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Abstract. In this paper, we propose Geo-Social Keyword (GSK) search, which
enables the retrieval of users, points of interest (POIs), or keywords that sat-
isfy geographic, social, and/or textual criteria. We first introduce a general GSK
framework that covers a wide range of real-world tasks, including advertisement,
context-based search, and market analysis. Then, we present three concrete GSK
queries: (i) NPRU that returns the top-k users based on their spatial proximity
to a given query location, their popularity, and their similarity to an input set of
terms; (ii) NSTP that outputs the top-k POIs based on their proximity to a user
v, the number of check-ins by friends ofv, and their similarity to a set of terms;
(iii) FSKR that discovers the top-k keywords based on their frequency in pairs
of friends located within a spatial area. For each query, we develop a processing
algorithm that utilizes a novel hybrid index. Finally, we evaluate our framework
with thorough experiments using real datasets.

1 Introduction

The rising popularity of social networks and smart-phones has led to the development
of techniques for personalized search and targeted advertisement that combine social,
geographic and textual criteria. As an instance of social and textual fusion, social net-
works, such as Facebook, permit the promotion of products toconnected users that
share common interests, e.g. the advertisement of a rock festival to a group of friends
that like rock music [1]. As an example of geographic and textual integration, Web
search engines, such as Google, allow search for Points Of Interest (POIs) that match
some description and are near the query location , e.g., ”Chinese restaurants nearby”
[2]. Finally, Geo-Social Networks (GeoSNs), such as Foursquare, combine geographic
and social aspects by enabling users to check-in at POIs, i.e., publish their current lo-
cation to friends. Moreover, advertisers can send GroupON-like offers to users in their
vicinity to attract them, as well as their friends [3].

Similar combinations of social, geographic and textual criteria have been investi-
gated in the research literature. i)Keyword search in social networks focuses of queries
that seek groups of users forming a particular social structure (e.g. clique), and their
members’ profiles cover a set of input terms [16, 13, 14]. ii)Spatial keyword search
queries return POIs that satisfy various spatial (e.g., range, nearest neighbor) and tex-
tual (e.g., text similarity) constraints [24, 20, 11, 10, 7,18]. iii) GeoSN queries output
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individual users, or groups of friends, that exhibit some spatial and social properties,
e.g., the closest clique ofm friends to a query point [22, 5, 17, 19].

All the above cases consider only two out of the three criteria, focusing on a single
output type (e.g., users or POIs, but not both). On the other hand, we introduceGeo-
Social Keyword (GSK) search, a class of top-k queries that combine all spatial, social,
and textual attributes, and may return users, POIs or keywords. We present three con-
crete GSK queries: i)Top-k Nearest, Popular and Relevant Users (NPRU) that, given a
query locationq and a set of termsTq, outputs the top-k users based on their proximity
to q, their social connectivity, and the similarity of their profiles toTq; ii) Top-k Near-
est Socially and Textually Relevant POIs (NSTP), which, given a userv and a set of
termsTq, returns the top-k POIs based on their proximity tov, the number of check-ins
by friends ofv, and their similarity toTq; and iii) Top-k Frequent Social Keywords in
Range (FSKR) that discovers the top-k keywords based on their frequency in pairs of
friends located within a geographic area.

Each query is suitable for a different type of task, including advertisement, context-
based search, and market analysis. For instance, NPRU couldbe used by a restaurant
to send promotions to nearby users, who are well-connected and have expressed inter-
est in its cuisine type. Conversely, a user could issue an NSTP query to locate nearby
restaurants of a specific type that are ’liked’ by his friends. Finally, FSKR could identify
trends or word-of-mouth effects in a geographic area, usingthe frequency of keywords
shared by friends.

For each query, we provide a query processing algorithm thatutilizes theGSK Index
(GSKI), a novel hybrid structure that stores users and POIs,based on spatial, social, and
textual attributes. GSKI is a lightweight multi-level gridthat supports efficient updates.
Summarizing, our contributions are:

– We define GSK search as a general framework for retrieval of the top-k users, POIs
or keywords using various types of criteria.

– We present the GSKI, a hybrid structure for indexing users and POIs.
– We propose three GSK queries and the respective processing algorithms that utilize

the GSKI.
– We conduct a thorough experimental evaluation on real datasets.

The rest of the paper is organized as follows. Section 2 overviews related work.
Section 3 formalizes the GSK problem and introduces the general framework. Section
4 presents the GSK Index. Sections 5 to 7 propose the GSK queries and the correspond-
ing query processing methods. Section 8 contains the experimental evaluation. Finally,
Section 9 concludes the paper with directions for future work.

2 Related Work

We overview (i) keyword search in social networks, (ii) spatial keyword search, and
(iii) GeoSN queries.
Keyword search in social networks. Although, there has been extensive work on
keyword search for general graphs, here we focus on social networks. Lappas et al. [16]
propose theTeam Formation (TF) query: given a weighted social graph and a set of



termsTq, TF returns a subgraph of users, whose textual descriptions coverTq and their
diameter (i.e., maximum shortest-path distance between any two nodes) is minimized.
The authors also devise a variant, where the subgraph must bea minimum spanning tree,
and show that both problems are NP-Complete. [13] extendsTF by additionally seeking
a team leader, i.e., the member of the resulting group with the minimum total social
shortest-path distances from all members. Finally, [14] proposes ther-cliques query:
given a weighted social graph and a set of termsTq, return a sugbraph of users that
coversTq, and has diameter no larger thanr. In the above methods, textual information
is stored in inverted files and the graph is kept in adjacency lists.

Spatial keyword search. Four types of spatial-keyword queries have received partic-
ular attention in the literature [8] namely, theBoolean Range (BR), theBoolean k-NN
(BkNN), theSpatial Aware Top-k text retrieval (SATopk), and theSpatial Group Key-
word (SGK) query. Given a spatial regionR and a set of termsTq, BR returns all POIs
in R, whose textual description contains all terms inTq [24, 20]. BkNN outputs thek
nearest POIs to a query pointq each of which covers all the query terms [11]. Given
q, Tq and a positive integerk, SATopk returns a list ofk POIs ranked based on their
spatial proximity toq and textual similarity toTq [10]. Finally, SGK discovers a set of
POIs that collectively cover the query terms and either the sum of their distances to the
query location is minimized [7], or the maximum distance between any two POIs in the
group is minimized [18]. A recent work [21] introduces theSocial-aware top-k Spatial
Keyword (SkSK) query, which enhances personalized spatial-keyword search by addi-
tionally taking into consideration the social connectivity of the query issuer to all users,
who have liked or recommended the POIs.

Spatial-keyword indices can be broadly classified according to the spatial and tex-
tual structures employed. They are usually based on the R-Tree and its variants, where
each minimum bounding rectangle (MBR) keeps the textual information of the POIs lo-
cated within its bounds. Specifically, MBRs in [10, 7] utilize inverted files, while in [11,
23] use bitmaps. Grid-based spatial-keyword structures decompose the space into cells;
each cell has a unique id according to a global order (e.g., Hilbert curves [9]). Then,
inverted files are primarily used for indexing the cells based on the textual description
of the POIs located within their bounds [15, 20]. Indices based on trees are in general
more efficient than grid-based structures [24], but the latter are easier to maintain. The
Social Network-aware IR-Tree [21] is an R-Tree, where each node also contains a set
of users relevant to the POIs indexed by the subtree rooted atthe node; contrary to its
name, it does not index social information (i.e., user connections).

Geo-Social Networks.GeoSN queries return users, or groups of users, that satisfyspa-
tial and social criteria. Given a locationq and two positive integersk andm (k < m),
theSocio-Spatial Group query outputs a group ofm users, such that the total distance
of the users toq is minimized, and each user is connected to at leastm− k other group
members [22]. Given a locationq and two positive integersm, k, theNearest Star Group
query [5] returns thek nearest subgraphs ofm users, such that each subgraph (i.e., star)
has a user, who is socially connected to all users. Given a user v, thek-Geo-Social Cir-
cle of Friends query [17] finds a group ofk+1 users that containsv andk friends with
small pairwise social distances, so that the diameter of thegroup is minimized. Finally,



[19] introduces theSocial and Spatial Ranking query, which given a userv, reports the
top-k users based on their spatial proximity and social connectivity to v.

Most GeoSN approaches maintain separate structures for thespatial and social at-
tributes. For instance, Liu et al. [17] store the social graph in an adjacency matrix, and
employ the R*-Tree for spatial indexing. Similarly, [5] uses adjacency lists and a regu-
lar spatial grid, respectively. On the other hand, Yang et al. [22] propose a hybrid index
that constructs an R-tree while ensuring a specified degree of connectivity among the
users within the same node.

3 GSK Query Framework

Our setting consists of a social graph network and a set of POIs. The social network
is modeled as an unweighted, undirected graphG = (V,E), where a nodev ∈ V
represents a user and an edge(v, u) ∈ E indicates the friendship betweenv andu ∈ V .
Each userv ∈ V may be associated with textual and spatial information thatrepresent
his preferences and his most recent location, respectively. Each POIp ∈ P has a spatial
location, a textual description and a set of usersVp that have checked-in atp in the past.
T denotes a set of terms/keywords; specifically,Tv (resp.Tp) is the set that appears in
the preference of userv (resp. the description of POIp).

Figure 1 depicts a running example of a social network with the locations of 10
users as grey points, and the incident edges as their social relations. The black squares
represent the location of 4 POIs. Next to each userv and POIp is the corresponding
set of termsTv andTp, e.g.,{c, f} for v4 and{c, e} for p1. Moreover, the list below
each POI (e.g.,[v2, v4, v5, v6] for p1) represents the users that have checked-in there.
Depending on the application, the setting may vary; e.g., the textual information of
users may correspond to their query history or profile data (instead of preferences),Vp

may denote the current (instead of all) check-ins atp, etc.
Geo-Social Keyword (GSK) search constitutes a family of top-k queries that return

results of typeRT = (C, l), whereC denotes the object class (i.e.,V , P or T ) andl
represents the cardinality. For example,RT = (V, 3) denotes that the output contains
k groups of 3 users each, whereasRT = (P, 1) signifies that the output consists of
k individual POIs. Given a GSK queryq, each objecto of typeRT (e.g., a group of
3 users, or a single POI) is assigned a geographicfg(o), socialfs(o) and a textual
ft(o) score. In general,fg(o) depends on the proximity ofo to q, fs(o) on the social
connectivity ofo, andft(o) on the similarity between the terms ofo andq.

The total score of an object is obtained by combining the partial ones using a ranking
function F . We implementF as a weighted combination of the partial scores, i.e.,
F (o) = αg·fg(o)+αs·fs(o)+αt·ft(o), whereαg, αs, αt are non-negative real numbers
such thatαg +αs +αt = 1, but any monotone1 function can be used. A criterion (e.g.,
textual) can be omitted by setting the corresponding weight(e.g.,αt) to zero. Moreover,
in some cases we may only be interested in objects that satisfy a set of constraintsCN ,
i.e., POIs in a geographic area, or users who have certain characteristics (e.g., males
above 30 years old). Finally, we define a GSK query as follows:

1 F should satisfy the condition∀o, o′ : fg(o) ≥ fg(o
′) ∧ fs(o) ≥ fs(o

′) ∧ ft(o) ≥ ft(o
′) ⇒

F (o) ≥ F (o′).
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Fig. 1.Running Example

Definition 1. Given a positive integer k, a result type RT , functions fg, fs, ft, F , and
a set of constraints CN , a GSK query returns the k objects of type RT that have the
highest scores according to F and satisfy all constraints in CN .

By employing different combinations of result types, ranking functions and con-
straints, we can devise a wide range of GSK queries. In this paper, we will present three
diverse queries that retrieve individual users, POIs and keywords. All the queries utilize
the index of the next section. Table 1 contains the frequent symbols.

Table 1.Basic notations

Notation Definition
v User in GeoSN, i.e.,v ∈ V .
p Point of interest, i.e.,p ∈ P .
Nv Friends of userv.
Tv (Tp) Set of terms of userv (POIp).
Tq Set of query terms.
Vp Set of users that checked-in atp.
‖v, q‖ Euclidean distance of userv to pointq. Similarly for p, i.e.,‖p, q‖.
‖c, q‖

min
Minimum Euclidean distance of 2D rectanglec to 2D pointq.

maxdist Maximum possible Euclidean distance between any two points.
deg(v) Number ofv’s friends, i.e,|Nv| = deg(v).
maxdeg Maximum number of friends in the graph.
TS(T1, T2) Normalized textual similarity between term setsT1 andT2.



4 Geo-Social Keyword Index

TheGeo-Social Keyword Index (GSKI) stores users and POIs based on their geograph-
ical, social and textual attributes. Given a granularity factorg and a height parameterh,
GSKI partitions the geographical space intogh × gh equally sized leaf cells. Each leaf
cell lc contains:

– a rectangleRlc that represents the area covered bylc,
– a list of usersVlc and a list of POIsPlc that lie inRlc,
– the maximal degreeDlc of any user inRlc,
– inverted filesIVlc andIPlc, consisting of lists of keywords appearing in the prefer-

ences of users and in the descriptions of POIs inRlc, respectively. Lists are sorted
by theimpact of keywords based on thecosine-normalized tf-idf [25], and

– a bloom filter2 Blc of the union of all users checked-in at POIs inRlc, i.e Blc =
bloom filter of

⋃
p∈Plc

Vp.

Next, a hierarchical grid of heighth is constructed in a bottom-up fashion, where
each intermediate cell points tog2 cells at the lower level that lie inside its spatial extent.
Every intermediate cellic keeps only a small amount of information summarizing its
children cells. Specifically,ic is associated with a rectangleRic, maximum degree of
users inRic, namelyDic, and bloom filterBic. Additionally, for each term that appears
in users or POIs located within the bounds ofRic, ic keeps the term’s maximum textual
impact in setsSVic andSPic, respectively.

Figure 2 illustrates the GSKI and Table 2 shows the corresponding cell contents
for our running example, assumingg = 2 and h = 2. Leaf cell C02,2 is a child
of C11,1, which in turn is a child ofC20,0. C02,2 contains usersv1, v2 and POIp1
in its spatial extent. Consequently, as elaborated in the fourth to last row of Table 2,
DC02,2 = 2 = deg(v1) = deg(v2), IVC02,2 stores termsa, f , since they appear inv1’s
andv2’s preferences, andIPC02,2 keeps termsc, e occurring inp1’s description. Each
term is associated with animpact value [25] in the range [0,1].BC02,2 contains users
v2, v4, v5, v6 who checked-in atp1. Intermediate cellC11,1 aggregates the information
of its childrenC02,2, C02,3, C03,2, andC03,3. DC11,1 = 5 = deg(v4), sincev4 is
located inC02,3. C11,1 keepsSVC11,1 andSPC11,1 with the terms that appear in the
children, namely{a, c, f} and{a, c, e}, respectively. Finally,BC11,1 contains the union
of BC02,2 andBC03,3 (C02,3 andC03,2 do not contain POIs).

To enable effective pruning during query processing, the GSKI preserves mono-
tonicity across the height of the hierarchical grid, i.e., assuming a monotone function
F , the overall score of an intermediate cellic constitutes an upper bound for the score of
any user or a POI withinRic. Moreover, since the GSKI only keeps concise aggregated
data at the intermediate levels, the size of the inverted fileat a non-leaf cells is smaller
than that of the original inverted file. Finally, we chose a grid-based structure because
grids in general are usually significantly faster that R-trees for highly dynamic settings
[12] such as ours, where there are numerous location updatesfrom users.

2 A bloom filter is a space-efficient probabilistic data structure that is used to test whether an
element is a member of a set [6].



Fig. 2.Hierarchical Grid

Table 2.GSKI Contents

Cell c IVc / SVc IPc / SPc Dc Bc

C20,0
C10,0 〈c, 0.71〉 , 〈d, 0.71〉 , 〈e, 0.71〉 4
C00,0 0
C01,0 c : 〈v7, 0.71〉 , e : 〈v7, 0.71〉 4
C00,1 0
C01,1 c : 〈v3, 0.71〉 , d : 〈v3, 0.71〉 4

C11,0 〈b, 0.71〉 , 〈d, 0.71〉 , 〈e, 0.71〉 〈e, 0.71〉 , 〈f, 0.71〉 3 {v1, v6, v8, v9}
C02,0 e : 〈p4, 0.71〉 , f : 〈p4, 0.71〉 0 {v1, v2, v6, v8}
C03,0 d : 〈v6, 0.71〉 , e : 〈v6, 0.71〉 3
C02,1 0
C03,1 b : 〈v5, 0.71〉 , e : 〈v5, 0.71〉 3

C10,1 〈a, 0.71〉 , 〈b, 1.0〉 , 〈c, 0.71〉 〈a, 0.71〉 , 〈f, 0.71〉 1 {v4, v7, v9, v10}
C00,2 a : 〈p2, 0.71〉 , f : 〈p2, 0.71〉 0 {v4, v7, v9, v10}
C01,2 0
C00,3 a : 〈v10, 0.71〉 , b : 〈v9, 1.0〉 , c : 〈v10, 0.71〉 1
C01,3 0

C11,1 〈a, 1.0〉 , 〈c, 0.71〉 , 〈f, 1.0〉 〈a, 0.71〉 , 〈c, 0.71〉 , 〈e, 0.71〉 5 {v2, v3, v4, v5, v6}
C02,2 a : 〈v1, 1.0〉 , f : 〈v2, 1.0〉 c : 〈p1, 0.71〉 , e : 〈p1, 0.71〉 2 {v2, v4, v5, v6}
C03,2 0
C02,3 c : 〈v4, 0.71〉 , f : 〈v4, 0.71〉 5
C03,3 a : 〈v8, 0.71〉 , f : 〈v8, 0.71〉 a : 〈p3, 0.71〉 , c : 〈p3, 0.71〉 1 {v3, v5}

5 Top-k Nearest, Popular and Relevant Users

A Top-k Nearest, Popular and Relevant Users (NPRU) query returns the top-k users
based on their spatial proximity to a locationq, their social connectivity, and their tex-
tual similarity to an input set of termsTq. NPRU is useful for advertisement and pro-
motion purposes. For instance, consider a restaurant ownerwho wishes to send lunch
coupons. Promising targets are users that (i) are near the restaurant, (ii) are highly con-
nected, and (iii) express preference to the restaurant’s type of food.

In our framework, the output type of NPRU isRT = (V, 1), i.e., the result con-
sists of individual users, andCN = ∅, i.e., there are no constraints on the users to
be retrieved. Regarding the geographicfg(v), socialfs(v) and textualft(v) scores
of each userv ∈ V , there are several alternatives. In our implementation, weset
fg(v) = 1 − ‖v,q‖

maxdist
, wheremaxdist denotes the maximum Euclidean distance in

the data space. Intuitively, the spatial score of a userv decreases as his Euclidean dis-



tance‖v, q‖ from q increases. The social score ofv is defined asfs(v) = deg(v)
maxdeg

,

wheredeg(v) is the number ofv’s friends, andmaxdeg is the maximum degree of any
user in the network. The textual scoreft(v) is thecosine-normalized tf-idf similarity
TS(Tv, Tq) [25] between the termsTv of v and those inTq. All partial scores are in
the range [0,1]. The total score ofv is F (v) = αg · fg(v) + αs · fs(v) + αt · ft(v), as
discussed in Section 3.

Consider, for instance an NPRU query withk = 2, q = p1, Tq = {c, e} and
αg = αs = αt =

1
3 in the running example of Figure 1, e.g., a Chinese restaurant p1

wishes to discover the top-2 users in its vicinity, that havemany friends and at the same
time have matching keywordsc, e (Chinese, Restaurant). The best user isu7 because
both keywordsc ande are in his preferences. The top-2 user isv4 with keywordc. Note
thatv4 out-ranksv3, which is slightly closer top1 and containsc, because he has higher
degree (5 as opposed to 4 forv3). Although usersv1 andv2 are the nearest top1, they
are not in the result because neither contains keywordc or e; accordingly, theirft score
is zero.

Processing NPRU queries is based on the branch-and-bound paradigm using the
GSKI. Specifically, a priority heapH maintains visited cells and users along with their
score according toF . The score of a cellc takes into consideration (i) the minimum
Euclidean distance of the cell toq, (ii) the maximum degree of any user inc, and (iii)
the maximum textual similarity of the queried terms amongstthe preferences of the
users inc. This guarantees that the score ofc is an upper bound for the score of child
cells and users within its extent. Consequently, if the score of c does not exceed that of
the top-kth user, thenc can be safely pruned.

Figure 3 illustrates the pseudo-code of NPRU processing. Initially, the algorithm
adds GSKI’s root cell toH (Line 2). Then, in an iterative manner, it removes the entity
with the highest score fromH, namelye, and i) if e is an intermediate cell, then it adds
all its children cells toH (Lines 5-7), or ii) if e is a leaf cell, then it adds all users
within e’s spatial extent toH (Lines 8-10), or iii) ife is a user, it adds him to the result
set (Lines 11-12). The algorithm terminates when the resultset containsk users (Lines
13-14). The cells and users remaining inH have score at most as high as that of the
k-th result and, hence, can be ignored.

Table 3 shows the heap state during the execution of the example query:k = 2,
q = p1, Tq = {c, e} andαg = αs = αt = 1

3 , using the GSKI contents of Table 2.
Heap entries consist of a cell or a user, and the corresponding score according toF .
Cells and users added toH are shown in bold. First, the algorithm inserts the root of
GSKI in H. At iteration 1, it removes the root cell and adds its children along with
their scores toH. Next, the intermediate cell with the highest score,C10,0, is removed
and its child leaf cells{C00,0, C01,0, C00,1, C01,1} are added toH. Similarly,C01,0 is
removed at the next iteration and userv7 is added toH. Next, intermediate cellC11,1 is
de-heaped and its child leaf nodes are en-heaped. Then, userv7 is removed and becomes
the top-1 result. The algorithm continues in the same mannerand terminates after the
6th iteration, when the top-2 userv4 is de-heaped.



Input: Social GraphG = (V,E), integerk, locationq, set of termsTq, weightsαg, αs, αt

Output: Top-k users according toF

1. DefineH as an empty heap ofGSKI cells sorted according to their scores in decr. order
2. Add the root cell ofGSKI toH

3. While H is not empty
4. e = top entity ofH // it also removese fromH

5. If e is an intermediate cell ofGSKI

6. For each childc of e

7. Add toH cell c with scoreαg · (1−
‖c,q‖min

maxdist
) + αs ·

Dc

maxdeg
+ αt · TS(Tc, Tq)

8. Else If e is a leaf cell ofGSKI

9. For each userv ∈ Ve

10. Add toH userv with scoreαg · (1− ‖v,q‖
maxdist

) + αs ·
deg(v)
maxdeg

+ αt · TS(Tv, Tq)

11. Else// e is a user
12. Adde toR

13. If |R| = k then stop the execution
14.Return R

Fig. 3.NPRU Algorithm

Table 3.Heap of NPRU

Interation # Heap Contents
0 〈C20,0,∞〉
1 〈C10,0, 0.90〉〈C10,0, 0.90〉〈C10,0, 0.90〉, 〈C11,1, 0.81〉〈C11,1, 0.81〉〈C11,1, 0.81〉, 〈C11,0, 0.71〉〈C11,0, 0.71〉〈C11,0, 0.71〉,〈C10,1, 0.51〉〈C10,1, 0.51〉〈C10,1, 0.51〉
2 〈C01,0, 0.85〉〈C01,0, 0.85〉〈C01,0, 0.85〉, 〈C11,1, 0.81〉, 〈C11,0, 0.71〉, 〈C01,1, 0.71〉〈C01,1, 0.71〉〈C01,1, 0.71〉, 〈C10,1, 0.51〉, 〈C00,1, 0.24〉〈C00,1, 0.24〉〈C00,1, 0.24〉,

〈C00,0, 0.21〉〈C00,0, 0.21〉〈C00,0, 0.21〉
3 〈C11,1, 0.82〉, 〈v7, 0.80〉〈v7, 0.80〉〈v7, 0.80〉, 〈C11,0, 0.71〉, 〈C01,1, 0.71〉, 〈C10,1, 0.51〉, 〈C00,1, 0.24〉,

〈C00,0, 0.21〉
4 〈v7, 0.80〉, 〈C02,3, 0.75〉〈C02,3, 0.75〉〈C02,3, 0.75〉, 〈C11,0, 0.71〉, 〈C01,1, 0.71〉, 〈C10,1, 0.51〉, 〈C02,2, 0.46〉〈C02,2, 0.46〉〈C02,2, 0.46〉,

〈C03,3, 0.33〉〈C03,3, 0.33〉〈C03,3, 0.33〉, 〈C03,2, 0.30〉〈C03,2, 0.30〉〈C03,2, 0.30〉, 〈C00,1, 0.24〉, 〈C00,0, 0.21〉
5 〈C02,3, 0.75〉, 〈C11,0, 0.71〉, 〈C01,1, 0.71〉, 〈C10,1, 0.51〉, 〈C02,2, 0.46〉, 〈C03,3, 0.33〉,

〈C03,2, 0.30〉, 〈C00,1, 0.24〉, 〈C00,0, 0.21〉
6 〈v4, 0.72〉〈v4, 0.72〉〈v4, 0.72〉, 〈C11,0, 0.71〉, 〈C01,1, 0.71〉, 〈C10,1, 0.51〉, 〈C02,2, 0.46〉, 〈C03,3, 0.33〉,

〈C03,2, 0.30〉, 〈C00,1, 0.24〉, 〈C00,0, 0.21〉

6 Top-k Nearest Socially and Textually Relevant POIs

Given a userv and a set of termsTq, a Top-k Nearest Socially and Textually Rele-
vant POIs (NSTP) query returns the top-k POIs based on their proximity tov, the
textual similarity of their descriptions toTq, and the number ofv’s friends that checked-
in. NSTP enables location-aware, socially-aware, and/or context-aware search. For in-
stance, consider a user who wants to visit a restaurant. NSTPcould locate nearby restau-
rants offering cuisine similar to the user’s preferences that are also visited (or ’liked’)
by his friends.

The output type of NSTP query isRT = (P, 1), i.e., the result consists of individual
POIs, andCN = ∅, i.e., there are no constraints on the POIs to be retrieved3. The

3 Additional constraints in this case could restrict the top-k POIs to be in a certain area, or
enforce certain properties (e.g., restaurant must be open after 10pm).



geographic and textual score definitions are similar to NPRU, i.e.,fg(p) = 1− ‖v,p‖
maxdist

andft(p) is based oncosine-normalized tf-idf betweenTp andTq. The social score is

defined asfs(p) =
|Nv∩Vp|

|Nv|
, where setNv consists ofv’s friends (i.e.,|Nv| = deg(v)),

andVp contains the ids of the users who checked-in atp. The partial scores are combined
by the linear functionF also used in NPRU.

For example, consider an NSTP query withv = v7, k = 2, Tq = {c, e}, and
αg = αs = αt = 1

3 using the running example, e.g., userv7 searches for two nearby
Chinese restaurants (c, e) that have been visited by many of his friends. The best POI is
p1 since it is relatively close tov7, contains both queried terms, and it has been visited
by 3 of his 4 friends (v2, v4, v6). The top-2 POI isp4 because it is the closest POI tov7,
contains terme, and was visited by two ofv7’s friends (v2, v6). POIsp2 andp3 are not
in the result set since they are far fromv7, are not relevant toT (only p3 contains one
of the queried terms), and are not popular amongv7’s friends (each is visited by only
one friend).

NSTP query processing is similar to NPRU. Specifically, the algorithm uses a max-
heap to store cells and POIs sorted in decreasing order of their scores. The score of a cell
c is based on: i) the minimum distance ofc to v, ii) an upper bound for the number ofv’s
friends that checked-in at any POI withinc, and iii) the maximum textual similarity ofT
to the descriptions of the POIs inc. For the computation of (ii), the algorithm examines
if each friend ofv is in the bloom filter ofc. Bloom filters may falsely indicate the
presence of a user. However, although false positives increase the score ofc, they do
not affect correctness because the score ofc is always an upper bound (albeit, in some
cases, loose) for that of any child cell or POI inc. The algorithm terminates after it
retrievesk POIs from the priority heap.

Consider again the example query with input:v = v7, k = 2, Tq = {c, e}, and
αg = αs = αt =

1
3 , using the GSKI contents of Table 2. Table 4 shows the state ofthe

heap at each iteration. Starting from the root cell, the algorithm retrieves the top-1 POI
p1 at iteration 3. Then, it continues until iteration 6, when itdiscoversp4 and terminates.

Table 4.Heap of NSTP

Interation # Heap H Contents
0 〈C20,0,∞〉
1 〈C11,1, 0.75〉〈C11,1, 0.75〉〈C11,1, 0.75〉, 〈C11,0, 0.55〉〈C11,0, 0.55〉〈C11,0, 0.55〉, 〈C10,0, 0.33〉〈C10,0, 0.33〉〈C10,0, 0.33〉, 〈C10,1, 0.28〉〈C10,1, 0.28〉〈C10,1, 0.28〉
2 〈C02,2, 0.75〉〈C02,2, 0.75〉〈C02,2, 0.75〉, 〈C11,0, 0.55〉 , 〈C03,3, 0.44〉〈C03,3, 0.44〉〈C03,3, 0.44〉, 〈C10,0, 0.33〉, 〈C10,1, 0.28〉,

〈C03,2, 0.19〉〈C03,2, 0.19〉〈C03,2, 0.19〉, 〈C02,3, 0.15〉〈C02,3, 0.15〉〈C02,3, 0.15〉
3 〈p1, 0.75〉〈p1, 0.75〉〈p1, 0.75〉, 〈C11,0, 0.55〉, 〈C03,3, 0.44〉, 〈C10,0, 0.33〉, 〈C10,1, 0.28〉,

〈C03,2, 0.19〉, 〈C02,3, 0.15〉
4 〈C11,0, 0.55〉, 〈C03,3, 0.44〉, 〈C10,0, 0.33〉, 〈C10,1, 0.28〉, 〈C03,2, 0.19〉,

〈C02,3, 0.15〉
5 〈C02,0, 0.55〉〈C02,0, 0.55〉〈C02,0, 0.55〉, 〈C03,3, 0.44〉, 〈C10,0, 0.33〉, 〈C10,1, 0.28〉, 〈C02,1, 0.28〉〈C02,1, 0.28〉〈C02,1, 0.28〉,

〈C03,0, 0.25〉〈C03,0, 0.25〉〈C03,0, 0.25〉, 〈C03,1, 0.23〉〈C03,1, 0.23〉〈C03,1, 0.23〉, 〈C03,2, 0.19〉, 〈C02,3, 0.15〉
6 〈p4, 0.59〉〈p4, 0.59〉〈p4, 0.59〉, 〈C03,3, 0.44〉, 〈C10,0, 0.33〉, 〈C10,1, 0.28〉, 〈C02,1, 0.28〉,

〈C03,0, 0.24〉, 〈C03,1, 0.23〉, 〈C03,2, 0.19〉, 〈C02,3, 0.15〉



7 Frequent Social Keywords in Range

A Frequent Social Keywords in Range (FSKR) query returns the top-k terms based on
their frequency in pairs of friends located within a spatialareaSR. FSKR allows the
discovery of trends or word-of-mouth effects. For instance, FSKR on textual content
derived from Twitter/Facebook posts can reveal topics thatare trending among friends
in a geographic area. This information can be then utilized by businesses towards social
media marketing.

The output of FSKR query isRT = (T, 1), i.e., the result consists of individual
terms. In addition,CN contains the constraint that valid terms must appear jointly in
the preferences of friends inSR. FSKR does not apply geographic or social scores;
instead, the total score of a termt is based solely on its frequency among friends, i.e.,
F (t) = ft(t) = |{(v, u) ∈ E / t ∈ Tv ∧ t ∈ Tu ∧ v, u inside SR}|, whereTv (resp.
Tu) denotes the terms associated withv (resp.u). Note that an edge(v, u) contributes
2 to the score oft; once per incident userv andu. This does not affect the ranking of
the top-k results.

Consider, for instance, the FSKR query withk = 2 and an areaSR represented by
the dashed-line rectangle in Figure 1. The top-1 term isc, with scoreF (c) = 6, since it
appears in 3 pairs of friends within the range, i.e.,(v3, v4), (v3, v7), and(v4, v7). The
top-2 term can be eithere (v6, v7), ord (v3, v6), both with score 2. The remaining terms
in SR (a, d, f ) are not shared by any pair of friends.

FSKR query processing is performed in two steps: first, for every termt in SR, a list
PL[t] is created with the users (inSR) containingt; then, the scoreF (t) of each term
t is computed by examining the connections of users appearingin PL[t]. Specifically,
the contribution of eachv ∈ PL[t] to F (t) is |Nv ∩ PL[t]|, whereNv is the set ofv’s
friends. Letbestscore be the score of the current top-kth term. The upper bound score
of any (not-yet-examined) termt is |PL[t]| · (|PL[t]| − 1), when all users containingt
form a clique. Consequently, if|PL[t]| · (|PL[t]| − 1) ≤ bestscore, thent can be safely
pruned. Based on this observation, FSKR examines terms in decreasing order of their
list sizes, until the first term that can be eliminated by its upper bound score.

Figure 4 elaborates the procedure. The algorithm first retrieves the non-empty leaf
cells of GSKI that intersect with the spatial rangeSR. For each keywordt in the in-
verted lists of these cells, Lines 3-13 generatePL[t]. Next, the terms are sorted in
decreasing order of|PL[t]| size. For each termt, Lines 18-20, compute the score oft,
and updatebestscore accordingly. The algorithm terminates at the first term for which
|PL[t]| · (|PL[t]| − 1) ≤ bestscore (Lines 16-17), and returns the top-k set (Line 21).
Unexamined terms cannot be in the result set, and are pruned.

We describe the algorithm using our running example of Figure 1, wherek = 1
and the spatial rangeSR is depicted as a dashed rectangle. Initially,bestscore = 0. The
terms associated with users inSR area, c, d, e, f with lists PL[a] = {v1}, PL[c] =
{v3, v4, v7}, PL[d] = {v3, v6}, PL[e] = {v6, v7} andPL[f ] = {v2, v4}. FSKR it-
erates over the lists in sorted order, starting fromc. It computes|PL[c] ∩ Nv3

| = 2,
|PL[c]∩Nv4

| = 2, |PL[c]∩Nv7
| = 2, andF (c) = 6. Sincek = 1, it setsbestscore = 6

and retrieves the second most frequent keyworde. The upper bound score fore is 2,
which is belowbestscore. Consequently, the algorithm stops and outputsc as the top-1
result.



Input: Social GraphG = (V,E), integerk, spatial rangeSR
Output: Top-k terms according toF

1. Initialize listPL as an empty list of sets,bestscore = 0
2. SetC = all non-empty leaf cells in GSKI that intersect withSR
3. For each cellc ∈ C

4. For each termt ∈ IVc

5. Occurt = posting list oft in IVc

6. If t appears for first time
7. PL[t] = {∅}
8. Else
9. If R coversc
10. PL[t] = PL[t] ∪Occurt
11. Else
12. Occurt,valid = Exclude fromOccurt all users not inSR
13. PL[t] = PL[t] ∪Occurt,valid
14. SortPL according to sets’ sizes in decreasing order
15.For each termt ∈ PL

16. If |PL[t]| · (|PL[t]| − 1) ≤ bestscore
17. Exit For Loop
18. For each userv ∈ PL[t]
19. Scoret = Scoret + |Nv ∩ PL[t]|
20. bestscore = kth highest score
21.Return the terms with thek highest scores

Fig. 4. FSKR Algorithm

8 Experimental Evaluation

Section 8.1 presents the real datasets, Section 8.2 contains a qualitative evaluation of
the proposed queries, and Section 8.3 evaluates their performance experimentally.

8.1 Datasets

We use two real datasets obtained fromYelp [4] that consist of users and POIs located
in Las Vegas (LV) and Phoenix (PX). In particular, each dataset includes: i) a social
graph, ii) latest and past user check-ins, iii) user preferences, iv) POI locations, and v)
POI descriptions. Table 5 summarizes the characteristics of LV and PX. Note that LV
contains more users in a smaller geographic area, whose distribution is skewed. Users
and POIs in PX are distributed more uniformly.

8.2 Visualization

We qualitatively evaluate the proposed queries using LV. Inthe following visualizations,
users and POIs are depicted as grey points and rectangles, respectively. Query points
and top-k results are colored black, and each points to an informationtable that presents
their parameters and partial scores.



Table 5.Datasets

Statistic LV PX
|V | 40,297 30,056

Avg. Degree 9.66 5.41
Max. Degree 2451 1246

Avg. |Tv| 161 166
|P | 12,773 16,154

Avg. |Vp| 14.98 8.89
Avg. |Tp| 5.35 9.7

Area 37km × 46km 71km × 87km
Max. Dist 60km 112km

Top-k Nearest, Popular and Relevant Users.Figure 5 illustrates the results of an
NPRU query issued by a Mexican bar, whereTq = {mexican, alcohol, bar}, k = 3
andαg = αs = αt = 1

3 . The top-1 user is the closest to the query point, the most
popular and the most relevant toTq. Although the top-2 user is farther than top-3, he
receives a better score because he has a higher degree and hispreferences are more
similar toTq.

Fig. 5.Top-3 Users in NPRU

Top-k Nearest Socially and Textually Relevant POIs.Figure 6 depicts the results of
an NSTP query issued by a userv, who searches for 3 nearby POIs that contain terms
”mexican, alcohol, bar” and have been visited by his friends (αg = αt = 0.25 and
αs = 0.5). The top-1 bar is 400 meters away fromv, and has been visited by one ofv’s
friends. The top-2 bar is 1.53km far from v, and has also been visited by one friend.
Note that the top-3 bar has the highest textual similarity, but it is relatively far, and has
not been visited by any ofv’s friends.
Frequent Social Keywords in Range.Figure 7 visualizes the results of an FSKR query,
where a dashed-lined rectangle representsSR andk = 1. The top-1 keyword ”food”
is shared among 9 pairs of friends, connected by the bold edges. The remaining edges
denote social connections of users inSR.



Fig. 6. Top-3 POIs in NSTP

Fig. 7.Top-1 Keyword in FSKR

8.3 Performance

The query processing algorithms were implemented in C++ under Linux Ubuntu, and
executed on an Intel Xeon E5-2660 2.20GHz with 8GB RAM. All data and indices are
stored in the main memory. The social graph is kept as a collection of adjacency lists,
one per user. The reported times are the average of 20 query executions for each of LV
and PX. Table 6 includes the tested value ranges for the queryand system parameters
in our setup;r corresponds to the radius of the circular spatial rangeSR of FSKR.
Geo-Social Keyword Index.Figure 8 studies the effect of GSKI granularityg on the
running time of NPRU, NSTP, and FSKR using LV, forh = 4, k = 16, |Tq| = 3, and
r = 3km. For granularity up to 5, the running time of NPRU and NSTP decreases with
g. Since the cells cover smaller areas, the aggregate information stored in the cells is
more accurate, and thus the algorithms visit fewer cells. When the granularity exceeds



Table 6.Query and System Parameters

Parameter Default Range
k 16 4, 8, 16, 32, 64

|Tq| 3 1, 2, 3, 4, 5
g 5 3, 4, 5, 6

r (km) 3 1, 2, 3, 4, 5

5, the GSKI becomes less effective because the heaps in NPRU and NSTP maintain
numerous cells, i.e., each intermediate cell has fanout 36.The execution time of FSKR
increases slightly withg. Recall that the first step of FSKR creates the occurrence lists
of terms inSR by merging the inverted files of the cells that intersect withSR. Con-
sequently, the CPU time grows as the algorithm merges more inverted lists, but the
impact is negligible. In the remaining experiments, we setg = 5 because it minimizes
the execution time of NPRU, NSTP, and it marginally affects FSKR.
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Fig. 8. Effect of GSKI Granularity (LV Dataset,h = 4)

Table 7 assesses the total construction time of GSKI indicesunder the setup of
Figure 8 in both datasets. In the most challenging setting, i.e.,g = 6 andh = 4 (1.6M
leaf cells), GSKI needs only 45 seconds for both datasets since it only keeps concise
aggregated data at the intermediate levels.

Table 7.GSKI Construction Time
Granularity g Height h # Leaf cells LV Time (sec)PX Time (sec)

3 4 6561 10.2 8.7
4 4 65536 13.3 11.6
5 4 390625 16.6 14.7
6 4 1679616 23.7 21.3

Top-k Nearest, Popular and Relevant Users.Figure 9(a) presents the query time of
NPRU as a function of the result sizek in LV and PX, for |Tq| = 3. In both datasets,
the cost increases withk because the algorithm retrieves more users from the priority
heap, and thus performs more iterations. NPRU is faster in PXbecause it contains rela-
tively few users, who are rather uniformly distributed. Therefore, the cells contain more
accurate information that leads to better pruning.

Figure 9(b) plots the running time versus the number of queried terms, i.e.,|Tq|, for
k = 16. In both datasets, the cost increases with|Tq| as the algorithm requires more



computations to calculate the textual similarity of each visited cell or user. In addition,
when |Tq| increases, more cells become textually relevant to the query, reducing the
pruning power of the algorithm.
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Fig. 9. Query Time for NPRU

Top-k Nearest Socially and Textually Relevant POIs.Figure 10(a) shows the exe-
cution time of NSTP versus the result sizek in LV and PX, for |Tq| = 3. Similar to
NPRU, the running time increases withk since the algorithm executes more iterations.
Compared to PX, the cost in LV increases faster because the distribution of POIs is
highly skewed. This leads to inaccurate aggregate information at cells covering dense
areas, burdening the reported average time. Figure 10(b) measures the running time as
a function of|Tq|, for k = 16. The diagrams and the explanations are similar to those
of Figure 9(b).
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Fig. 10.Query Time for NSTP

Frequent Social Keywords in Range.Figure 11(a) plots the running time of FSKR
versusk, for r = 3km. Recall that FSKR initially creates the occurrence lists ofthe



terms inSR by merging the inverted lists of the leaf cells that overlapSR. Then, the
terms are sorted in decreasing order of list size. These steps dominate the total cost.
Consequently, the value ofk does not affect the execution time. FSKR is slower in LV
since the average number of users inSR is greater, i.e., 2105 in LV and 464 in PX.

Figure 11(b) shows the execution time as a function of the radius r of SR, for
k = 16. In both datasets the running time grows withr. In LV, the cost exhibits a
steep increase because many new users are covered by the expandedSR. For instance,
for r = 4km, SR includes on average 3662 users in LV and 627 in PX, whereas for
r = 5km, it covers 6092 and 776 users, respectively.
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Fig. 11.Query Time for FSKR

Summarizing the experimental evaluation, all algorithms are very fast (at most, a
few seconds) under all settings. In addition, the construction of GSKI only takes up
to 23 seconds for the selectedg, h, and the largest dataset. Finally, the GSKI supports
efficient location updates as it is based on a grid structure.

9 Conclusion

This paper introduces a class of top-k queries that enable retrieval of users, POIs or
keywords based on geographic, social and textual criteria.We propose three concrete
queries that can be used in various tasks involving context-based search, profile-based
advertisement and market analysis. For each query we provide a processing algorithm
that exploits a specialized index. Our experiments with real datasets confirm the effec-
tiveness and efficiency of the proposed methods.

An interesting direction for future work concerns additional GSK queries, applica-
ble to different tasks. Even the same queries can be altered to support alternative partial
scores. For instance, instead of the Euclidean, we could apply the road network dis-
tance to the definition of geographic score in NPRU and NSTP. Similarly, FSKR could
be based on co-occurrences of terms in triangles (instead ofpairs) of friends.
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