
Towards Energy Efficiency and Power Trading
Exploiting Renewable Energy in Cloud Data

Centers
Shahzad Aslam1, Sheraz Aslam1,2, Herodotos Herodotou2, Syed Muhammad Mohsin1

and Khursheed Aurangzeb3
1 Department of Computer Science, COMSATS University Islamabad, Islamabad 44000, Pakistan;

2 Department of Electrical Engineering, Computer Engineering and Informatics, Cyprus
University of Technology, Limassol 3025, Cyprus;

3 Computer Engineering Department, College of Computer and Information
Sciences, King Saud University, Riyadh 11543, Saudi Arabia;

Correspondence: sheraz.aslam@ieee.org, herodotos.herodotou@cut.ac.cy

Abstract—This study investigates the energy cost and carbon
emission reduction problem in geographically distributed cloud
data centers (DCs), where each DC is connected with its own
renewable energy resources (RERs) for green energy generation.
We consider four cloud DCs that are operated by a single
cloud service provider. They consume energy from both RERs
and from the commercial grid to meet the demand of cloud
users. For energy pricing, we consider four different energy
markets that offer varying energy prices per hour. Additionally,
our proposed strategy enables DCs to sell excess electricity to
the commercial grid in peak-price hours and purchase in low-
cost hours according to power trading. This work also exploits
energy storage devices (ESDs) to store energy for future use. We
utilize real-time data requests, weather data, and pricing data for
performing simulations and results affirm the effectiveness and
productiveness of our proposed method to mitigate the energy
cost and carbon emission of cloud DCs.

Index Terms—Cloud computing; Energy efficiency; Cloud data
centers; Renewable energy integration; Power trading;

I. INTRODUCTION

Cloud computing plays an important role in providing
computing resources to consumers [1]. It provides hardware
and software resources anywhere and anytime on a pay-as-
you-go model. Customers can enjoy cloud computing services
provided by cloud data centers (DCs) that are distributed
around the globe. These DCs typically host a number of
servers in the order of thousands. Furthermore, cloud DCs
consume a huge amount of energy that leads to both a high cost
and a huge amount of carbon emissions. According to a report
published in 2013 [2], the power consumption of US DCs was
91B KWh and it was estimated to increase up to 140B KWh
till 2020. 91B KWh power load is equivalent to two years of
load demand for New York City. Higher energy consumption
leads to higher carbon emissions that adversely affect the
environment. For the sake of environmental sustainability,
some countries have imposed a tax on carbon emissions [3],
[9], [10]. Therefore, there is an exigent need to reduce the
power consumption of DCs or to install cheaper resources of
energy generation that also lead to lower carbon emissions.

Energy efficiency in cloud DCs is considered a big challenge
due to huge energy consumption. Researchers are proposing
various solutions to enhance energy efficiency. For instance,
some researchers are focusing on consolidating virtual ma-
chines on as few servers as possible and shutting down idle
servers [4]; some people propose virtualization techniques to
improve data center efficiency [5]; in contrary, others are trying
to integrate renewable energy resources to improve energy effi-
ciency and performance of DCs [6]. Prominent cloud service
providers (CSPs), like Amazon, Google, and Microsoft, are
trying to minimize energy consumption and carbon emissions
through the integration of renewable energy with brown energy
[7], [8]. Some CSPs have their own renewable-energy plants,
while others prefer to purchase power from renewable grids
(wind farms and solar parks). However, due to the intermittent
nature of solar and wind energy, CSPs can not rely on it. To
provide reliable and economical services to the users, CSPs
prefer to integrate renewable and brown energies.

The authors of [11] propose a virtual machine (VM)
placement scheme by implementing a crow search algorithm.
Another energy consumption and active servers minimization
scheme is presented in [12], where an ant colony optimization-
based approach is implemented to achieve desired objectives.
However, both studies [11], [12] did not consider the cost of
carbon emissions (total energy requirement is met by fossil
fuel-based electric grid). In [13], the authors aim to find the
best location for a data center, based on geographical location
and characteristics of the data center to alleviate energy
consumption, cost, and carbon footprint. However, in this
way, sometimes the data centers are located far from the end-
users and this may cause delays in processing user requests.
Another work [14] proposed to reduce energy consumption,
cost, and carbon emission by using various optimization
techniques. Furthermore, renewable energy resources (RERs)
are installed to provide electricity to data centers to achieve
a green environment. However, they assume consistent elec-
tricity generation from RERs, which is non-realistic, because
RERs are intermittent in nature. This property of RERs can



often cause high costs and delays. Yanwei et et al. propose a
cost-efficient method to mitigate energy cost in geographically
distributed cloud data centers (DCs) [15]. However, they did
not consider energy storage devices (ESDs) and DCs are not
able to sell excess electricity back to the commercial grid. The
work [16] also addresses the energy cost minimization problem
for cloud DCs that are distributed in various locations. They
exploit ESDs to alleviate the energy cost and carbon emissions;
however, according to their method, DCs do not participate in
power trading.

The work cited in [11]-[16] either focused on specific
production applications or failed to take full advantage of
cloud and smart grid-based technologies. This work studies
the issue of energy efficiency in cloud data centers that are
distributed geographically. Then, we develop an intelligent
mechanism to integrate renewable energy to mitigate the cost
burden of DCs as well as to reduce carbon emissions. In
addition, we also consider energy storage devices to store
energy for future use. Thus, the DCs can efficiently manage
the power demand to respond to the customers’ requests.

The rest of the paper is organized as follows: the next
section presents the related work and Section III uncovers the
system model and mathematical formulations. Furthermore,
Section IV outlines the developed methodology, while Section
V presents the experimental setup along with results. Finally,
the paper is concluded with Section VI.

II. RELATED WORK

The work [17] proposed a task scheduling approach using
integer linear programming to alleviate the energy cost in
cloud DCs. In order to reflect the dynamic nature of the cloud
environment, a genetic algorithm was developed. Furthermore,
simulation results showed that the developed methods gain
high performance in terms of lowering response time and min-
imizing energy consumption. The authors of [18] developed
a mixed-integer linear programming model to alleviate the
energy cost in Internet DCs (IDCs), where they considered the
electricity tariffs of various locations and power management
ability of IDCs. Furthermore, WorldCup ’98 data is utilized to
check the effectiveness of their developed model. It is evident
from simulation results that the energy consumption of IDCs is
reduced by the developed solution. Shamimul et al. focused on
green cloud DCs, where they propose a hybrid energy system
that consists of wind turbines, solar panels, diesel generators,
and a storage system.

Abdullahi et al. exploited a symbiotic organisms search
algorithm to minimize the energy consumption of DCs [19].
They save energy by mitigating a number of active servers
using VMs migration. They perform simulations with a dif-
ferent number of VMs and their results validate their scheme
with regards to the reduction in energy consumption. The
work in [20] solves a VM placement problem to attain
energy efficiency in cloud DCs. It also develops an energy-
aware algorithm, namely GATA, which combines a genetic
algorithm with tabu search. The key objectives of that work
were to achieve energy efficiency by optimal VM placement
along with maximizing load balance among different sources.

Simulations have been performed to validate the performance
of the newly proposed GATA algorithm. In addition, GATA is
also compared with two metaheuristic benchmark algorithms
and the effectiveness of GATA is confirmed from comparative
analysis.

Another work [22] developed a VM allocation method with
VM consolidation and modifying the VMs processing speed,
aiming at high response time and energy efficiency of cloud
DCs. According to their proposed method, VMs processing
speed in the baseline module is switched to low speed in
case of low traffic/low requests. On the contrary, in case of
high traffic, VMs operate with high processing speed and
consolidation will be performed with baseline module and
reserved module VMs. Furthermore, they exploit the Markov
chain to mathematically check the response performance and
energy-saving degree.

III. SYSTEM MODEL

In this work, we consider a cloud environment that consists
of two key entities, i.e., a cloud service provider and a
cloud user. A cloud service provider is an entity that own
multiple DCs and provides the cloud services/resources to
its consumers against payment of charges. A cloud user is
an entity that consumes the services/resources offered by
the cloud service provider. The physical resources of the
cloud are categorized on the basis of various parameters, like
architectures of processors, speed of processors, memory, and
the number of cores. Besides, cloud tasks can be categorized
on the basis of several parameters, such as size in millions
of instructions, dependency among various tasks, and time
(arrival time, waiting time, start time, and time limit). How-
ever, this work focuses on energy cost and carbon footprint
reduction in a cloud environment.

A. Cloud Service Provider
The cloud service provider manages n number of DCs,

DC = {DC1, DC2, ..., DCn}, which are geo-distributed in
various locations. Each DC is connected to a backbone net-
work (see Figure 1) to provide services/resources to cloud con-
sumers. It uses multiple energy resources (i.e., green energy
resources and commercial grid), network equipment, and other
devices. Moreover, DCs can manage their energy utilization
to reduce power costs and carbon footprint. For instance, they
can use power from either green energy sources g (e.g., solar
panels, wind turbines) or conventional resources c, i.e., power
grid. DCs also have installed diesel generators d to deal with
any unpleasant circumstances (e.g., power outages). We define
all power resources of DCs as p = {g, c, d}. Furthermore, each
DC contains m number of servers, S = {s1, s2, ..., sm}.

B. Cloud User
A cloud user is an important entity of the cloud environment

that submits a request regarding cloud resources/services. A
service request by cloud user i at time t is represented by
ui(t) and consists of various parameters, such as request type,
hold time, storage, start time, deadline, etc. A cloud service
provider receives q number of requests R from various users
at time t, denoted as R = {r1, r2, ..., rq}.
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Fig. 1: Architecture of geographically distributed cloud data
centers connecting a single cloud provider, several clients, and
various energy supplying resources

C. Workload Model

Cloud consumers are frequently assigning tasks to the
cloud service provider and then these tasks are assigned to
a specific DC on the basis of available energy and comput-
ing resources. Let us denote all incoming tasks with T =
{task1, task2, ..., taskN}, where tN shows the maximum
number of tasks. It is important to note that each task (service
request) is considered as an independent task that can only
be assigned to a single DC and cannot be broken down and
distributed to multiple DCs. Furthermore, we can present a
single task at time t as

taskti = {Ai, Di, Li, Si, Fi}, (1)

where, Ai and Di denote the arrival time and deadline of
task i, respectively. Li shows the task’s length. The start time
of task i is denoted by Si, while the finishing time by Fi.

D. Energy Consumption Model

According to our proposed model, each DC has several
energy resources to meet its power demand while fulfilling
computing requests by cloud consumers. In particular, a DC
may use a combination of green sources g, conventional power
grid c, or diesel generators d. However, each DC has a priority
to use maximum energy from green sources g due to low cost
and minimum carbon emission. Wind turbine and solar panel
are explained in detail below.

1) Solar Panel: The solar panel produces electricity from
sunlight and is calculated as [24]:

P sp(t) = ηsp×Asp×Irr(t)×(1−0.005(Temp(t)−25)) (2)

where, hourly produced energy for time interval t is shown
by P sp(t). The terms ηsp and Asp denote the efficiency and
area of the solar panel, respectively. The solar irradiation is

denoted by Irr(t) and and outside temperature by Temp(t)
for time interval t.

2) Wind Turbine: Wind turbines are also installed for low
carbon emission electricity generation and produce power on
the basis of wind speed. We can calculate energy using the
following mathematical formula:

Pwt(t) = 0.5× Cp × λ× ρ×A× (V wt(t))3. (3)

The Pwt(t) shows the generated energy from a wind turbine
at time interval t. A wind turbine generates power on the basis
of the area swept by rotor blades A, wind speed V wt(t), air
density ρ, rotor efficiency Cp, and constant λ. Note that energy
generation is directly proportional to wind speed (Pt

wt ∝ V ).

E. Energy Cost Calculation

The energy cost of a cloud DC primarily depends on the
energy that is purchased from the commercial grid, since RERs
have fixed installation and maintenance costs. Furthermore,
diesel generators are also considered (similar to [13]), which
are used in the absence of other energy resources. Additionally,
we have used a real-time pricing method for various DCs,
based on which the utility offers new pricing P (h) for each
hour h. We can calculate hourly energy cost that is paid to the
conventional grid as:

Costc(h) =

n∑
i=1

EnConsumed(DCi, h)× P (DCi, h) (4)

where, EnConsumed(DCi, h) denotes energy consumption
by DCi at hour h and the term P (DCi, h) presents the hourly
energy price (kWh). Note that hourly prices of all DCs vary
due to their geographically distributed locations.

The hourly total cost incurred by a DC against all energy
resources can be calculated by equation 5.

Costtotal(h) = Costc(h)+
(
Costd(h)×αd(h)

)
+Costg (5)

Costd(h) denotes hourly cost incurred by the diesel gener-
ator and α(h) shows the ON or OFF status of diesel generator
in hour h.

αd(h) =

{
1 If diesel generator is ON
0 If diesel generator is OFF

(6)

In equation 5, Costg represents the hourly cost of green en-
ergy resources, which are considered to have fixed operational
and maintenance costs ($10/MWh) as [23].

IV. DEVELOPED METHODOLOGY

This section presents the proposed methodology for min-
imizing energy cost and carbon emissions. To attain our
objectives, our developed method is divided into three steps,
namely, ranking cloud DCs, allocating incoming requests to
servers in each DC, and scheduling of several energy sources.



A. Ranking of Cloud DCs

We have ranked the DCs to attain minimum cost based on
the lowest computing cost (LCC). The key aim of this strategy
is to dispatch maximum requests to DCs having the minimum
LCC. In this way, the DCs with LCC will have higher priority
in service requests dispatching. We can calculate LCC for DC
i at time interval t as [14]:

LCCt
i =

(Ppeak,i ×Qdti)
Ct

i

(7)

where, LCCt
i shows lowest computing cost of DC i at time

interval t. The term Ppeak,i and Qdti denote peak power
consumption of DC i and brown/diesel energy of DC i at
time t, respectively. In addition, Ct

i presents total cost against
DC i at time t.

B. Allocating Service Requests to Servers

We have adapted the resource vector matching (RVM)
mechanism to allocate the service requests to servers of the
DCs. The allocation of requests is performed through a cosine
function by calculating the matching of two resource factors,
as expressed below:

Cosine(Rt
j , H

t
k(i)) =

Rt
j ×Ht

k

|Rt
j | × |Ht

k|
, (8)

where, Rt
j denotes request j at time t and Ht

k(i) shows
available resources of server k in DC i at time t. Furthermore,
a higher cosine value indicates a more suitable server for
allocating service requests. In this regard, we allocate the most
matching server for each service request.

C. Energy Sources Scheduling and Power Trading

After dispatching service requests to servers based on
step1 and step2, the remaining problem is considered a
demand-response problem. The key issue is to schedule
energy resources on the basis of energy demand for cloud
DCs and energy tariffs. In addition, for instance, any
charging/discharging of ESDs can affect the whole scheduling
decisions in subsequent time-intervals; therefore, we consider
this problem for the whole period of time that is typically
a mixed-integer linear problem (MILP). However, MILP
can solve only a reasonable-sized problem such as the ones
considered in simulations of this work. Our method decides
the following in each time-interval:

• How a service request is assigned to which server of the
DCs.

• Which type of energy and how much they are utilized to
power DCs.

• Which type of energy is used to charge ESDs.
• When and how much energy is sold back to the commer-

cial grid by discharging ESDs.

The exact mathematical formulations for the above are omitted
due to space constraints.

TABLE I: Parameters of data centers taken from [18]

Num
servers

CPU Memory
(GB)

Storage
(TB)

Pidle

(W)
Ppeak

(W)
1 3300 8 128 2 54 90
2 2800 16 144 2 84 140
3 3200 8 128 2 65 100
4 2500 16 144 2 90 150
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Fig. 2: Electricity tariff for three days (Aug. 1, 2018 to Aug.
3, 2018) [26]

V. PERFORMANCE EVALUATION

This section evaluates the effectiveness and productiveness
of the proposed methodology with respect to the key objectives
of this study, i.e., low energy cost and minimum carbon
emissions.

A. Simulation Setup

We perform extensive simulations, where four geographi-
cally distributed cloud DCs are considered, which are owned
by a single cloud provider. Our work uses the same configu-
ration parameters of DCs as [18] (presented in Table I). For
energy supply to these DCs, multiple sources of energy are
assumed, like green energy resources and conventional energy
resources. Utility companies charge dynamic energy prices
according to DC locations. We have performed simulations
for three days (from August 01, 2018 to August 03, 2018)
using one-hour time intervals.

We calculate the solar and wind energy generation as [24].
Simulations of this work exploit the weather data, i.e., wind
speed, temperature, and irradiance from the MIDC dataset of
the National Renewable Energy Laboratory [25]. Moreover,
data from the following four locations are used: Lanai Hawaii,
Los Angeles California, Oak Ridge Tennessee, and San Luis
Valley Colorado. For energy cost calculation that is purchased
from the commercial grid, we consider the hourly tariff of the
four locations [26], presented in Figure 2. In order to calculate
the operational cost of renewable energy sources, we have
considered 10 $/MWh for all DCs [27].
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We assumed that 10000 solar panels (BP-MSX 120) and
1000 wind turbines (NE-3000), as [15], are installed at each
plant to fulfill the power demand of cloud DCs. Figure 3 shows
the hourly energy generation from all solar panels for three
days (August 01, 2018 to August 03, 2018). It can be clearly
noted that solar panels generate minimum energy generation
at night times and maximum energy when solar has high
irradiance. Hourly energy generation from wind turbines is
presented in Figure 4. It can be observed from the figure that
energy generation from wind turbines is stochastic in nature.

B. Experimental Results

To verify the productiveness of our proposed method, we
have performed a comparison with two benchmark works:

1) No ESDs+No trading: Only RERs are considered to
make green cloud DCs (no ESDs and power trading)
[15].

2) Only ESDs+No trading: Only RERs and ESDs are
considered but no power trading [16].
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Fig. 6: Total carbon emission

3) ESDs+Trading: Our proposed method exploits RERs
with ESDs and power trading to alleviate energy cost
and make DCs greener.

The total energy cost of cloud DCs is depicted in Figure
5. It is observed from this figure that our DCs will pay the
minimum cost with our proposed method. It is important to
note that energy cost may be reduced because of three key
factors: (1) energy prices that vary based on time and location,
(2) varying capacities of ESDs, and (3) power trading. We can
choose the DC to provide services to cloud users, which is
purchasing electricity against minimum energy tariff. Let the
capacity of ESDs, expressed in Uhour, equal the total power
consumption of a DC in peak hours. Usually, most DCs exploit
ESDs to avoid interruption during operations and they consider
capacity at most 30 minutes in peak consumption time. To test
our proposed method, we perform simulation by considering
fluctuating ESDs capacities. We consider Uhour=1, Uhour=2,
and Uhour=3, as presented in Figure 5. In all cases, our
proposed method shows efficacy with regards to minimum
energy cost.



We have calculated the total carbon emissions using carbon
emission rate (CER) that shows kilograms of carbon equivalent
per kWh electricity, as can be seen in Table II. Figure 6
presents the total amount of carbon emissions (tons) for all
DCs using our proposed method and the two benchmark
methods. It can be noticed from the figure that carbon emission
is reduced by increasing the capacity of ESDs (Uhour).

TABLE II: CER of various energy resources [28]

Source of energy Grid Solar Wind
CER
(gCO2e/kWh)

968 53 22.5

VI. CONCLUSIONS AND FUTURE WORK

In modern economies, substantial growth of cloud data
centers (DCs) across the world leads to power management
issues. These DCs are usually distant from the user and
consume large amounts of energy for their operations. Ful-
fillment of DC energy demand through brown energy leads
to economic issues, power transmission issues, and excessive
carbon emission. All these issues are very critical and need
keen attention from the research community. In this study,
we have presented a solution of cost and carbon reduction
problem in cloud DCs by integrating energy storage systems
and power trading with commercial grids. We consider four
geographically distributed DCs, where each DC is able to
produce its own electricity from green energy resources. We
have performed extensive simulations to affirm the validity
of our proposed method. Simulation results show that cloud
providers can reduce energy costs and carbon emissions (when
ESDs = 1 Uhour) by 11.73 % and 15.05 %, respectively.
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