-Gplus.html

20 Georgios J. Fakas et al.

10 15 30
60

70

80

90

100

l

E
ff

ec
tiv

en
es

s

equi DSize-l
sim DSize-l
equiPSize-l
sim PSize-l

(a) DBLP Author

10 15 30
60

70

80

90

100

l

E
ff

ec
tiv

en
es

s

equi DSize-l
sim DSize-l
equi PSize-l
sim PSize-l

(b) Google+ User

Fig. 10 Effectiveness (i.e., Recall=Precision)

size-l OSs. Specifically, we explained that a good size-l OS
should be a standalone and meaningful synopsis of the most
important information about the particular DS. In addition,
we explained that DSize-l OSs and PSize-l OSs consider di-
versity and proportionality respectively and the difference
between the two relevance types. However, we avoided to
discuss the advantages or disadvantages of these combina-
tions of types as to avoid any bias. In order to assist them
with their tasks, we provided them useful information per n-
ode, such as fr(.), li(.), dv(ni|∅), pq(ni|∅) and w(ni|∅).
For instance, we provided them, with the amount of times
the co-author C. Faloutsos appears in the M. Faloutsos OS,
his li(.) etc. We also provided summarized ranked tables
(similar to Tables 2 and 3 at the end of each OS) with the
top-10 most frequent and top-10 most important nodes and
their respective w(ni|.) scores.

8.1.1 Precision and Recall

We provided evaluators with OSs and asked them to DSize-l
and PSize-l them using both types of relevance (i.e. equality
and similarity) for l = 10, 15, 30. Figure 10 measures the
effectiveness of our approach as the average percentage of
the nodes that exist in both the evaluators’ size-l OS and the
computed size-l OS by our methods. This measure corre-
sponds to recall and precision at the same time, as both the
OSs compared have a common size. Figures 10(a) and 10(b)
plot the recall of the DSize-l and PSize-l for DBLP Author
and Google+ User GDS’s. On average, the effectiveness of
DSize-l and PSize-l OSs ranges from 67% to 82% for all
cases, which is very encouraging. The results of Figure 10
are obtained using the LASP algorithm (as the BF-l algorith-
m was prohibitively expensive). We omit results obtained by
our other approximate algorithms as they do not vary from
these results. For instance, the 2-LASPe algorithm gave al-
most identical results as LASP and the use of DPrelim-l OS-
s or PPrelim-l OSs had no impact on effectiveness. As we
show later, they have very minor impact on the quality of
the computed snippets.

8.1.2 Usability Test

We conducted a comparative study of the usability of the
five types that verifies users’ preference for sim over equi
relevance and DSize-l and PSize-l OSs over size-l OSs. In
summary, the evaluation reveals the usability superiority of
sim PSize-l OSs over all other types. Usability is the ease of
use and learnability of a human-made object; namely, how
efficient it is to use (for instance, whether it takes less time
to accomplish a particular task), how easy it is to learn and
whether it is more satisfying to use2. More precisely, for a
given OS, we measured the ease of use of all types through
a usability test. We presented to users the various versions
of size-l OSs in a random order to avoid any bias and we
also gave them six tasks to complete for each OS. Then, we
asked them to give a score in a scale of 1 to 10 and also
to justify in their answers, where possible, the usability of
the five approaches when completing these tasks. Namely, to
score them considering (1) the ease of accomplishing each
task, (2) how easy and (3) satisfying are to learn and use.

More precisely, the first task (T1) was to score the gener-
al use of all types; namely which one they prefer as a repre-
sentative and informative snippet. For this purpose, we em-
phasized again that a snippet should be short, stand-alone
and a meaningful synopsis of the most important and repre-
sentative information about the particular DS; we avoided to
discuss any advantages/disadvantages. The rest of the tasks
were to extract information about the DSs. For the DBLP
Author, Task 2 (T2) was to determine the most frequen-
t co-authors of a given author (e.g., whether C. Faloutsos
and S. Krishnamurthy are among the most frequent collab-
orators of M. Faloutsos). Task 3 (T3) was to determine the
most important co-authors (e.g., whether C. Faloutsos and
S. Madden are among the most important co-authors of M.
Faloutsos). Task 4 (T4) was to determine the most frequent
journal/conference the DS has published. Task 5 (T5) was
to determine the most frequent topic of an author’s papers
(i.e. repeated set of keywords appearing in author’s paper-
s). Finally, Task 6 (T6) was to determine the most frequent
topic appearing in papers citing an author’s papers. Anal-
ogous tasks were used for the Google+ User. Namely, T2
was to determine a couple of the most frequent users in the
DS’s circles; T3 was to determine a couple of the most im-
portant users in DS’s circles; T4 was to determine the most
frequent user making comments on DS’s activities; T5 was
to determine the most frequent topic of the DS’s comments
and T6 was to determine the most frequent topics of DS’s
activities. Note that for comparison purposes, we maintain
an analogy between the respective tasks of the two databas-
es, e.g. T2 of both databases aim to determine the most fre-
quent co-authors/users associated with the DS, whereas T3
to determine the most important co-authors/users, etc.

2 www.wikipedia.org/wiki/Usability

Diverse and Proportional Size-l Object Summaries Using Pairwise Relevance 21

T1 T2 T3 T4 T5 T6

6

8

10

Evaluation Testing Task

U
sa

bi
lit

y

Size-l euqi DSize-l sim DSize-l
equi PSize-l sim PSize-l

(a) l = 15

T1 T2 T3 T4 T5 T6

6

8

10

Evaluation Testing Task

Size-l euqi DSize-l sim DSize-l
equi PSize-l sim PSize-l

(b) l = 15

T1 T2 T3 T4 T5 T6

6

8

10

Evaluation Testing Task

l = 15 l = 30

(c) Average per l

Fig. 11 Usability on DBLP Author Using equi and sim Relevance

T1 T2 T3 T4 T5 T6

6

8

10

Evaluation Testing Task

U
sa

bi
lit

y

Size-l euqi DSize-l sim DSize-l
equi PSize-l sim PSize-l

(a) l = 15

T1 T2 T3 T4 T5 T6

6

8

10

Evaluation Testing Task

Size-l euqi DSize-l sim DSize-l
equi PSize-l sim PSize-l

(b) l = 15

T1 T2 T3 T4 T5 T6

6

8

10

Evaluation Testing Task

l = 15 l = 30

(c) Average per l

Fig. 12 Usability on Google+ User Using equi and sim Relevance

Figures 11 and 12 average the evaluators’ usability s-
cores of all methods per GDS, per task and per l. More pre-
cisely, respective subfigures (a) represent scores for l = 15,
(b) for l = 30, and (c) the average of all tasks per l. The re-
sults show that evaluators preferred firstly sim PSize-l OS-
s, secondly equi PSize-l OSs, then sim and equi DSize-l
OSs and lastly size-l OSs for both datasets. They also pre-
ferred size l = 30 over l = 15. For instance for the Author
GDS, the average scores of all tasks and both values of l, for
sim PSize-l OSs is 7.5, for equi PSize-l OSs is 7.1, for sim
DSize-l OSs is 6.7, for equi DSize-l OSs is 6.6 and finally
for size-l OSs is 6.0. Evaluators expressed very similar pref-
erence for equi and sim DSize-l OSs because the snippets
of these two types are almost identical (i.e. their constituent
nodes are almost the same). The reason is that for the spe-
cific DBLP Author GDS, both relevance types equi and sim
result to the same DSize-l OSs; as the sim relevance will
only impact towards the avoidance of including papers or
conferences with frequent textual similarity to already added
nodes (which was not very often in these cases).

The evaluators also provided justifications for their s-
cores. We summarize them for each type and l and we also
analyze their reflection on the given tasks. The evaluators
explained that in general they prefer the concept of PSize-l
OS as it also considers frequent nodes and topics; this is a
property other types do not consider. This is evidenced by
the superiority of the usability of PSize-l for tasks T2, T4,
T5 and T6, since these tasks consider the frequency of n-

odes and topics. In addition, the evaluators explained that
they found useful the results considering the frequency of
keywords (i.e. frequent topics); this is evidenced by high s-
cores of sim PSize-l for tasks T5 and T6 which address the
frequency of topics in the results. However, as they point-
ed out, although the inclusion of repeated frequent items or
topics is informative, it comes at the cost of excluding other
important nodes. They found that a DSize-l OS is very use-
ful in covering the most important elements of an OS (i.e.
evidenced by high scores of DSize-l for Task 3); however,
they pointed out that rare but important elements may ap-
pear which again can be misleading to some extent. They
found the non-diversified size-l summaries [15] more mis-
leading as very important nodes are too dominant in them.
The evaluators stated that l values of around 30 are the most
appropriate, since the corresponding snippets include suffi-
cient descriptive information about the corresponding OSs,
giving a better representation of frequent and important in-
formation, and without being overwhelmingly large. This is
also evidenced by Figures 11 (c) and 12 (c).

8.2 Quality of Snippets

We now compare the holistic importance Im(.) scores of
DSize-l and PSize-l OSs produced by the greedy methods.
More precisely, the results of Figure 13 represent the aver-
age holistic scores for 10 random OSs per GDS. The average
size (i.e., the amount of nodes) of OSs is also indicated (de-
noted as (|OS|)). The results show that in most cases the

22 Georgios J. Fakas et al.

5 10 15 20 25 30 35 40 45 50
0

10

20

30

l

I
m
(D
S
L
)

LASP (Complete OS)
LASP (DPrelim-l OS)
2-LASPe (Complete OS)
2-LASPe (DPrelim-l OS)

(a) equi DSize-l Author (|OS|=707)

5 10 15 20 25 30 35 40 45 50
0

10

20

30

l

I
m
(D
S
L
)

LASP (Complete OS)
LASP (DPrelim-l OS)
2-LASPe (Complete OS)
2-LASPe (DPrelim-l OS)

(b) sim DSize-l Author (|OS|=707)

5 10 15 20 25 30 35 40 45 50
0

10

20

30

l

I
m
(P
S
L
)

LASP (Complete OS)
LASP (PPrelim-l OS)
2-LASPe (Complete OS)
2-LASPe (PPrelim-l OS)

(c) equi PSize-l Author (|OS|=707)

5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

l

I
m
(P
S
L
)

LASP (Complete OS)
LASP (PPrelim-l OS)
2-LASPe (Complete OS)
2-LASPe (PPrelim-l OS)

(d) sim PSize-l Author (|OS|=707)

5 10 15 20 25 30 35 40 45 50
0

100

200

300

400

l

I
m
(D
S
L
)

LASP (Complete OS)
LASP (DPrelim-l OS)
2-LASPe (Complete OS)
2-LASPe (DPrelim-l OS)

(e) equi DSize-l User (|OS|=132K)

5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

l

I
m
(P
S
L
)

LASP (Complete OS)
LASP (PPrelim-l OS)
2-LASPe (Complete OS)
2-LASPe (PPrelim-l OS)

(f) equi PSize-l User (|OS|=132K)

Fig. 13 Quality on DBLP and Google+

results of LASP and 2-LASPe are of very similar (or even
identical) quality, i.e., they have similar (or equal) holis-
tic Im(.) scores. The evaluation also reveals that using the
DPrelim-l and PPrelim-l OSs results to very minor (even to
zero) quality loss compared to using the complete respective
OSs; e.g., by using LASP on either the complete OS or on
the corresponding DPrelim-l OS, we obtain a DSize-l OS of
the same Im(DSl). More precisely, for the case of the D-
BLP Author equi PSize-l OSs, we get the maximum score
loss by our algorithms; i.e. 2-LASPe Complete and LASP
PPrelim-l algorithms return scores 20 and 15.5 respective-
ly for l = 50. In the Google+ User case, respective quality
remains the same for all (combinations of) algorithms (thus
we omit sim DSize-l and sim PSize-l results). We did not
compare with the optimal results, as the BF-l algorithm is
too expensive.

5 10 15 20 25 30 35 40 45 50
0

50

100

150

200

l

Ti
m

e
(m

s)

LASP (Complete OS)
LASP (DPrelim-l OS)
2-LASPe (Complete OS)
2-LASPe (DPrelim-l OS)

(a) equi DSize-l Author (|OS|=707)

5 10 15 20 25 30 35 40 45 50

101

103

105

107

l

Ti
m

e
(m

s)

LASP (Complete OS)
LASP (DPrelim-l OS)
2-LASPe (Complete OS)
2-LASPe (DPrelim-l OS)

(b) sim DSize-l Author (|OS|=707)

5 10 15 20 25 30 35 40 45 50
0

100

200

300

l

Ti
m

e
(m

s)

LASP (Complete OS)
LASP (PPrelim-l OS)
2-LASPe (Complete OS)
2-LASPe (PPrelim-l OS)

(c) equi PSize-l Author (|OS|=707)

5 10 15 20 25 30 35 40 45 50

101

103

105

107

l

Ti
m

e
(m

s)

LASP (Complete OS)
LASP (PPrelim-l OS)
2-LASPe (Complete OS)
2-LASPe (PPrelim-l OS)

(d) sim PSize-l Author (|OS|=707)

5 10 15 20 25 30 35 40 45 50

103

104

105

106

l

Ti
m

e
(m

s)

LASP (Complete OS)
LASP (DPrelim-l OS)
2-LASPe (Complete OS)
2-LASPe (DPrelim-l OS)

(e) equi DSize-l User (|OS|=132K)

5 10 15 20 25 30 35 40 45 50

103

104

105

106

107

l

Ti
m

e
(m

s)

LASP (Complete OS)
LASP (DPrelim-l OS)
2-LASPe (Complete OS)
2-LASPe (DPrelim-l OS)

(f) sim DSize-l User (|OS|=132K)

5 10 15 20 25 30 35 40 45 50

103

104

105

106

l

Ti
m

e
(m

s)

LASP (Complete OS)
LASP (PPrelim-l OS)
2-LASPe (Complete OS)
2-LASPe (PPrelim-l OS)

(g) equi PSize-l User (|OS|=132K)

5 10 15 20 25 30 35 40 45 50

103

104

105

106

107

l

Ti
m

e
(m

s)

LASP (Complete OS)
LASP (PPrelim-l OS)
2-LASPe (Complete OS)
2-LASPe (PPrelim-l OS)

(h) sim PSize-l User (|OS|=132K)

Fig. 14 Efficiency on DBLP and Google+

8.3 Efficiency

We compare the run-time performance of our greedy algo-
rithms in Figures 14, 15 and 16. We used the same OSs as in
Section 8.2 (i.e., the same 10 OSs per GDS). Figures 14 and
15 show the costs of our algorithms for computing DSize-l
(resp. PSize-l) for both types of relevance (equi and sim),
excluding the time required to generate and pre-process OSs
(i.e., the generation of w(.), ap(.) scores, etc.), where each

Diverse and Proportional Size-l Object Summaries Using Pairwise Relevance 23

375(87) 475(101)606(118)922(135)1309(157)
0

20

40

60

80

100

|OS|(|PPrelim|)

Ti
m

e
(m

s)

LASP (Complete OS)
LASP (PPrelim-l OS)
2-LASPe (Complete OS)
2-LASPe (PPrelim-l OS)

(a) equi PSize-l Author (Size-l =10)

375(94) 475(112)606(132)922(155)1309(184)

101

103

105

107

|OS|(|PPrelim|)

Ti
m

e
(m

s)

LASP (Complete OS)
LASP (PPrelim-l OS)
2-LASPe (Complete OS)
2-LASPe (PPrelim-l OS)

(b) sim PSize-l Author (Size-l =10)

Fig. 15 Efficiency (verying OS size)

10(119) 50(272)
150

250

350

450

550

l(|PPrelim|)

Ti
m

e
(m

s)

Complete LASP
PPrelim 2-LASPe

(a) equi PSize-l Author (|OS|=707)

10(135) 50(307)

103

104

l(|PPrelim|)

Ti
m

e
(m

s)

Complete LASP
PPrelim 2-LASPe

(b) sim PSize-l Author (|OS|=707)

Fig. 16 Efficiency (cost breakdown)

algorithm operates on. More precisely, Figures 14 show the
costs of our algorithms for computing size-ls from OSs of
the two GDSs with various sizes and using a range of l val-
ues. The average sizes of the OSs on which the algorithms
operate are indicated in brackets for eachGDS. Figures 15(a)
and (b) show the scalability for Author PSize-l of differen-
t sizes, after fixing l=10 (analogous results were obtained
from User GDSand DSize-l and thus we omit them). Each
value on the x-axis represents an OS size (and the corre-
sponding PPrelim-10 size). Comparing these numbers, we
can get an indication of preliminary OSs savings; e.g., the
OS with size 1,309 has a PPrelim-10 size 157 (i.e. 11% of
the size of the complete OS). From Figures 14 and 15, we
can see that the use of 2-LASPe on a preliminary OS is the
fastest approach. For instance, equi DPrelim-l 2-LASPe for
l = 50 requires only 18.3ms. The results also verify that the
use of sim relevance is more expensive than the use of equi
relevance as it dictates the comparison of each node against
all other OS nodes. For instance, sim DPrelim-l 2-LASPe
for l = 50 requires up to 33.9ms (which remains a practical
time).

Finally, Figures 16 (a) and (b) break down the cost to
OS generation and pre-processing time (bottom of the bar)
and size-l computation (top of the bar) for each method for
PSize-l. The figures also show (on the x-axis) the average
sizes of the complete OSs and the PPrelim-l OSs for l = 10

and l = 50, respectively. For instance, the average size of
the complete OS is 707; whereas the average sizes of the

corresponding equi PPrelim-10 and PPrelim-50 OSs are 119
and 272. Evidently, the preliminary OS generation is always
faster than that of the complete OS; for instance the PPrelim-
5 OS’s size is approximately 10% of the size of the complete
OS and its generation can be done up to 2.5 times faster. Al-
so, 2-LASPe is always faster at both phases (i.e. during OS
generation and pre-processing and during size-l calculation)
as at both phases more operations are required by LASP (re-
call that during pre-processing, the ap(.) of a node in LASP
corresponds is the path to the root, whereas in 2-LASPe is
the node with its parent only). The comparison of Figures
16 (a) and (b) verifies again that sim relevance is more de-
manding than equi relevance. In general as expected, the OS
size, l and sim relevance negatively affect the cost.

The cost of the BF-l algorithm becomes unbearable for
moderate OSs sizes and values of l. For instance, although
using BF-l we could get results for l=5 (e.g., 16ms for the
Author RDS), we had to terminate the algorithm for l ≥10
as it exceeded 30min of running. In summary, the BF-l al-
gorithm is not practical at all whereas our greedy algorithms
are very fast and as we showed in Section 8.2, their results
are snippets of high quality. In addition, the use of prelimi-
nary OSs and 2-LASPe is constantly a better choice over the
complete OSs and LASP respectively since they are always
faster with a negligible quality loss.

9 Related Work

We present and compare related work in relational keyword
search, ranking, and summarization. To the best of our knowl-
edge, no previous work has focused on the computation of
diverse and proportional size-l OSs.

9.1 Keyword Search and Ranking

Relational keyword search facilitates the discovery of join-
ing tuples (i.e., Minimal Total Join Networks of Tuples (MT-
JNTs) [20]) that collectively contain all query keywords and
are associated through their keys; hence the concept of can-
didate networks is introduced (e.g., DISCOVER [20,19]).
Relational keyword search paradigms differ from OSs se-
mantically, since they search for connections of keywords.
Précis Queries [23,25] resemble size-l OSs as they append
additional information to the nodes containing the keyword-
s, by considering neighboring relations. However, a précis
query result is a logical subset of the original database (see
[13] for a detailed comparison to size-l OSs). Other works in
this context also investigate indexing and ranking techniques
to facilitate efficiency [24]. Recent related work investigated
keyword search on tree structured data, e.g. [9].

Related ranking paradigms consider Importance, which
weights the authority flow through relationships (e.g., Ob-
jectRank [3], ValueRank [14], PageRank [4], etc.). In this
work we use nodes’ importance to model gi(ni) and more

24 Georgios J. Fakas et al.

precisely global ObjectRank. Our algorithms are orthogonal
to how importance of nodes is defined (alternative methods
could also be investigated).

Document Summarization. Web snippets [27,21] are
examples of document summaries that accompany search
results of web keyword search in order to facilitate their
quick preview. They can be either static (e.g., the first words
of the document or metadata) or query-biased (e.g., contain-
ing the query keywords). However, the direct application of
such techniques on OSs and databases in general is inef-
fective as they disregard the relational associations (e.g., for
q=“Faloutsos”, papers authored by Faloutsos will be disre-
garded as they do not include the “Faloutsos” keyword).

9.2 Diversity

Diversification of query results has attracted a lot of atten-
tion recently as a method for improving the quality of re-
sults by balancing similarity (relevance) to a query q and
dissimilarity among results. Typically, given a query q and
a desired number of results k, firstly we get a ranked list of
results S in descending order of their similarity to q, denot-
ed as sim(si, q); namely, S = 〈s1, ..., sn〉 where n ≥ k.
Then, the objective of diversification is to find a subset of
S, R ⊆ S of size k, such that the elements in R are sim-
ilar to q (w.r.t sim(q, si)) and at the same time dissimilar
to each other (w.r.t. dis(si, sj)). The definition of sim and
dis scores is orthogonal to the diversification problem per se
and a variety of IR-based or probabilistic approaches have
been used to define such functions (e.g., PageRank-based
similarity). In most cases, the same function is used to esti-
mate both scores (i.e., dis(si, sj) = 1 − sim(si, sj)). One
of the earliest and most influential diversification functions
is Maximal Marginal Relevance (MMR) [5], which trades
off between the novelty (a measure of diversity) and rele-
vance of search results; a parameter is used to control this
trade off. A general framework for result diversification ap-
pears in [18] with eight axioms. In [18,28], max-sum, max-
min and mono-objective objective functions and algorithms
are proposed. Our proposed diversity definition is inspired
by this mono-objective approach, where for each documen-
t, a single score trades off the relevance to the query and
the dissimilarity from other documents. In [1,2], probabilis-
tic interpretations of sim and dis functions and objective
functions are proposed. In [10,11], an intuitive definition of
diversity, called DisC diversity, is proposed where the com-
puted diverse subset R covers all elements of S in the sense
that for each element in S there should be a similar elemen-
t in R and at the same time the elements in R should be
dissimilar to each other (i.e., diverse). In [22], LogRank is
proposed, a principled authority-flow based algorithm that
computes a representative summary of the user’s activities

by selecting activities that are simultaneously important, di-
verse and time-dispersed.

Proportionality. [29,8,7] investigate proportional diver-
sification. More precisely, in [8] an election-based method is
proposed to address the problem of diversifying searched re-
sults proportionally (our work is inspired by this approach).
However, this method disregards the similarity (or impor-
tance) of the computed set R to the query q and thus may
result in including irrelevant objects intoR. In [29], this lim-
itation is addressed by considering relevance in the objective
function.

Differences. Our problem has a significant difference
from the existing related works that renders their straight-
forward application inappropriate. Related work considers
diversity and proportionality of a set of mutually indepen-
dent results (i.e., S and R sets). Whereas, we aim at finding
a diverse/proportional l-sized connected subtree of the OS,
which is required to include the root nDS .

10 Conclusion and Future Work

In this paper, we introduced and investigated the effective-
ness and efficiency of two novel types of size-l OSs, name-
ly DSize-l OSs and PSize-l OSs. For this purpose, we em-
ployed two types of nodes pairwise relevance, i.e. similar-
ity and equality. We proposed a brute force algorithm, t-
wo efficient greedy heuristics and a preprocessing strategy
that restricts processing on only a subset of the OS. We
also provide extensive theoretical analysis of these greedy
algorithms. Finally, we conducted a systematic experimen-
tal evaluation on the DBLP and Google+ datasets that ver-
ifies the effectiveness, approximation quality and efficien-
cy of our techniques. The evaluation verified that the two
novel snippets are preferred by human evaluators over non-
diversified size-l OSs [15]. The evaluation also verified pref-
erence for results produced using sim relevance over results
produced by using equi relevance that was proposed in [17].

A direction of future work concerns the investigation
of inter-diversity and inter-proportionality among a set of
query results. For instance, for q we get three OSs, one per
Faloutsos brother; we can diversify M. Faloutsos DSize-l by
avoiding information included in the C. Faloutsos DSize-
l. Another challenging problem is the combined size-l and
top-k ranking of OSs.

Acknowledgements

Georgios Fakas was supported by GRF grant 617412 from
Hong Kong RGC. Zhi Cai was supported by Research Foun-
dation of Beijing Municipal Education Commission grant
KM201610005022 and Natural Science Foundation of Chi-
na grant 91546111.

Diverse and Proportional Size-l Object Summaries Using Pairwise Relevance 25

References

1. Agrawal, R., Gollapudi, S., Halverson, A., Ieong, S.: Diversifying
search results. In: WSDM, pp. 5–14 (2009)

2. Albert, A., Koudas, N.: Efficient diversity-aware search. In: SIG-
MOD, pp. 781–792 (2011)

3. Balmin, A., Hristidis, V., Papakonstantinou, Y.: Objectrank:
Authority-based keyword search in databases. In: VLDB, pp. 564–
575 (2004)

4. Brin, S., Page, L.: The anatomy of a large-scale hypertextual web
search engine. In: WWW, pp. 107–117 (1998)

5. Carbonell, J., Goldstein, J.: The use of mmr, diversity-based r-
eranking for reordering documents and producing summaries. In:
SIGIR, pp. 335–336 (1998)

6. Cheng, G., Tran, T., Qu, Y.: Relin: Relatedness and
informativeness-based centrality for entity summarization.
In: The Semantic Web-ISWC, pp. 114–129 (2011)

7. Cheng, S., Arvanitis, A., Chrobak, M., Hristidis, V.: Multi-query
diversification in microblogging posts. In: EDBT, pp. 133–144
(2014)

8. Dang, V., Croft, W.B.: Diversity by proportionality: An election-
based approach to search result diversification. In: SIGIR, pp.
65–74 (2012)

9. Dimitriou, A., Theodoratos, D., Sellis, T.: Top-k-size keyword
search on tree structured data. IS 47(0), 178 – 193 (2015)

10. Drosou, M., Pitoura, E.: Disc diversity: Result diversification
based on dissimilarity and coverage. PVLDB 6(1), 13–24 (2012)

11. Drosou, M., Pitoura, E.: The disc diversity model. In:
EDBT/ICDT Workshops, pp. 173–175 (2014)

12. Fakas, G.J.: Automated generation of object summaries from re-
lational databases: A novel keyword searching paradigm. In: D-
BRank, ICDE, pp. 564 – 567 (2008)

13. Fakas, G.J.: A novel keyword search paradigm in relational
databases: Object summaries. DKE 70(2), 208 – 229 (2011)

14. Fakas, G.J., Cai, Z.: Ranking of object summaries. In: DBRank
’08, ICDE, pp. 1580–1583 (2009)

15. Fakas, G.J., Cai, Z., Mamoulis, N.: Size-l object summaries for
relational keyword search. PVLDB 5(3), 229–240 (2011)

16. Fakas, G.J., Cai, Z., Mamoulis, N.: Versatile size-l object sum-
maries for relational keyword search. TKDE 26(4), 1026 – 1038
(2014)

17. Fakas, G.J., Cai, Z., Mamoulis, N.: Diverse and proportional size-l
object summaries for keyword search. In: SIGMOD, pp. 363–375
(2015)

18. Gollapudi, S., Sharma, A.: An axiomatic approach for result di-
versification. In: WWW, pp. 381–390 (2009)

19. Hristidis, V., Gravano, L., Papakonstantinou, Y.: Efficient ir-style
keyword search over relational databases. In: VLDB, pp. 850–861
(2003)

20. Hristidis, V., Papakonstantinou, Y.: Discover: Keyword search in
relational databases. In: VLDB, pp. 670–681 (2002)

21. Huang, Y., Liu, Z., Chen, Y.: Query biased snippet generation in
xml search. In: SIGMOD, pp. 315–326 (2008)

22. Kashyap, A., Hristidis, V.: Logrank: Summarizing social activity
logs. In: WebDB, pp. 1–6 (2012)

23. Koutrika, G., Simitsis, A., Ioannidis, Y.: Précis: The essence of a
query answer. In: ICDE, pp. 69–79 (2006)

24. Luo, Y., Lin, X., Wang, W., Zhou, X.: SPARK: Top-k keyword
query in relational databases. In: SIGMOD, pp. 115–126 (2007)

25. Simitsis, A., Koutrika, G., Ioannidis, Y.: Précis: From unstructured
keywords as queries to structured databases as answers. The VLD-
B Journal 17(1), 117–149 (2008)

26. Sydow, M., Pikula, M., Schenkel, R.: The notion of diversity in
graphical entity summarisation on semantic knowledge graphs.
Journal of Intelligent Information Systems 10(2), 1–41 (2013)

27. Turpin, A., Tsegay, Y., Hawking, D., Williams, H.E.: Fast gener-
ation of result snippets in web search. In: SIGIR, pp. 127–134
(2007)

28. Vieira, M.R., Razente, H.L., Barioni, M.C.N., Hadjieleftheriou,
M., Srivastava, D., Traina, C., Tsotras, V.J.: On query result diver-
sification. In: ICDE, pp. 1163–1174 (2011)

29. Wu, L., Wang, Y., Shepherd, J., Zhao, X.: An optimization method
for proportionally diversifying search results. Advances in Knowl-
edge Discovery and Data Mining 70(2), 390–401 (2013)

Appendix

Algorithm 4 The OS Generation Algorithm
OS Generation (nDS , GDS)

1: enQueue(Q, nDS) . Queue Q facilitates breadth first traversal
2: add nDS as the root of the OS
3: while !(isEmptyQueue(Q)) do
4: nj=deQueue(Q)
5: for each child relation Ri of R(nj) in GDS do
6: get Ri(nj)
7: for each tuple ni of Ri(nj) do
8: enQueue(Q, ni)
9: add ni on OS as child of nj

10: return OS

Paper Author
0.3

0.1
ConfYear

0.2

0.2

0.3

0.3
Conference

0.7

cites

0

cited

(a) The DBLP GA

plusOnes

0.5 0.5

0.0

0.3

0.5
0.7

0.5

0.3

ownCircle

InCircle
create

0.5
followedBy

Circles

0.0

0.3

0.0

Activity

make
User

reactions

Shares

Comment

(b) The Google+ GA

Fig. 17 The GAs for the DBLP and Google+ Datasets

Shares

(equi)

Activity

(sim)

InCircles

(equi)

circleOwner

(equi)

FollowedBy

(equi)

Follower

(equi)

plusOnes

(equi)

User

(euqi)

Comment

(sim)

Comment

(sim)

plusOnes

(equi)

Shares

(equi)

Activity

(sim)

Activity

(sim)

Activity

(sim)

User

(equi)

User

(equi)

User

(equi)

User

(equi)

User

(equi)

User

(equi)

User

(equi)

User

(equi)

Fig. 18 The Google+ User GDS (Relevance type)

