
PStorM: Profile Storage and Matching for Feedback-Based
Tuning of MapReduce Jobs

Mostafa Ead∗
Amazon

Herodotos Herodotou†

Microsoft Research

Ashraf Aboulnaga∗
Qatar Computing Research

Institute

Shivnath Babu
Duke University

ABSTRACT
The MapReduce programming model has become widely adopted
for large scale analytics on big data. MapReduce systems such as
Hadoop have many tuning parameters, many of which have a sig-
nificant impact on performance. The map and reduce functions
that make up a MapReduce job are developed using arbitrary pro-
gramming constructs, which make them black-box in nature and
therefore renders it difficult for users and administrators to make
good parameter tuning decisions for a submitted MapReduce job.
An approach that is gaining popularity is to provide automatic tun-
ing decisions for submitted MapReduce jobs based on feedback
from previously executed jobs. This approach is adopted, for ex-
ample, by the Starfish system. Starfish and similar systems base
their tuning decisions on an execution profile of the MapReduce
job being tuned. This execution profile contains summary infor-
mation about the runtime behavior of the job being tuned, and it
is assumed to come from a previous execution of the same job.
Managing these execution profiles has not been previously stud-
ied. This paper presents PStorM, a profile store and matcher that
accurately chooses the relevant profiling information for tuning a
submitted MapReduce job from the previously collected profiling
information. PStorM can identify accurate tuning profiles even for
previously unseen MapReduce jobs. PStorM is currently integrated
with the Starfish system, although it can be extended to work with
any MapReduce tuning system. Experiments on a large number of
MapReduce jobs demonstrate the accuracy and efficiency of pro-
file matching. The results of these experiments show that the pro-
files returned by PStorM result in tuning decisions that are as good
as decisions based on exact profiles collected during pervious ex-
ecutions of the tuned jobs. This holds even for previously unseen
jobs, which significantly reduces the overhead of feedback-driven
profile-based MapReduce tuning.

1. INTRODUCTION
The MapReduce (MR) programming model [4] has become

∗Work done at the University of Waterloo.
†Work done at Duke University.

(c) 2014, Copyright is with the authors. Published in Proc. 17th Inter-
national Conference on Extending Database Technology (EDBT), March
24-28, 2014, Athens, Greece: ISBN 978-3-89318065-3, on OpenProceed-
ings.org. Distribution of this paper is permitted under the terms of the Cre-
ative Commons license CC-by-nc-nd 4.0

widely adopted for large scale data analytics in many organizations.
MR systems, the most popular being Hadoop [10], have many tun-
ing parameters, and these parameters have a significant impact on
performance. Some example tuning parameters are: the amount
of memory used for sorting intermediate results, the number of re-
duce tasks, and the number of open file handles. Setting MR tuning
parameters is difficult even for expert users. And as Hadoop and
its ecosystem get more widely adopted in diverse application do-
mains, more users from varying backgrounds become involved in
the development of MR jobs. These users may be experts in their
application domains, but they are likely novices when it comes to
Hadoop performance tuning. Thus, it is important to develop au-
tomatic tuning techniques for MR jobs in Hadoop, especially since
these jobs often run on clusters of hundreds or thousands of ma-
chines, so any wasted resources due to poor tuning decisions will
be amplified by the size of the cluster. Recent advances in Hadoop,
particularly YARN [35] provide richer mechanisms for assigning
resources to MR jobs, but do not answer the question of how to
decide the amount of resources to give to a job. Thus, YARN and
similar technologies make it even more important to make accurate
tuning decisions for MapReduce.

Tuning MR jobs is difficult due to the complexity and scale of
the software and the underlying clusters on which these jobs run.
The MR model places no restrictions on the types of data that jobs
process, and the map and reduce functions that process the data are
also unrestricted in their complexity. Moreover, data storage and
processing happens in a large-scale distributed system with pos-
sibly heterogeneous hardware. An effective way to deal with the
complexity of MR tuning is to adopt a feedback-based approach to
tuning. In this approach, the system collects information about the
execution of MR jobs in the form of execution profiles. The system
then uses these execution profiles (which contain feedback from
job execution) to set the tuning parameters for future jobs. Any ef-
fect of MR complexity on performance is captured in the profiles,
which makes feedback-based tuning simpler and more robust than
approaches that do not use feedback (such as rule-based tuning).

Feedback-based tuning using execution profiles is used in the
Starfish system [14] and also in [27]. Execution profiles are also
used in the PerfXplain system [20] to provide automatic expla-
nations for differences between the observed and expected perfor-
mance of an MR job. The execution profiles in such systems can
consist of general purpose execution log information such as CPU
utilization, job duration, and memory used. The profiles can also be
based on MR-specific information collected from the execution of
an instrumented MR job. As an example, Figure 1 shows some of
the MR-specific information in a profile from the Starfish system
(which we use in this paper). As the figure shows, an execution
profile can contain information collected at runtime from an instru-

<job_profile>
<input>hdfs://namenode:50001/wiki/txt</input>
<counter key="MAP_INPUT_RECORDS" value="7001"/>
<counter key="MAP_INPUT_BYTES" value="19821797"/>
<counter key="HDFS_BYTES_READ" value="19821933"/>
<counter key="REDUCE_INPUT_BYTES" value="3650063320"/>
<statistic key="MAP_SIZE_SEL" value="11.566"/>
<statistic key="MAP_PAIRS_SEL" value="1995.917"/>
<statistic key="COMBINE_SIZE_SEL" value="0.7479"/>
<statistic key="COMBINE_PAIRS_SEL" value="0.6405"/>
<cost_factor key="READ_HDFS_IO_COST" value="60.45"/>
<cost_factor key="MAP_CPU_COST" value="4686280.79"/>
</job_profile>

Figure 1: An Execution Profile from the Starfish System

mented MR job about different aspects of the execution of this job
such as the cost of different operations and the amount of data read
and written by these operations.

Profile-driven tuning is an effective way to deal with the com-
plexity of MR tuning since it reduces the need for a-priori exper-
tise by relying heavily on observed information from job execution.
This tuning approach has shown its effectiveness for MR [14, 20]
and previously for some tuning tasks in relational database sys-
tems [1]. One of the major challenges in profile-driven tuning is
providing an execution profile for a submitted MR job. Collecting
execution profiles imposes overhead on job execution, especially
if it requires running an instrumented MR job. And systems that
use profile-driven tuning typically use a given execution profile for
tuning only the job from which this profile was collected. The typ-
ical workflow in such a system is as follows: When an MR job is
submitted for the first time, it is run without profile-driven tuning
and an execution profile is collected from this run. Later, if the
same job is submitted again, the profile collected from the first run
of the job is used for tuning. Identifying that a job is the same as
a previously submitted one is typically based on the program name
or on a hash of the program byte code. Furthermore, the execution
profile of one MR job is not used for tuning another job, even if the
two jobs are similar.

MR jobs submitted to a cluster can be expected to have some
similarity since they process the same data and often reuse the same
map or reduce functions. These map and reduce functions are of-
ten part of a library shared by all users. Even if the functions are
not part of a library, users commonly create new MR jobs by mod-
ifying the code of existing jobs. In addition, users often submit
refinements of the same program to the cluster during a session.
Thus, a new MR job submitted to a cluster will frequently be sim-
ilar to some MR job previously executed on the same cluster. The
similarity between MR jobs is likely to be higher if the jobs are
generated from high-level query languages such as Pig Latin [26]
or Hive [32]. However, all this similarity is ignored by current
systems that use profile-driven tuning; profiles are collected inde-
pendently and a profile of one job is not used for tuning other jobs.

Even identifying that a job is identical to a previously executed
job can be problematic for current systems. Relying on program
or function names can be inaccurate since users commonly modify
programs and substantially change their behavior while keeping the
program and function names unchanged. Relying on a hash value
of the program byte code can be overly conservative, since recom-
piling a program typically results in changed byte code.

This paper addresses these problems and presents PStorM, a
Profile Store and Matcher for feedback-based tuning of MR jobs.
Figure 2 presents the PStorM architecture. PStorM stores all the
execution profiles collected from different runs of MR jobs on the
cluster, and uses these stored profiles to provide an accurate profile

Figure 2: PStorM Architecture

for a newly submitted MR job. PStorM consists of two compo-
nents: a data store for execution profiles which we call the profile
store, and a profile matcher that can accurately match a submit-
ted job with the stored profiles. The profile matcher can provide
accurate profiles even for previously unseen MR jobs. The profile
matcher can also provide a composite profile for an MR job us-
ing execution feedback from the mapper in one job and the reducer
in another job. Thus, PStorM can cheaply and accurately provide
execution profiles to a system for feedback-based tuning, such as
Starfish. PStorM reuses collected execution profiles for as many
jobs as possible, which reduces the need for collecting such pro-
files, thereby reducing the overhead of feedback-based tuning and
increasing its applicability.

The quality of profiles returned by PStorM is highly dependent
on the accuracy of its profile matcher. The accuracy of the matcher
is in turn dependent on the features used to distinguish among
job profiles and the matching algorithm that uses these features
to choose the best profile for a submitted MR job. In this paper,
we use Starfish as the system for generating execution profiles, and
the matching algorithm is used to provide Starfish with the profiles
it needs for tuning Hadoop configuration parameters (more about
Starfish in the next section). The PStorM matching algorithm em-
ploys a set of static features and dynamic features to match a sub-
mitted MR job to the profiles in the PStorM data store. The static
features for a submitted MR job are obtained by analyzing the code
of this MR job. The dynamic features are obtained by executing
one sample map task plus the reducers to process the output of this
task, and collecting a Starfish profile based on this sampling. Fea-
tures used by PStorM are selected based on our domain expertise
in Hadoop tuning, and we experimentally demonstrate that these
features result in higher matching accuracy than features selected
using a machine learning feature selection approach. The match-
ing algorithm used by PStorM is also domain specific, and it uses
a multi-stage approach to evaluate the distance between different
features in the profile. We experimentally demonstrate that this
simple matching algorithm performs as well as more complex ma-
chine learning algorithms that require expensive training. Our ex-
periments also demonstrate that Starfish tuning of MR jobs based
on profiles returned by PStorM results in runtime speedups of up
to 9x even for previously unseen MR jobs. This speedup is due to
PStorM’s ability to create profiles for previously unseen MR jobs
by leveraging the information collected about other previously exe-
cuted jobs. The cost paid to obtain this speedup is the consumption
of one map slot plus the corresponding reduce slots for sampling
to collect the dynamic features that are used to perform a lookup in
the PStorM data store.

Note that when the profile of an MR job in PStorM matches a
submitted MR job, this does not necessarily mean that the jobs are
functionally equivalent. It simply means that the runtime behav-

(a) First Job Submission

(b) Subsequent Job Submissions

Figure 3: Starfish Tuning Workflow

ior and resource consumption of the two jobs are similar, and the
profile returned by PStorM will result in correct tuning decisions
for the submitted job. It is reasonable to assume that we will often
find jobs that match each other according to this definition, since
MR uses a very stylized form of programs and a very stylized form
of job execution, and since jobs executed on a cluster often have a
high degree of similarity.

The contributions of this paper are summarized as follows:
• A set of novel features of MR jobs that effectively distinguishes

among job profiles (Section 3).
• A set of similarity measures for use with different types of fea-

tures (Section 4).
• A domain specific multi-stage algorithm for matching profiles.

The matching algorithm can create an output profile from dif-
ferent stored profiles, which is useful for previously unseen jobs
(Section 5).

• A profile store that organizes the profile information collected
from MR jobs (Section 6).

2. SYSTEM OVERVIEW
PStorM is composed of two main components: the profile store

and the profile matcher. The profile store is an instance of an HBase
database [12] that stores execution profiles in an extensible and
efficiently accessible schema. The profile matcher is a program
that chooses the best execution profile from this HBase database.
PStorM runs as a daemon in a normal Hadoop cluster.

In this paper, PStorM is used to store execution profiles collected
by Starfish [14], and the profiles returned by PStorM are used for
Starfish optimization (Figure 2). We therefore present an overview
of Starfish and its optimization workflow. Starfish is a system for
feedback-based tuning of Hadoop MapReduce jobs. It is composed
of three main components: profiler, what-if engine (WIF engine),
and cost-based optimizer (CBO). Starfish uses the tuning workflow
shown in Figure 3. The first time an MR job is submitted, the pro-
filer collects an execution profile for this job. This execution profile
contains fine-grained data flow and cost statistics about the execu-
tion of every phase in the map and reduce tasks of the job. Starfish
stores the collected execution profiles in a file-based hierarchy with
very simple storage and retrieval based on file names. In subse-
quent submissions of an MR job, the WIF engine uses cost models
for different aspects of job execution to predict the runtime of the
job given its profile. The CBO searches the space of possible con-
figuration parameters and recommends the optimal configuration
parameters for the new submission of the job. PStorM is meant to
replace the profiler in Figure 3. Therefore, the role of PStorM, and
the profile matcher in particular, is to find the job profile that helps
the CBO find the optimal configuration for a submitted job.

If a complete profile of a job being optimized by Starfish is not
available, Starfish can collect a profile for use by the CBO by run-
ning a sample of the tasks that make up this job [14]. Sampling
exposes a tradeoff between the cost of profiling and the accuracy
of the collected profile. Sampling more tasks incurs runtime over-
head and consumes some of the task execution slots available on
the cluster. At the same time, sampling more tasks results in a
more accurate execution profile. The authors of Starfish propose as
a rule of thumb sampling 10% of the tasks of a job. In our work
we have verified that, in most cases, tuning decisions based on a
10% sample do indeed provide speedups comparable to tuning de-
cisions based on a full profile. The goal of PStorM is to achieve
lower overhead than even the 10% sample.

For each MR job submitted to the cluster, PStorM uses the
Starfish sampler to run a sample consisting of exactly one map task
and the reducers required to process the output of this map task
(Figure 2). A sample profile is collected from this run and used by
the profile matcher to build a feature vector for the submitted job.
This feature vector is used to probe the profile store looking for a
matching job profile. If a matching profile is found, it is provided
to the Starfish CBO which recommends suitable parameter values
for the submitted job. If no matching profile is found, the job is
executed with profiling turned on. The collected profile from this
execution is stored in the profile store and used for tuning future
submissions of this job or other similar jobs.

The reason that PStorM requires less sampling than Starfish is
that the purpose of sampling in the two systems is fundamentally
different. Starfish needs to collect enough information from the
sample to construct an accurate and representative profile, while
PStorM only needs to collect enough information from the sample
to probe the profile store and retrieve a matching profile. Thus,
PStorM can get away with much lower sampling accuracy (and
hence sampling overhead) than Starfish.

As an alternative to the CBO, we also implemented a Rule Based
Optimizer (RBO) for MapReduce jobs. The rule based optimizer is
based on aggregating rules of thumb from different expert sources
that specialize in Hadoop tuning [17, 23, 31, 33]. Our RBO con-
sists of the union of sets of rules found at the various sources. These
rules apply to distinct cases and do not conflict, and the resulting
RBO does typically result in better runtimes than the default param-
eter settings. However, there are cases in which the RBO is actually
worse than the default parameter settings. An RBO is an attempt
to capture tuning expertise, but it is not as good as a cost-based
profile-driven tuning.

Next, we discuss the various components of the PStorM pro-
file matcher. The profile matcher can be considered as a domain-
specific pattern recognition problem. Every pattern recognition
problem is composed of the following steps: feature selection (Sec-
tion 3), data preprocessing and normalization, finding the appropri-
ate similarity measures (Section 4), the pattern matching workflow
(Section 5), and finally thresholds adjustment.

3. FEATURE SELECTION
This section answers the following question: What features of

an MR job and its profile can distinguish this job from others in the
profile store? To answer this question, we first explore the perfor-
mance models used by the Starfish WIF engine in order to identify
the features that play an important role in its runtime predictions.
As outlined in [13], these performance models rely on three cate-
gories of features:
• Configuration Parameters: The values of the configuration pa-

rameters specified by the CBO as it searches the space of pos-
sible configurations.

Feature Description
MAP_SIZE_SEL Selectivity of the map function in terms of size
MAP_PAIRS_SEL Selectivity of the map function in terms of number of records
COMBINE_SIZE_SEL Selectivity of the combine function in terms of size
COMBINE_PAIRS_SEL Selectivity of the combine function in terms of number of records
RED_SIZE_SEL Selectivity of the reduce function in terms of size
RED_PAIRS_SEL Selectivity of the reduce function in terms of number of records

Table 1: Data Flow Statistics

Feature Description
READ_HDFS_IO_COST IO cost of reading from HDFS (ns per byte)
WRITE_HDFS_IO_COST IO cost of writing to HDFS (ns per byte)
READ_LOCAL_IO_COST IO cost of reading from local disk (ns per byte)
WRITE_LOCAL_IO_COST IO cost of writing to local disk (ns per byte)
MAP_CPU_COST CPU cost of executing the mapper (ns per record)
REDUCE_CPU_COST CPU cost of executing the reducer (ns per record)
COMBINE_CPU_COST CPU cost of executing the combiner (ns per record)

Table 2: Profile Cost Factors

• Data flow Statistics: A set of profile attributes that specify in-
put/output data properties of the map, combine, and reduce
tasks (examples in Table 1).

• Cost Factors: A set of profile attributes that specify the IO,
CPU, and network costs incurred during the course of job exe-
cution (examples in Table 2).

These data flow statistics and cost factors are extracted from the
profile that is provided to the CBO (Figure 3).

Suppose that a job, J, was executed on the cluster, and the profile
collected for it was PJ . This profile was then provided to the CBO
and the recommended configuration parameters were CJ . Now,
suppose that the same job, J, is submitted to the cluster and we
want to use PStorM to provide the CBO with a profile that will lead
to similar recommendations to CJ . The profile matcher should re-
turn a profile, Pm, that contains similar data flow statistics and cost
factors to PJ . The configuration parameters are supplied by CBO.
Hence, the space of features that represent a profile is narrowed
down to data flow statistics and cost factors of the profiled job.

3.1 Dynamic Features
We refer to features extracted from the job profile collected us-

ing the Starfish profiler as dynamic features, since they are based on
the execution of the MR job. A submitted job that is to be matched
against the profile store does not initially have an attached profile.
In order to create a feature vector for this job to be used by the
profile matcher, PStorM executes only one map task of the job and
the reducers required to process the output of this map task. The
number of reducers is specified by the current Hadoop configura-
tion parameters, and the scheduling of these reducers is handled by
the normal Hadoop task scheduler. During the execution of this
sample, the profiler collects the sample profile Ps. The overhead
for collecting the profile Ps is low, and the accuracy of this profile
is sufficient for use by the profile matcher. To quantify the overhead
of 1-task sampling in PStorM, we compare it against the overhead
of collecting a profile based on a sample of 10% of the map tasks,
plus the reducers. Figure 4 shows the overhead of 10% profiling
and 1-task sampling for different MR jobs (details of these jobs are
given in Table 5, and the jobs are executed on the 35GB Wikipedia
data set). The overhead for each job is presented as a fraction of
the runtime of the job when using the configuration recommended
by the RBO while the profiler is turned off. In addition to hav-
ing lower overhead, 1-task sampling consumes only one map slot
while 10% profiling consumes 57 map slots (the data set was stored

Figure 4: Profiling Overhead for 10% Profiling and 1 Task Pro-
filing as a Fraction of the Job Runtime using the RBO Recom-
mendations Without Profiling

in 571 HDFS splits). Thus, we see that 1-task sampling has mini-
mal effect on the the response time of individual MR jobs and the
overall cluster throughput.

The features in Ps used for matching against the profile store
should have low variance among multiple sample profiles of the
same job, and should have high variance among different job pro-
files stored in PStorM. Drawing on the definition of the data flow
statistics, and based on our observations of the values of these fea-
tures for different job profiles, we conclude that some of the data
flow statistics in Ps satisfy this requirement. These data flow statis-
tics, which we use for matching, are the ones shown in Table 1.

As an example to illustrate why these features are effective, con-
sider the map size selectivity feature (MAP_SIZE_SEL). The map
size selectivity of a sorting MR job is 1 for all sample profiles of
that job (i.e., for all map tasks). On the other hand, the map size
selectivity for the word count MR job is larger than 1 for all sample
profiles, because the map function emits one intermediate record
for every word extracted from an input line. The map size selec-
tivity of the word co-occurrence job is much larger than 1 and also
larger than the selectivity of the word count job, because the map
function emits one intermediate record for every pair of words ex-
tracted from the input line using a sliding window of size n.

On the other hand, the features that make up the profile cost fac-
tors cannot be used for matching because the values of these fea-
tures can exhibit high variance among sample profiles of the same
job. For example, the IO cost to read from HDFS can differ be-

Feature Description
IN_FORMATTER Input formatter class name
MAPPER Mapper class name
MAP_IN_KEY Input key data type
MAP_IN_VAL Input value data type
MAP_CFG Control flow graph of

the map function
MAP_OUT_KEY Intermediate key data type
MAP_OUT_VAL Intermediate value data type
COMBINER Combiner class name
REDUCER Reducer class name
RED_OUT_KEY Output key data type
RED_OUT_VAL Output value data type
RED_CFG Control flow graph of

the reduce function
OUT_FORMATTER Output formatter class name

Table 3: Static MR Job Features

tween two samples of the same job just because they read input
splits whose size is different. As another example, the map CPU
cost can differ because one sample was executed on a node that
was under-utilized, while the other sample was executed on a node
that was over-utilized. The latter example is a common case in any
Hadoop cluster, and is one of the reasons MR has a straggler han-
dling mechanism [4]. Thus, we cannot use the profile cost factors
collected from the 1-task sample profile. Instead, we rely on static
analysis to extract features of the MR job that provide indications
about the cost factors, as we discuss next.

3.2 Static Features
In this section, we explore features that can be extracted stat-

ically, i.e., from the byte code of a submitted MR job. We call
these static features. All MR jobs are developed by implementing
certain interfaces, and are executed by a well-defined framework.
Every MR job will follow the same course of action: Input data is
fed to the mapper in the form of a set of key-value pairs. The map
function is invoked to process the designated set of input key-value
pairs, and produces a set of intermediate key-value pairs. Interme-
diate key-value pairs are divided into a number of partitions equal
to the number of reducers. Each reducer starts by shuffling its des-
ignated partition from all mappers to its local machine. The reduce
function is invoked to process the set of values corresponding to the
same intermediate key and produces the output key-value pairs.

Therefore, all MR jobs are similar except for certain parts cus-
tomized by the programmer who wrote the job. These customiz-
able parts are the input formatter, mapper class, intermediate key
partitioner, intermediate key comparator, reducer class, and out-
put formatter. The class names of most of these customizable
parts are among the set of static features that we use for match-
ing (Table 3). These customizable parts cause each MR job to
have different data flow statistics and different profile cost fac-
tors. For example, the input formatter of an MR job that joins
two inputs is CompositeInputFormat and the input formatter of a
word count MR job is TextInputFormat. Different input format-
ters lead to different READ_HDFS_IO_COST values in the map-
side profiles. Similarly, different output formatters lead to different
WRITE_HDFS_IO_COST values in the reduce-side profiles.

The static features described thus far can be extracted while deal-
ing with the mapper and reducer classes as black boxes. These
static features can easily be extracted from the Java byte code with-
out analyzing the logic of this code. However, analyzing the logic
of the code can lead to more powerful matching, as we discuss next.

3.3 Control Flow Graph
Looking into the execution logic of the map and reduce func-

tions can lead to much better matching, based on deeper analysis
and robust to changes in class names and in the byte code gener-
ated by the Java compiler. In particular, we have found that analyz-
ing the control flow graph (CFG) of the map and reduce functions
can significantly contribute to distinguishing MR jobs from each
other. The CFG is a graph representing all paths and branches that
might be traversed by a program during its execution. A vertex in
this graph is a branching statement or a block of sequentially exe-
cuted statements, and an edge represents a goto statement from one
branch vertex to another vertex. In PStorM, a CFG is extracted for
the map function and another CFG is extracted for the reduce func-
tion. We use the Soot tool [34] to extract these CFGs, and we add
them to our set of static features.

Algorithm 1 Map Function of the Word Count Job
function MAP(Object key, Text line, Context context)

iterator← line.tokenize()
while iterator.hasMoreTokens() do

word← iterator.currentToken()
context.write(word,1)

end while
end function

Algorithm 2 Map Function of the Word Co-occurrence Job
function MAP(LongWritable key, Text line, Context context)

window← getUserParameter()
words← line.extractWords()
for i = 1→ words.length do

if isNotEmpty(words[i]) then
for j = i→ i+window do

pair← (words[i],words[j])
context.write(pair,1)

end for
end if

end for
end function

As an example of the use of the CFG in matching, the map func-
tions of the word count and the word co-occurrence MR jobs are
shown in Algorithm 1 and Algorithm 2, respectively. These two
jobs are part of the workload that we use for evaluating PStorM.
More details about these jobs and the settings in which they are
executed are provided in Section 7. The map function of the word
count job contains one loop, which is represented as a cycle in the
CFG, shown in Figure 5(a). The word co-occurrence map func-
tion contains one outer loop, one inner condition, and one inner
loop, and has the CFG shown in Figure 5(b). The CFGs are quite
different and can help distinguish between the jobs. Moreover, dif-
ferent CFGs entail different values of the MAP_CPU_COST and
REDUCE_CPU_COST features, which are part of the profile cost
factors. Thus, we can use CFGs as proxies for comparing profile
cost factors since these factors cannot be extracted directly from
the 1-task samples, as discussed earlier.

Comparing the CFGs of the map and reduce functions of a job is
more robust than comparing hash values of the source code or byte
code of these functions. For example, consider two implementa-
tions of the word count map function, one that uses a for-loop as
in Algorithm 1 and one that uses a while-loop. Both implemen-
tations have the same behavior, and will be matched if comparing

(a) Word Count Job (b) Word Co-occurrence
Job

Figure 5: CFGs of the Map Functions of the Word Count and
Word Co-occurrence MR Jobs

the CFGs. However, comparing source or byte code will result in a
mismatch between these two versions of the word count job.

Matching programs based on their CFGs can be extremely com-
plex, and is undecidable in the general case. However, in our case
we use a very conservative similarity metric for matching (dis-
cussed in the next section), and if this metric does not result in a
match we do not rely on the CFG but rely on the other features
instead. Also, since the jobs being matched are MR jobs which
follow a restricted programming model, the likelihood of finding a
match based on the CFG is increased.

4. SIMILARITY MEASURES
The feature vector constructed for a submitted MR job and the

feature vectors stored in PStorM are all composed of two types of
features, static and dynamic. The static features are all categorical,
and the dynamic features are all numerical. To match jobs based on
these features, we need to define similarity measures for both types
of features (categorical and numerical).

There are many similarity measures proposed in the literature for
matching two pure categorical feature vectors, e.g., Jaccard index,
cosine similarity with TF-IDF, and string edit distance. In this pa-
per we use the Jaccard index to match the static features, since it is
a simple similarity measure that incurs low computation cost, and
has been shown to outperform the other similarity measures [11].
The Jaccard index is defined as the fraction of tokens that appear in
both of two categorical sets. For our usage, it is defined as follows:

Jacc(SJ1 ,SJ2) =
|SJ1 ∩SJ2 |
|SJ1 ∪SJ2 |

where SJ1 and SJ2 are the extracted static feature vectors from jobs
J1 and J2, respectively. The time complexity to calculate the Jac-
card index is O(|SJ1 ||SJ2 |). However, in PStorM only corresponding
pairs of feature values are tested for equality, which reduces the
time complexity to O(|SJ |) (the size of the static feature vector of
all jobs is the same).

Jaccard similarity is suitable for all static features except for
CFGs. It would be possible to use sophisticated graph matching
or graph isomorphism algorithms for matching CFGs, but these al-
gorithms are time consuming. Moreover, we choose to make our
CFG matching conservative since a small change in the CFG can
lead to a large change in the semantics and resource consumption
of the program. Thus, we base our CFG matching on synchronized
traversal of the two graphs. We exploit the fact that each CFG has
one begin statement, and each statement has either one or two next
statements whether it is a normal statement or a branch statement.
The following context free grammar describes the structure of the
CFGs extracted by the Soot tool that we use in this paper.

CFG |= Statement

Statement |= normal_stmt | BranchStatement

BranchStatement |= branch_cond IsLoop Successors

IsLoop |= true | f alse

Successors |= Statement Statement ExpCatchStmt

ExpCatchStmt |= caught_exp | ε

To match two CFGs, we start from the first statement of each
CFG, and we move through the CFGs simultaneously using a
breadth-first search approach. The range of match score values is
not [0, 1] as in the Jaccard index. Instead, it is either 0 or 1, for
mismatch or match, respectively.

In addition to matching static features, we also need a simi-
larity measure for dynamic features. The dynamic feature vector
is composed of pure numerical features that are defined on dif-
ferent scales. Euclidean distance is a suitable distance measure,
but it requires all features to have the same scale. We use Eu-
clidean distance in PStorM but we normalize the features to a com-
mon scale. This normalization happens at profile matching time.
PStorM stores the minimum and maximum observed values for
each feature, and maintains these values when profiles are added
to the profile store. At matching time, the minimum and maximum
values of each feature are used to normalize the feature value to a
number between 0 and 1.

5. STEP-WISE PROFILE MATCHING
The building blocks of the profile matcher have been introduced

in the previous sections. In this section, those building blocks are
connected together to create a multi-stage profile matching work-
flow starting from a job that is submitted to the MR cluster, and
ending with a matching profile retrieved from the profile store (if a
match is found) and used by the CBO.

When a job is submitted to the cluster, its byte code is analyzed
to extract the static features. In addition, one map task is selected
randomly to be executed with profiling turned on, along with the
reduce tasks to process the output of this map task. This sampling
gives us a sample profile Ps. Two feature vectors are constructed,
one for map-side matching and the other for reduce-side matching.
Each feature vector contains both the dynamic features extracted
from Ps and the static features extracted by analyzing the byte code
of the submitted job. Hence, each feature vector contains features
of mixed data types. The next section describes a generic machine
learning approach for computing a distance metric that considers
numerical and categorical features in one distance measure. The
approach works well, but it incurs a large overhead to build a train-
ing data set, learn the model used for matching, and maintain the
model as more job profiles are collected. Instead, we propose a
multi-stage matching algorithm based on our domain knowledge,
such that the distance between features of different types (numeri-
cal or categorical) is calculated in different stages of matching.

The profile matching workflow is shown in Figure 6, and it is
applied twice, once for map-profile matching and once for reduce-
profile matching. The workflow starts with a set of candidate job
profiles, C, consisting of all the profiles stored in the PStorM pro-
file store, and applies three filters to this set until only one candidate
is left. That candidate is the matched profile returned by PStorM.
First, the Euclidean distance between the dynamic features of each
candidate job profile and Ps is calculated, and job profiles with dis-
tances larger than a defined threshold θEucl are filtered out of C. We
refer to this filtered set as C′. The second filter applied is the control

Figure 6: The Map/Reduce Profile Matching Workflow

flow graph matcher, and jobs whose CFGs do not match the CFG
of the submitted job are filtered out. Third, the Jaccard similarity
index between the static features of each job still in the candidate
set and the submitted job is calculated, and jobs with similarity in-
dex lower than a defined threshold θJacc are filtered out. Finally,
if more than one job remains in the set, a tie-breaking rule is used
that returns the profile of the job whose input data size is closest to
the input data size of the submitted job.

The profile matcher declares failure to find a matching profile if
the set C becomes empty after the first filter. However, the matcher
does not declare failure if the set C becomes empty after the second
or third filters. An empty set after these filters is interpreted to mean
that the submitted job was never executed before on the cluster.
In this case, an alternative filter is applied. Recall that the set C′

contains profiles whose dynamic features (Table 1) have Euclidean
distance less than θEucl to Ps. The Euclidean distance between
the profile cost factors (Table 2) of each job profile in C′ and Ps
is calculated, and jobs in C′ with distances larger than the defined
θEucl are excluded. Then, the profile of the job whose input data
size is closest to the submitted job is returned by the matcher.

The profile matcher returns No Match Found when the set of can-
didate job profiles after this alternative filter becomes empty. For
the case when the matcher returns No Match Found, the submitted
MR job is executed using its submitted configuration parameters
with profiling turned on. The collected profile is stored in PStorM
to be used for future matching.

If matching succeeds, the result of map-profile matching is the
map profile of job J1, and the result of reduce-profile matching is
the reduce profile of job J2. The returned job profile is the compo-
sition of these two profiles. This profile composition step is useful
particularly when the submitted job has never been executed be-
fore on the cluster. This step is based on the fact that every MR
job is composed of two independent sets of map and reduce tasks.
Hence, the collected job profile also contains two independent sub-
profiles for the map tasks and the reduce tasks. Therefore, the map
profile and the reduce profile of J1 and J2 can be composed into a
complete profile for the submitted MR job. Our experiments (Sec-

tion 7.2) support the design decision to return a composite profile
for previously unseen jobs. We are able to provide an accurate pro-
file to the CBO even for such jobs.

In the matching workflow, filtering based on dynamic features
precedes the two filters based on static features. The reason is that
job profiles can differ between different executions of the same job
with different parameters. For example, the job profiles collected
during the execution of the word co-occurrence MR job with dif-
ferent window sizes have different data flow statistics and different
profile cost factors. Hence, the job profile collected at the execution
with one window size cannot be used by the CBO to recommend
configuration parameters for the execution with the other window
size. If the static features are used for matching before the dynamic
features, profiles of other jobs that have similar data flow statistics
would be excluded incorrectly. Hence, we would lose the opportu-
nity to compose a profile using these excluded profiles.

If more than one job profile remains in the candidate set at the
end of profile matching, we use the input data size to break ties and
select one job profile to return. The reason for this tie breaking rule
is that the execution of the same job on different data sizes results in
different intermediate data sizes and hence different shuffle times
in the reduce tasks, and consequently different reduce profiles.

5.1 Alternative Matching Technique
Profile matching can be viewed as a generic nearest neighbor

problem for which we need to define a suitable distance metric
that can be used to compare feature vectors. The feature vectors
in PStorM include numerical and categorical features, so we need
a generalized distance metric that can handle both types of features
simultaneously. The approach adopted in the pattern recognition
literature [2, 7, 16, 21] is to calculate a distance value for each
type of feature, and then combine these distance values using a
weighted sum. The weights used in this weighted sum are learned
using regression analysis on a training data set. Each point in the
training data set consists of two feature vectors, the distances be-
tween the features of different types in these vectors, and an overall
distance representing how close the two vectors are to each other.
The regression analysis applied on this training data aims to find
weights that make the weighted sum of the distances between dif-
ferent types of features as close as possible to the overall distance.

In this paper, we construct the training data set from a set of job
profiles as follows. For each point (or sample) in the training data
set, we need a pair of job profiles (or feature vectors). We use as the
first profile in that pair the complete profile of a job J. The second
profile in the pair is a profile made up of the map profile of job J1
and the reduce profile of job J2, where J1 and J2 may or may not be
the same job (i.e., we can have a complete profile or a composite
profile). This approach to generating job profiles for the training
data ensures that this data contains composite profiles, so that the
learned model can be used for composite profiles.

In addition to the two job profiles, each training sample has dis-
tance/similarity metrics that measure the distance between different
types of features in the two profiles. We record four metrics for the
distance between the map profiles, and the same four for the dis-
tance between the reduce profiles. These four distance metrics are:
(1) the Jaccard distance between the static features of the two pro-
files, (2) the Euclidean distance between the dynamic features of
the two profiles, (3) the Euclidean distance between the profile cost
factors of the two profiles, and (4) the result of matching the CFGs
of the two jobs. The final (ninth) value in the training sample is the
difference between the runtime predicted by the Starfish WIF en-
gine for the job J given the first profile in the pair, and the runtime
predicted by the WIF engine for the same job but given the second

profile. This value represents an overall measure of how well the
two profiles match each other.

The distance metric used for matching is the weighted sum of the
individual distances/similarities between different feature types, as
shown in the following equation:

D = w1 Jaccmap + w2 Eucl_DSmap

+ w3 Eucl_CSmap + w4 CFG_Matchmap

+ w5 Jaccred + w6 Eucl_DSred

+ w7 Eucl_CSred + w8 CFG_Matchred (1)

The goal of the learning algorithm is to learn the weights to use
based on the training samples. The distance D used during training
is the difference between the runtimes predicted by the WIF engine,
described above.

In order to improve the quality of the machine learning model,
we ensure that the training data set contains a sample that repre-
sents the distance between the profile of each job J and itself. The
distance D for such a sample is zero. Thus, such a sample provides
the machine learning algorithm with an example of a perfect match.

A state-of-the-art learning algorithm that is used in this kind
of learning problem and provides good results [5, 36] is Gradi-
ent Boosted Regression Trees (GBRT) [29]. GBRT produces the
learned model in the form of an ensemble of decision trees. We
used an implementation of this technique in the R [28] statistical
software package to calculate the weights that combine the partial
distances into a generalized distance metric (Equation 1). When
finding a matching profile for a submitted MR job, we return the
job in the profile store that has the smallest distance to the submit-
ted job according to the learned distance metric (i.e., the nearest
neighbour according to this metric).

Section 7.1 presents a comparison between our proposed domain-
specific multi-stage matching technique and GBRT in terms of pro-
file matching accuracy. We will see that our simple domain-specific
matcher works as well as the more complex GBRT matcher, which
requires an expensive training step that may need to be repeated
periodically as the profile store grows.

6. PROFILE STORE
The other component of PStorM is its profile store, which pro-

vides a repository of the profiles collected on the cluster. We em-
phasize that the profile matcher does not dictate any specific struc-
ture on the profile store. PStorM can return a profile for a submitted
MR job whether the collected profiles are stored in flat files, a re-
lational database, a NoSQL store, or any other type of data store.
However, judicious design choices for the profile store can signif-
icantly improve performance and facilitate the implementation of
matching and other functionality.

In PStorM, we adopt HBase [12] as the storage system for the
profile store. A discussion of other alternatives that we consid-
ered can be found in [6]. HBase is a distributed column-family
oriented data store that scales in the number of rows and the num-
ber of columns. HBase scales in rows by horizontal partitioning
and replication mechanisms, and it scales in columns by physically
storing columns of each column family in different files.

We chose HBase for several reasons. First, HBase is scalable
in the number of rows so it can handle the large number of job
profiles that would be collected on a cluster. Each job profile is
on the order of only a few hundred bytes in size, but scalability is
required since the number of profiles grows as the cluster is used.
Second, the indexing provided by HBase ensures fast access during
profile matching. Third, the type of updates needed for the profile
store is efficiently supported by HBase. Updates to the profile store

Row-Key
Column Family

Col. Col. Col. Col.
Name Name Name Name

CF
MAP_ RED_ MAP_ RED_

IN_ OUT_ SIZE_ SIZE_
KEY KEY SEL SEL

Static/Job1 Integer Text - -
Static/Job2 Long Integer - -

Dynamic/Job1 - - 1.0 1.0
Dynamic/Job2 - - 11.5 0.26

Table 4: PStorM Schema in HBase

consist of adding new profiles as jobs get executed, and possibly
deleting old profiles to free up space. There are no in-place mod-
ifications. This is precisely the type of updates that HBase is de-
signed for. Fourth, HBase is integrated with Hadoop and enables
the profile store to support analytical workloads. In this paper we
focus on exact matching to retrieve profiles for a submitted MR
job. However, we envision that the PStorM profile store can be
used by other Hadoop job analysis and optimization systems, e.g.,
PerfXplain [20] and Manimal [18]. These systems may also re-
quire exact match retrieval, but using HBase enables them to run
analytics-style scans of the profile store using Hadoop. Thus, the
profile store becomes a basis for complex analysis and tuning of
job performance on the Hadoop cluster. Fifth, HBase uses an ex-
tensible data model, so it is possible to incorporate new types of
data that are necessary for other job optimization and analysis sys-
tems. Finally, HBase is a good candidate for the PStorM profile
store since HBase is part of the Hadoop ecosystem and stores data
in HDFS. Hence, no new infrastructure components and few new
daemons need to be added to the cluster.

6.1 HBase Schema
Using HBase requires us to define a schema for the profile store.

In HBase, like other NoSQL systems, the logical and physical de-
signs are intertwined, so defining the schema has a significant im-
pact on performance.

The data model in HBase is that data is stored in the form of key-
value pairs. More specifically, the data consists of a set of rows,
where each row is identified by a row-key and has one or more
column families. A column family has one or more columns identi-
fied by a column name. The set of columns under the same column
family can be different between rows. HBase physically stores data
items as key-value pairs where the physical key is a composite key
made up of the row-key, column family identifier, column name,
and a timestamp. The value corresponding to this physical key is
the column value corresponding to the row-key. Thus, to use HBase
for the PStorM profile store, we need to design an HBase schema
for profiles, which requires us to specify the row-key, column fam-
ilies, and columns within these families.

A simple schema for profiles collected for MR job is to make the
row-key be the job ID, the column family be the feature type (e.g.,
static or dynamic), and the column names be the feature names.
Thus, the physical key used by HBase would be (job ID, feature
type, feature name). The value indexed by this key is the feature
value. With this schema, the profile store is not extensible, since
HBase does not allow adding column families once a table is cre-
ated, and a new column family is required for a new feature type.

Instead, we organize the job information into another schema, il-
lustrated in Table 4. The row-key is made up of the feature type as
a prefix and the job ID. Only one column-family is used. Each col-

umn name is a feature name whose type is indicated by the prefix
of the current row. For example, Table 4 shows two static features
and two dynamic features for two MR jobs. This schema supports
extensibility in the two dimensions presented earlier. Adding a new
feature type requires adding a new prefix to the row key. Adding a
new feature to an existing feature type requires adding a new col-
umn in the rows whose prefix represents that feature type.

In addition, this schema boosts the performance of the profile
matcher. As explained in Section 5, the profile matcher calculates
the similarity/distance scores between feature vectors of the same
type at each stage of the matching algorithm. Therefore, storing
the dynamic features and the static features in separate partitions
enhances data locality from the viewpoint of the matcher. This
is achieved automatically by HBase, because rows are partitioned
horizontally into regions according to the row key, and the feature
type is a prefix of the row key.

7. EVALUATION
All our evaluation experiments were conducted on Amazon EC2.

We conducted the experiments on a Hadoop cluster composed of 16
Amazon EC2 nodes of the c1.medium type. The cluster is config-
ured as one master node running the JobTracker and the NameNode
daemons, and 15 workers running the TaskTracker and the DataN-
ode daemons. Each worker node has 2 virtual cores (5 EC2 com-
pute units), 1.7 GB of memory, 350 GB of instance storage, and is
configured to have 2 map slots and 2 reduce slots. Child processes
of the TaskTracker are configured to have a maximum heap size of
300 MB. The code signature of the submitted jobs and their col-
lected Starfish profiles are stored in HBase. HBase daemons, one
HMaster and one HRegionServer, are run on the master node.

We developed a custom benchmark to evaluate PStorM. The
benchmark consists of different Hadoop MapReduce jobs that have
practical usage in various research and industrial domains. Most
of the jobs were executed on two different data sets while profiling
was enabled. The collected profiles were stored in PStroM. The
MR jobs and the data these job were run on are given in Table 5.

As explained in Section 5, PStorM uses a multi-stage pro-
file matching approach, which consists of three filters with two
thresholds. For these experiments, the Jaccard threshold, θJacc,
is set to 0.5 and the Euclidean distance threshold, θEucl , is set
to 1

2
√

number_o f _dynamic_ f eatures. Since numerical data in
the feature vectors is normalized to the range [0,1], the max-
imum Euclidean distance between any two feature vectors is√

number_o f _ f eatures. The threshold θEucl is adjusted to half of
this maximum possible Euclidean distance.

7.1 PStorM Accuracy
In this section, the accuracy of the profile matcher of PStorM is

evaluated. We conducted these experiments with the contents of
the profile store in one of two states. In the first content state, when
a submitted MR job is executed on a specific data set, PStorM has
the complete profile collected during execution of the same job on
the same data set. This state will be referred to as SD (for Same
Data). This state acts as a sanity check for the profile matcher in
PStorM, since any reasonable matching algorithm should retrieve
the job profile that was collected during the previous execution of
the submitted job. In the second content state, when a submitted
MR job is executed on a specific data set, PStorM has the com-
plete profile collected during the execution of the same job, but on
a different data set. For example, when submitting the word co-
occurrence job on 35GB of Wikipedia documents, the profile store
has the profile for this job but on a 1GB data set. This content
state will be referred to as DD (for Different Data). We will refer

to these two complete profiles of the same job but collected during
execution on different data sets as job profile twins.

We used the number of correct matches as a fraction of the total
number of job submissions as the accuracy metric for evaluating
the profile matching algorithms. When the profile store is in the
first content state (SD), a correct match is the complete profile of
the same job executed on the same data set. In the second content
state (DD), a correct match is the twin of that complete profile.

In the next two sections, we evaluate the accuracy of the domain-
specific profile matcher used by PStorM, and we compare it to more
generic alternatives.

7.1.1 Feature Selection
One of the contributions of PStorM is the set of static features

proposed, which provide a good proxy for the profile cost factors
and are more suitable than the cost factors because the cost factors
exhibit high variance among sample task profiles of the same MR
job. Another contribution is the domain-specific feature selection
algorithm based on our Hadoop expertise, which handles feature
vectors with a mix of numerical and categorical features.

An alternative to using the PStorM features is to select a set of
candidate features from the dynamic features that can be found in
the collected Starfish job profile. A common machine learning ap-
proach is to rank these features according to their information gain
scores [20]. The highest ranked F features are selected to be part of
the feature vector, such that F equals the total number of static and
dynamic features used by PStorM. Since all features in a Starfish
profile are numerical, the highest ranked features will be numeri-
cal. Therefore, we can simply use the Euclidean distance with this
feature selection method to evaluate the distance between job pro-
files. When matching a submitted MR job to the profiles stored in
PStorM, the stored profile whose distance from the 1-task sample
profile of the submitted job is the lowest (i.e., the nearest neighbor)
is selected as the matching profile for the submitted job.

A second alternative to PStorM’s feature selection is to use the
static features proposed by PStorM, in addition to the dynamic
features in the Starfish profile, but select from this augmented set
of features using a generic machine learning feature selection ap-
proach. That is, take the idea of static features from PStorM, but
not the specific set of features that PStorM chooses in a domain-
specific way. As in the first alternative, feature selection in this case
is also based on ranking the features according to their information
gain scores. Since this augmented set of features includes static
and dynamic features, the highest ranked F features might contain
a mix of static and dynamic features. However, when we applied
this approach to the profiles stored in the profile store, we found
that the highest ranked F features are all numerical. Hence, the
same matching algorithm is used as in the first alternative feature
selection approach. The first alternative feature selection approach
will be referred to as P-features (for profile features), and the sec-
ond approach as SP-features (for static and profile features).

Figure 7 shows the matching accuracy scores achieved by P-
features and SP-features as compared to PStorM. Since PStorM ex-
ecutes the matching algorithm on the map profiles separate from the
reduce profiles, the matching scores are presented separately for the
map and reduce sides. It can be seen from the figure that PStorM
outperforms the two alternative feature selection approaches in both
content states of the profile store. In the SD state, despite the fact
that the complete profile of the submitted job on the same data set
exists in the profile store, both P-features and SP-features failed to
return the correct profile for more than 35% of the submitted jobs.

In the second content state, DD, PStorM did not achieve a 100%
accuracy score. PStorM resulted in five and seven false-positive

MapReduce Job Application Domain Data set
CloudBurst [30] Bioinformatics Sample genome and Lake Washington Genome [19]
Frequent Itemset Mining [25] Data Mining Webdocs data set of size 1.5GB [24]
Collaborative Filtering Recommendation Systems Movie rating data sets with 1M and 10M ratings [8]
Join Business Intelligence 1GB and 35GB of data generated by TPC-H benchmark
Word Count Text Mining 1GB of random text and 35GB of Wikipedia docs
Inverted Index [22] Text Mining 1GB of random text and 35GB of Wikipedia docs
Sort Many Domains 1GB and 35GB of data generated by Hadoop’s TeraGen
PigMix-17 Queries Pig Benchmark 1GB and 35GB of data generated by PigMix
Bigram Relative Frequency [22] Natural Language Processing 1GB of random text and 35GB of Wikipedia docs
Word Co-occurrence Pairs [22] Natural Language Processing 1GB of random text and 35GB of Wikipedia docs
Word Co-occurrence Stripes [22] Natural Language Processing 1GB of random text

Table 5: Benchmark of Hadoop MapReduce Jobs

Figure 7: Correct Match Percentages for the Two Alterna-
tive Feature Selection Solutions (P-features and SP-features) vs.
PStorM in the Two Content States of the Profile Store (SD and
DD)

results at the map and reduce sides, respectively. Some of these
mismatches are because there are four profiles whose twins are not
stored in PStorM (i.e., the MR job is run on only one data set).

7.1.2 Multi-Stage Profile Matching
As shown in the previous section, the set of features used by

PStorM results in the best matching accuracy in both content states
of the profile store. This set of features contains numerical and
categorical values. PStorM does not match features of both data
types at once. Instead, it uses the multi-stage matching algorithm
presented in Section 5.

An alternative to the PStorM matcher is the GBRT matcher pre-
sented in Section 5.1. In this section, we compare the PStorM pro-
file matcher with GBRT. Figure 8 shows the matching accuracy of
PStorM and four different parameter settings for GBRT. We tried
different parameter settings for GBRT to find the setting which re-
sulted in the highest matching accuracy.

The first GBRT parameter setting (GBRT 1 in Figure 8) corre-
sponds to the default parameter settings of GBRT in the R statistical
package, which are as follows:
• Fraction of training data used for learning = 50%
• Number of cross validation folds = 10
• Distribution = Gaussian
• Number of iterations = 2000
• Learning rate or shrinkage = 0.005

In the second parameter setting (GBRT 2), the Laplace distribu-
tion was used instead of Gaussian. In the third parameter setting
(GBRT 3), the number of iterations was increased to 10,000, the
learning rate was set to 0.001 [29], and the fraction of training data

Figure 8: Correct Match Percentages for the Alternative
Matching Solution (GBRT) with Different Parameter Settings
vs. PStorM in the Two Content States of the Profile Store (SD
and DD)

Job Name Runtime (min)
Word Count 12
Word Co-occurrence Pairs 824
Inverted Index 100
Bigram Relative Frequency 302

Table 6: Job Runtimes with Default Hadoop Configuration

was increased to 80%. In the fourth parameter setting (GBRT 4),
the fraction of training data was increased to 100%. This makes
GBRT overfit the data, but it results in the highest matching accu-
racy, as seen in Figure 8.

Comparing PStorM and GBRT, we can see that PStorM is as
accurate as GBRT or better in all cases, even when GBRT overfits
the training data. GBRT is a powerful and mature machine learning
algorithm, so we expect it to perform well in terms of the matching
accuracy in most cases. However, the accuracy of GBRT comes at a
cost since it is a complex algorithm that requires collecting training
data and training a model for every new cluster and as the profile
store grows. On the other hand, PStorM results in high matching
accuracy using a simple algorithm that does not need training.

7.2 PStorM Efficiency
From the user’s perspective, runtime speedup is the main goal of

the entire parameter tuning exercise. When using PStorM, a user
should see an improvement in runtime. That is, the total runtime of
a submitted MR job with PStorM should be lower than the runtime
using the default Hadoop configuration or the RBO.

Figure 9: Speedups of Different MR Jobs Executed with
the RBO Recommendations and the CBO Recommendations
Based on a Profile Returned by PStorM at the Three Content
States of the Profile Store (SD, DD, and NJ)

We would like to see such runtime improvement even for previ-
ously unseen MR jobs. Therefore, we introduce third content state
of the profile store for this experiment, which we refer to as NJ (for
New Job). In this content state, the submitted MR job is a new job
that has never been executed before on any data set on the cluster,
and hence it has no job profile stored in PStorM. In this state, the
profile matcher in PStorM can either build a composite job profile
or declare that no matching profile is found.

To evaluate whether PStorM leads to better tuning, we conducted
an experiment with four different MR jobs, all of which are exe-
cuted on the 35GB Wikipedia data set. The runtimes of these jobs
with the default Hadoop configuration are shown in Table 6, and
the speedups of different tuning options compared to this default
are shown in Figure 9. The figure shows speedups achieved by the
RBO, and by the Starfish CBO using profiles returned by PStorM
in the three content states of the profile store: SD, DD, and NJ.

The first observation we make about Figure 9 is that the RBO
does not always improve performance over the default Hadoop con-
figuration. In one case, the RBO actually results in a performance
degradation (the inverted index job). The rules in the RBO make
certain assumptions and only cover certain cases, so it is quite pos-
sible for the RBO to miss optimization opportunities. A user can
never be assured that the RBO recommendations are better than the
default Hadoop parameter settings. A better tuning alternative is a
cost-based optimizer such as the one provided by Starfish.

Figure 9 shows that PStorM achieves speedups over the default
configuration for all content states, even NJ, in which the submitted
job has never been seen before. In the NJ content state, PStorM
builds a composite job profile consisting of the map profile of one
job plus the reduce profile of another job. This composite profile
guides the CBO to choose configuration parameters that are as good
as (or close to) the SD state. That is, the profile provided by PStorM
in the NJ content state results in tuning that is as good as using a
complete, accurate profile of the submitted MR job.

The speedups of PStorM are always higher than the RBO. The
magnitude of the speedup varies from job to job, depending on how
good the default Hadoop configuration parameters are for the job.
For example, the speedup is only slightly higher than 1 for the in-
verted index job, which indicates that the default parameters are
quite suitable for this job. On the other hand, the speedup for the

word co-occurrence pairs job is around 9, and is double the speedup
achieved by the RBO. To illustrate the types of tuning actions taken
by the Starfish CBO, we look more closely at this job. The CBO
(using the profile from PStorM) reduces the amount of memory
used for sorting, increases the number of reduce tasks, and enables
compression of mapper outputs, leading to the substantial speedups
that we observe.

To summarize our experiments, we have shown that the PStorM
profile matcher is highly accurate. Alternative feature selection
algorithms cannot achieve the same level of accuracy as PStorM,
and the similarity measure used by PStorM is as good as (or bet-
ter) than a measure based on the GBRT machine learning ap-
proach. GBRT is a complex, powerful, and expensive approach,
and PStorM achieves the same or better accuracy using a simpler
and cheaper approach based on domain knowledge. We have also
shown that the RBO is not a reliable tuning approach, and that
PStorM with the Starfish CBO results in significant speedups even
for previously unseen MR jobs.

8. RELATED WORK
Prior works have used profile-driven tuning of MapReduce jobs.

Starfish is closely related to PStorM and the use of Starfish profiles
for tuning was discussed earlier in the paper. Starfish profiles have
also been used to determine cluster sizes for MR jobs [15]. Profiles
returned by PStorM can be used for this application just as they are
used for parameter tuning.

Another work that uses execution profiles for tuning is PerfX-
plain [20], which uses profiles for debugging MapReduce job per-
formance and providing appropriate explanations for unexpected
performance. PerfXplain allows the user to pose a performance
question, and generates an explanation of why the user observed
a different value of a certain performance measure than what was
expected. PerfXplain classifies every pair of jobs based on their
execution profiles as either matching the observed performance or
matching the expected performance. PerfXplain then composes an
explanation consisting of a set of predicates (performance-feature,
operator, and value) which have the highest information gain to
classify the job pairs into the aforementioned two classes. The pro-
file store component of PStorM contains a wealth of information
about MR jobs executed previously on the cluster, which can be
used as a source of input for a tool like PerfXplain, leading to more
precise and detailed explanations to the user.

The idea of a store for execution feedback information was used
in [1] in the context of automatic statistics collection for the query
optimizer of the IBM DB2 relational database system. That pa-
per stores execution feedback from query processing in a feed-
back warehouse and uses this feedback to determine which statis-
tics need to be collected and when to collect them with minimal
DBA intervention. Even though that paper uses a feedback store,
the data in that store and the matching algorithm were much sim-
pler than what is required in PStorM.

In PStorM, we use static program analysis to extract CFGs that
are used as features of MR jobs. The use of static program anal-
ysis to tune data flow programs has been explored in recent work.
SatusQuo [3] uses program analysis to automatically convert im-
perative Java code in applications to SQL queries that execute in a
database system. It identifies code fragments that manipulate lists
of persistent data and have no side-effects. Like PStorM, it relies
on the fact that code in applications is highly stylized so patterns
are likely to be detected. PeriSCOPE [9] uses program analysis to
reduce data movement in a pipeline of parallel dataflow jobs (exe-
cuted in the SCOPE system). The type of program analysis and its
objective are very different from PStorM.

9. CONCLUSION
Due to the wide adoption of the Hadoop MapReduce framework,

tuning Hadoop configuration parameters has become increasingly
important, especially since job performance is significantly affected
by the configuration parameter settings. Feedback-based tuning ap-
proaches are effective in tuning the configuration parameters be-
cause they rely on execution profiles that capture the complexities
of executing MR jobs. A significant problem with feedback-based
tuning approaches is providing the execution profile required for
tuning a job. If the job has been executed before on the cluster, the
challenge is identifying the correct profile to use from among all
stored profiles. If the job is a previously unseed job, the challenge
is composing a suitable profile for this job from the stored profiles
without executing the job.

PStorM addresses these challenges through the use of a multi-
stage domain-specific profile matching algorithm that can automat-
ically provide a matching execution profile for a submitted MR job,
even for jobs that have never been executed before on the cluster.
PStorM also includes a scalable and extensible profile store based
on HBase. This profile store supports the scalable and efficient re-
trieval of profiles required by the profile matcher. The profile store
can also be extended to support other applications, including appli-
cations that perform complex analytics on the stored job profiles.
The PStorM matching algorithm outperforms a sophisticated and
time consuming matching algorithm based on machine learning,
and in our experiments PStorM enables up to 9x speedup in run-
times compared to the Hadoop default configuration.

Acknowledgments: This work was partly funded by the Natural
Sciences and Engineering Research Council of Canada (NSERC)
through the Business Intelligence Network strategic networks grant,
and by the US National Science Foundation (NSF) through grants
0917062 and 0964560.

10. REFERENCES
[1] A. Aboulnaga, P. Haas, M. Kandil, S. Lightstone,

G. Lohman, V. Markl, I. Popivanov, and V. Raman.
Automated statistics collection in DB2 UDB. In VLDB,
2004.

[2] A. Ahmad and L. Dey. A k-mean clustering algorithm for
mixed numeric and categorical data. Data and Knowledge
Engineering, 63(2), 2007.

[3] A. Cheung, O. Arden, S. Madden, A. Solar-Lezama, and
A. C. Myers. StatusQuo: Making familiar abstractions
perform using program analysis. In CIDR, 2013.

[4] J. Dean and S. Ghemwat. MapReduce: Simplified data
processing on large clusters. In OSDI, 2004.

[5] F. Diaz, D. Metzler, and S. Amer-Yahia. Relevance and
ranking in online dating systems. In SIGIR, 2010.

[6] M. Ead. PStorM: Profile storage and matching for
feedback-based tuning of MapReduce jobs. Master’s thesis,
University of Waterloo, 2012.

[7] D. W. Goodall. A new similarity index based on probability.
Biometrics, 22(4), 1966.

[8] GroupLens Research. Movielens data sets.
http://www.grouplens.org/node/73, 2011.

[9] Z. Guo et al. Spotting code optimizations in data-parallel
pipelines through PeriSCOPE. In OSDI, 2012.

[10] Apache Hadoop. http://hadoop.apache.org/, 2012.
[11] O. Hassanzadeh and M. Consens. Linked movie data base. In

Proc. of LDOW, 2009.
[12] Apache HBase. http://hbase.apache.org/, 2012.

[13] H. Herodotou. Hadoop performance models. Technical
Report CS-2011-05, Duke University, 2011.

[14] H. Herodotou and S. Babu. Profiling, what-if analysis, and
cost-based optimization of MapReduce programs. PVLDB,
2011.

[15] H. Herodotou, F. Dong, and S. Babu. No one (cluster) size
fits all: Automatic cluster sizing for data-intensive analytics.
In SoCC, 2011.

[16] Z. Huang. Clustering large data sets with mixed numeric and
categorical values. In PAKDD, 1997.

[17] Hadoop configuration guidelines. http://www-01.ibm.
com/support/docview.wss?uid=swg21573025, 2011.

[18] E. Jahani, M. J. Cafarella, and C. Ré. Automatic
optimization for MapReduce programs. PVLDB, 2011.

[19] M. Kalyuzhnaya et al. Functional metagenomics of
methylotrophs. Methods in Enzymology, 2011.

[20] N. Khoussainova, M. Balazinska, and D. Suciu. PerfXplain:
Debugging MapReduce job performance. PVLDB, 2012.

[21] C. Li and G. Biswas. Unsupervised learning with mixed
numeric and nominal data. TKDE, 14(4), 2002.

[22] J. Lin and C. Dyer. Data-Intensive Text Processing with
MapReduce. Morgan and Claypool, 2010.

[23] T. Lipcon. Improving MapReduce performance tips.
http://www.cloudera.com/blog/2009/12/

7-tips-for-improving-mapreduce-performance/,
2009.

[24] C. Lucchese, S. Orlando, R. Perego, and F. Silvestri.
WebDocs: a real-life huge transactional dataset.
http://fimi.ua.ac.be/data/webdocs.pdf, 2012.

[25] Apache Mahout: Scalable machine learning and data mining.
http://mahout.apache.org/, 2012.

[26] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig Latin: A not-so-foreign language for data
processing. In SIGMOD, 2008.

[27] A. D. Popescu, V. Ercegovac, A. Balmin, M. Branco, and
A. Ailamaki. Same queries, different data: Can we predict
query performance? In SMDB, 2012.

[28] R Core Team. R: A Language and Environment for Statistical
Computing. R Foundation for Statistical Computing, 2009.

[29] G. Ridgeway. Generalized Boosted Models: A guide to the
GBM package, 2007.

[30] M. C. Schatz. CloudBurst: Highly sensitive read mapping
with MapReduce. Bioinformatics, 25(11), 2009.

[31] S. Sharma. Advanced Hadoop tuning.
http://www.slideshare.net/ImpetusInfo/

ppt-on-advanced-hadoop-tuning-n-optimisation,
2009.

[32] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
N. Zhang, S. Anthony, H. Liu, and R. Murthy. Hive - a
petabyte scale data warehouse using Hadoop. In ICDE, 2010.

[33] Apache Hadoop Vaidya guide. http://hadoop.apache.
org/docs/mapreduce/current/vaidya.html, 2011.

[34] R. Vallée-Rai, P. Co, E. Gagnon, L. Hendren, P. Lam, and
V. Sundaresan. Soot - a java bytecode optimization
framework. In CASCON, 1999.

[35] Apache Hadoop NextGen MapReduce (YARN).
http://hadoop.apache.org/docs/current/

hadoop-yarn/hadoop-yarn-site/YARN.html, 2013.
[36] Z. Zheng, H. Zha, T. Zhang, O. Chapelle, K. Chen, and

G. Sun. A general boosting method and its application to
learning ranking functions for web search. In NIPS, 2007.

