
AutoCache: Employing Machine Learning to
Automate Caching in Distributed File Systems

Herodotos Herodotou
Cyprus University of Technology
herodotos.herodotou@cut.ac.cy

Abstract—The use of computational platforms such as Hadoop
and Spark is growing rapidly as a successful paradigm for
processing large-scale data residing in distributed file systems
like HDFS. Increasing memory sizes have recently led to the in-
troduction of caching and in-memory file systems. However, these
systems lack any automated caching mechanisms for storing data
in memory. This paper presents AutoCache, a caching framework
that automates the decisions for when and which files to store in,
or remove from, the cache for increasing system performance.
The decisions are based on machine learning models that track
and predict file access patterns from evolving data processing
workloads. Our evaluation using real-world workload traces
from a Facebook production cluster compares our approach with
several other policies and showcases significant benefits in terms
of both workload performance and cluster efficiency.

Index Terms—automated caching, distributed file systems

I. INTRODUCTION

Social graph analysis, business analytics, and scientific data
processing are among data-intensive jobs that are frequently
executed on big data platforms such as Hadoop YARN [1]
and Spark [2]. Such jobs tend to spend significant fractions of
their overall execution in reading and writing data residing in
distributed file systems (DFSs) such as HDFS [3]. In order
to increase I/O performance, larger memory sizes are now
commonly utilized in cluster computing. Specifically, HDFS
has recently added support for caching input files internally
[4], while in-memory DFSs like Alluxio [5] and GridGain [6]
can be used for storing or caching HDFS data in memory.
Finally, the OctopusFS distributed file system [7] supports
storing file replicas on the storage media that are locally
attached on the cluster nodes, including memory and SSDs.

Most aforementioned systems expose cache-related APIs
to users or higher-level systems. For instance, an application
using HDFS can issue requests to cache files. However, when
the cache gets full, no additional caching requests will be
served until the application manually uncaches some files
[4]. Similarly, OctopusFS offers a placement policy for de-
termining whether or not to store a file replica in memory
at creation time, but lacks any features for automatically
moving it afterwards. Alluxio and GridGain, on the other hand,
implement basic policies for removing data from memory
when full, such as LRU (Least Recently Used) [8]. However,
such policies are known to under-perform in the big data
setting as they were initially designed for evicting fixed-size
pages from buffer caches [8], [9]. In addition, these systems do
not offer cache admission policies; i.e., they will place all data

in the cache upon access, without any regards for the current
state of the system, the data size, or any workload patterns.
This lack of automated caching places a significant burden
on both system admins and application developers when they
attempt to optimize system performance [10], [11].

Analysis of production workloads from Facebook, Cloudera,
and MS Bing [9], [12] have revealed several types of data re-
access patterns (e.g., hourly, daily) for both small and large
analytics jobs. Hence, distinguishing reused data and keeping
them in memory can yield significant performance benefits
[9]. Workloads also tend to change over time producing
different data access patterns [11], which need to be taken
into account while managing a cache. Overall, it is crucial for
the underlying DFSs to include automated caching capabilities
for improving cluster efficiency and workload performance.

In this paper, we introduce AutoCache, a framework for au-
tomated cache management in DFSs. Specifically, AutoCache
involves caching policies for deciding (i) when and which
files to admit into the cache for improved read performance,
and (ii) when and which files to evict from the cache to
release memory pressure. Within AutoCache, we implement
several conventional cache eviction and admission policies [8],
policies from recent literature [10], and our own policies.

Our proposed policies employ machine learning (ML) for
tracking and predicting file access patterns. In particular, we
use light-weight gradient boosted trees [13] to learn how
files are accessed by the workload and use the generated
models for making admission and eviction decisions. The
efficiency by which the models are learned, allows AutoCache
to relearn them frequently (e.g., every few hours) and, hence,
to naturally adapt to workload changes over time. Even though
there is a vast amount of related work in caching, we offer
a unique ML-based, automated, and adaptive approach to
cache management in DFSs. Finally, we have implemented
our approach in one of the post popular DFSs, namely HDFS.

In summary, the key contributions of this paper are:
1) The design and implementation of the AutoCache frame-

work for automatically managing a file cache in DFSs.
2) ML-based policies for predicting file access patterns and

dynamically moving files to and from the cache.
3) An experimental evaluation using real-world workload

traces from a Facebook production cluster, showcasing
significant performance benefits.

The paper is organized as follows. Section II presents the
proposed cache management framework, while Section III



formulates the ML models for predicting file access patterns.
Sections IV and V outline several policies for cache eviction
and admission, respectively. The experimental evaluation is
presented in Section VI and Section VIII concludes the paper.

II. CACHE MANAGEMENT FRAMEWORK

Distributed file systems like HDFS [3] are the most popular
form of storage systems used with current Big Data platforms
such as Hadoop [1] and Spark [2]. They store files that are
typically broken down into large blocks (e.g., 128MB in size).
The blocks are then replicated and stored on locally-attached
hard disk drives (HDDs) on the cluster nodes, as shown
in Figure 1. HDFS has recently added support for caching
files into the nodes’ local memory for improving read I/O
performance and reducing read latencies [4]. However, caching
requests can only be made through an API and there is no
support for automatically caching or uncaching files.

HDFS uses a multi-master/worker architecture (see Figure
1) that consists of NameNodes, DataNodes, and Clients.
NameNodes: Each NameNode contains (i) the FS Directory,
offering a traditional hierarchical file organization and oper-
ations; (ii) a Block Manager, maintaining the mapping from
file blocks to nodes; and (iii) a Node Manager, containing the
network topology and maintaining node statistics.
DataNodes: The DataNodes are responsible for (i) storing
and managing file blocks on the locally-attached HDDs and
memory; (ii) serving read and write requests from Clients; and
(iii) performing block creation, deletion, and replication upon
instructions from the NameNodes.
Clients: The Clients expose APIs for all typical file system
operations such as creating directories or reading/writing files.

We have extended HDFS by adding two core components in
the NameNodes. The AutoCache Manager is responsible for
orchestrating the caching and uncaching of files based on the
decisions of pluggable admission and eviction policies. Each
policy makes two key decisions: (i) when to start and stop
the admission (or eviction) process; and (ii) which file(s) to
admit (or evict). These decisions are guided by file and node
statistics maintained by the system as well as notifications
received after a file creation, access, modification, or deletion.

The AutoCache Monitor is responsible for handling the
caching and uncaching requests from the Cache Manager, as
well as monitoring the overall state of the distributed cache.
We also modified the DataNodes to enable caching while
piggybacking on file writes/reads as well as to directly store
file blocks in memory (rather than using memory-mapped
files) to increase efficiency. We did not modify the Client to
keep it backward compatible with HDFS.

Even though we implemented our approach in HDFS, it is
not specific to the internal workings of HDFS and we believe
it can be easily implemented in other in-memory distributed
file systems (e.g., Alluxio [5], GridGain [6]). Finally, we have
focused on caching at the file level (vs. block level) since
previous research (e.g., [9], [10]) has shown that workload
performance is improved only when the entire file is present
in memory (coined the “all-or-nothing” property in [9]).

a

Metadata 

Operations

F1B1

F1B2

= Memory Cache

DataNode 1

= Local HDDs | F1B1 = File 1, Block 1

F1B1

F2B1

F2B1

DataNode 2

F1B1

F1B2

F2B1

F1B1

DataNode 3

F1B2

F2B1

F1B2

DataNode 4

Client

Read/Write 

Operations

FS Directory

Block Manager

NameNode

Node Manager

AutoCache 
Manager

AutoCache
Monitor

Block/Cache 

Reports

Block/Cache

Operations

Notation:

Fig. 1: HDFS Architecture with AutoCache

III. FILE ACCESS PATTERN MODELING

File accesses in clusters are typically driven by analytical
workloads, causing various types of data re-access patterns [9],
[12]. For instance, some files may be read by multiple jobs and
reused for a few hours before becoming cold, while others are
reused for longer periods of time. Such access patterns tend
to change over time as workloads naturally evolve based on
analytical needs [11]. The above observations have motivated
our approach of modeling file access patterns using feature-
based binary classification to predict whether a file will be
accessed in the near future (and hence should be cached) or
it has become cold (and hence should be uncached).

A. Training Data Preparation

The 3 most important file properties impacting cache man-
agement decisions are recency (i.e., time of the last access),
frequency (i.e., number of accesses), and size [8]. All typical
file systems already maintain each file’s size, last access time,
and creation time. Keeping track of frequency is simple but
it does not capture any potential re-access patterns. Hence,
we keep track of the time accesses during a particular time
window (e.g., the last 24 hours). Overall, the file size, creation
time, and access times for files constitute our input data.

The first step in data preparation for binary classification
is converting the input data into feature vectors ~xi and class
labels yi. Given a reference point in time, say 12:00, the time
accesses before can be used for feature generation and the
time accesses after can be used for class labeling. However,
timestamps are not good feature candidates for machine learn-
ing because their value constantly increases over time. Hence,
we propose two approaches for feature generation. The first
approach discretizes time into fixed time intervals and counts
the number of file accesses in each interval. The counts are
then used as features and intuitively serve as proxies for any
underlying file access patterns. Figure 2 shows an example
where time is divided into 1-hour intervals. Between 11:00-
12:00, the file is accessed two times, whereas between 10:00-
11:00, it is not accessed at all. The second approach discretizes
time into growing time intervals that double each time as you



move into the past. In the example, the interval boundaries are
15, 30, 60, etc. minutes before 12:00. For both approaches, the
file size as well as the time difference between the reference
and creation time form the final two features.

The class label y indicates whether the file will be accessed
in a given forward-looking class window: if a file is accessed
during the window, then y = 1; otherwise y = 0. Note that by
sliding the reference point in the time axis, we can generate
multiple training points (i.e., feature vectors and corresponding
class values) based on the access history of a single file. In a
real online setting, the model should be retrained periodically
(e.g., every 24 hours) based on the latest file access times in
order to ensure that the model stays relevant with any shifts
in the file access patterns.

B. Learning Model Selection

XGBoost [13], a state-of-the-art gradient boosting tree algo-
rithm, was selected as our learning model because it satisfies
two key requirements: (i) the model is able to accurately
predict whether a file will be accessed soon or not accessed
for some time; and (ii) both model training and predictions
are inexpensive in terms of computational and storage needs.
The XGBoost model has the form of an ensemble of weak
models (single trees), which is trained following a stage-wise
procedure under the same (differentiable) loss function [13].

We also examined other well-established classifiers but each
failed to satisfy some of our needs. Specifically, Naive Bayes
assumes that features are conditionally independent of one
another, and thus cannot be used effectively to learn a sequence
of time accesses. Bayesian Belief Networks model attribute
dependence in networks, but require a priori knowledge about
the structure of the network, which is what we are trying
to determine. Finally, we empirically found Support Vector
Machines and Artificial Neural Networks to have a much
higher cost in terms of training time (up to two orders of
magnitude slower compared to XGBoost) and lower accuracy
than XGBoost. On the contrary, XGBoost requires minimal
storage, is fast to train, efficient to use, and accurate in making
predictions, all of which are validated in our experimental
evaluation in VI-A.

C. File Access Predictions

In order to make predictions using the generated model,
the file system must first create a feature vector dynamically.
This is easy to do via (1) setting the reference point to the
current time; (2) discretizing time using either the fixed or
growing intervals approach; and (3) creating the features based
on the file size, creation time, and access times, as explained
in Section III-A. Next, the feature vector is used to probe
the model and get the predicted class label. Specifically, an
XGBoost model will return a probability score indicating how
likely the file is to be accessed in the next class window.

The probability score is used by the policies to decide which
file(s) to add or remove from the cache. We generate two
separate models for this purpose, one for the admission and
one for the eviction policy, whose only difference lies in the

Access

11:40 

Creation

8:10 

Access

9:20 

Access

9:50 

Access

11:10 time

feature 

generation

class 

labeling

 𝑥𝑓 = 200 𝑀𝐵, 230 𝑚𝑖𝑛, 2, 0, 2, 0, −1,−1 𝑦𝑓 = 1

Access history for file 𝒇 with size = 𝟐𝟎𝟎𝑴𝑩

7:00 8:00 9:00 10:00 11:00 12:00 13:00

Access

12:30 

Modeling access counts with Fixed Intervals

-1 0 2 0 2 1

feature 

generation

class 

labeling

 𝑥𝑓 = 200 𝑀𝐵, 230 𝑚𝑖𝑛, 0, 1, 1, 0, 2, −1 𝑦𝑓 = 1

8:00 11:3010:00 11:00 12:00 13:00

Modeling access counts with Growing Intervals
-1 02 1 0 11

Reference point

Fig. 2: Training data preparation for two discretization ap-
proaches: fixed and growing time intervals

class window size w. The admission policy wants to determine
which files will be accessed in the immediate future and,
hence, we set a small w (e.g., 30 minutes). On the other hand,
the eviction policy wants to determine which files will not be
accessed for some time and, hence, we set a large w (e.g., 6
hours). The two policies are elaborated in Sections IV and V.

IV. CACHE EVICTION POLICIES

An object is evicted from a traditional cache when a new
one needs to enter but the cache is full. This approach works
well for fixed-size disk pages or small web objects. However,
typical file sizes in analytics clusters are in the order of MBs-
GBs [12], so having a file operation wait for other files to be
evicted would introduce significant delays. Hence, our policies
start the eviction process proactively when the cache becomes
fuller than a threshold value (e.g., 90%), allowing for better
overlapping between file operations and evictions. Similarly,
the policies will stop the eviction process when the cache
capacity becomes lower than a threshold value (e.g., 85%),
allowing for a small percent of the cache to be freed together.

Once the eviction process starts, the policy must select a
file to remove from the cache in order to make room for new
files. For comparison purposes, we have implemented three
conventional eviction policies, one related policy from recent
literature, and one new policy, listed in Table I.
LRU (Least Recently Used) selects the file used least
recently, trying to take advantage of the temporal locality
typically exhibited in data accesses.
LFU (Least Frequently Used) selects the file with the least
number of accesses, i.e., it evicts rarely used files.
LRFU (Least Recently & Frequently Used) selects the file
with the lowest weight, which is computed for each file based
on both the recency and frequency of accesses. The weight
W for a file f is initialized to 1 when f is created and it is
updated each time f is accessed based on Formula 1:

W = 1 +
H ∗W

(timeNow − timeLastAccess) +H
(1)



TABLE I: Cache eviction policies

Acronym Policy Name Description

LRU Least Recently Used Evict the file that was accessed less recently than any other
LFU Least Frequently Used Evict the file that was used least often than any other
LRFU Least Recently & Frequently Used Evict the file with the lowest weight based on recency and frequency
EXD Exponential Decay (Big SQL [10]) Evict the file with the lowest weight based on recency and frequency
XGB XGBoost-based Modeling Evict the file with the lowest access probability in the distant future

TABLE II: Cache admission policies

Acronym Policy Name Description

OSA On Single Access Cache a file into memory upon access (if not there already)
LRFU Least Recently & Frequently Used Cache a file if its weight is higher than a threshold
EXD Exponential Decay (Big SQL [10]) Cache a file if its weight is higher than the weight of to-be-evicted files
XGB XGBoost-based Modeling Cache files with high access probability in the near future

Parameter H represents the “half life” of W , i.e., after how
much time the weight is halved. Hence, files that are recently
accessed multiple times will have a large weight, as opposed
to files accessed a few times in the past.
EXD (Exponential Decay) explores the tradeoff between
recency and frequency in data accesses in Big SQL [10].
In particular, it selects the file with the lowest weight W
computed using the following formula:

W = 1 +W ∗ e−α ∗ (timeNow − timeLastAccess) (2)

The parameter α determines the weight of frequency vs.
recency and it is empirically set to 1.16 ∗ 10−8 based on [10].
XGB (XGBoost-based Modeling) utilizes an XGBoost model
(recall Section III) for predicting which file will not be
accessed in the distant future. Specifically, XGB computes the
access probability for the k LRU files and selects the file with
the lowest probability to evict. We compute probabilities for
LRU files in order to avoid cache pollution with files that are
never evicted while we limit the computations to k files in
order to bound the (low) overhead of building the features
and using the model. In practice, we set k to be large (e.g.,
k = 200), and it has had limited impact on our workloads.

V. CACHE ADMISSION POLICIES

In a traditional cache setting, all data accesses must go
through the cache first: if the accessed object is not found, then
it will be inserted into the cache. Cache admission policies
are rare in such a setting as they complicate the read process
without major benefits [10]. In our case, however, placing a
file into the cache is costlier as it may involve accessing a
large amount of data. Hence, the decisions of when and what
to cache are as important as when and what to evict. The
admission process is invoked (i) every time a file is accessed
and (ii) periodically in case a policy wants to make a proactive
decision. For comparison purposes, we have implemented two
conventional admission policies, one related policy from recent
literature, and one new policy, listed in Table II.
OSA (On Single Access) implements the common approach
of caching each file when it is accessed and not already present
in the cache.

LRFU (Least Recently & Frequently Used) caches an
accessed file when its computed weight (recall Formula 1)
is greater than a threshold value, which is empirically set to
3 for favoring files that are accessed recently multiple times.
EXD (Exponential Decay) is used in Big SQL [10] for
selecting which files to insert into the cache. If there is enough
space to fit the accessed file f , then f will get cached.
Otherwise, EXD will cache f only if its weight (computed
using Formula 2) is higher than the sum of weights of the
files that will need to be evicted to make room for f .
XGB (XGBoost-based Modeling) employs an XGBoost
model (recall Section III) for predicting if a file will get
accessed in the near future. XGB will compute the access
probability for the k (e.g., k = 200) most recently used files
and start the admission process if the access probability of a
file is higher than the discrimination threshold. Note that in
binary classification, the discrimination threshold determines
the boundary between the two classes, and it is empirically
set to 0.5 (see Section VI-A).

VI. EXPERIMENTAL EVALUATION

The evaluation is conducted on a 12-node cluster running
CentOS Linux 7.2. with 1 master and 11 slave nodes. Each
node has a 64-bit, 8-core, 2.4GHz CPU, 24GB RAM, and
three 500GB SAS HDDs. The available memory for HDFS
caching is set to 4GB, the default replication factor is 3,
and block size is 128MB. We modified HDFS v2.7.7 to
include the AutoCache components. For our modeling, we
used XGBoost2 v0.60 and set the learning objective to be
logistic regression for binary classification.

Our goal is to evaluate (i) the prediction accuracy and
efficiency of our XGBoost models, and (ii) the effectiveness
of our approach in improving performance for a workload
derived from real-world production traces from Facebook. The
traces were collected over a period of 6 months from a 600-
node Hadoop cluster and contain data about MapReduce jobs
(e.g., arrival times, data sizes) [14]. We used SWIM [15] to
generate and replay a realistic and representative workload
that preserves the original workload characteristics such as
distribution of input sizes and skewed popularity of data [9].



TABLE III: Job size distributions, binned by their data sizes

Bin Data size % of Jobs % of Resources % of I/O

A 0-128MB 74.4% 25.0% 3.2%
B 128-512MB 16.2% 12.2% 16.1%
C 0.5-1GB 4.0% 7.3% 12.0%
D 1-2GB 3.0% 13.4% 19.3%
E 2-5GB 1.6% 20.8% 21.9%
F 5-10GB 0.8% 21.4% 27.5%

0.0

0.2

0.4

0.6

0.8

1.0

1.E-03 1.E-02 1.E-01 1.E+00

T
ru

e
 P

o
s

it
iv

e
 R

a
te

False Positive Rate

XGB Eviction - Fixed Intervals

ROC Curve (AUC=0.9635)

0.0

0.2

0.4

0.6

0.8

1.0

1.E-03 1.E-02 1.E-01 1.E+00

T
ru

e
 P

o
s

it
iv

e
 R

a
te

False Positive Rate

XGB Eviction - Growing Intervals

ROC Curve (AUC=0.9704)

0.0

0.2

0.4

0.6

0.8

1.0

1.E-03 1.E-02 1.E-01 1.E+00

T
ru

e
 P

o
s

it
iv

e
 R

a
te

False Positive Rate

XGB Admission - Fixed Intervals

ROC Curve (AUC=0.9624)

0.0

0.2

0.4

0.6

0.8

1.0

1.E-03 1.E-02 1.E-01 1.E+00

T
ru

e
 P

o
s

it
iv

e
 R

a
te

False Positive Rate

XGB Admission - Growing Intervals

ROC Curve (AUC=0.9647)

Fig. 3: ROC curves for XGB eviction/admission models

The workload consists of 1000 jobs scheduled for execution
over a 6-hour period, processing 1380 files with a total size of
92GB. To separate the effect of caching on different jobs, we
split them based on their input data size into 6 bins. Table III
shows the distribution of jobs by count, cluster resources they
consume, and amount of I/O they generate. The jobs exhibit
a heavy-tailed distribution of input sizes, also noted in [9],
[12]. Specifically, the workload is dominated by small jobs
(74.4%) that process <128MB of data. Yet, they only account
for 25% of the resources consumed and perform only 3.2% of
the overall I/O. On the contrary, jobs processing over 1GB of
data account for over 54% of resources and over 68% of I/O.
The popularity of files is also skewed, with a small fraction of
the files accessed very frequently [9], [12]. For example, 5.7%
of files are accessed more than 5 times. This repeatability must
be exploited by ensuring such files are present in the cache.

A. XGBoost Model Evaluation

We evaluate the performance of our XGBoost models using
a receiver operating characteristic (ROC) curve and the area
under the curve (AUC) [16]. The ROC curve takes as input
the probabilities of file accesses predicted by the model and
the true class labels. It then plots the true positive rate (i.e.,
the probability of detection) against the false positive rate (i.e.,
the probability of false alarm) at various threshold settings. To
train our models and perform a proper out-of-sample analysis,
we split our 6-hour sequential data set into training (first 4
hours), validation (5th hour; used for early stopping during
training to avoid overfitting), and test (6th hour) sets. For

0%

5%

10%

15%

20%

25%

30%

A B C D E F

R
e

d
u

c
ti

o
n

 i
n

 C
o

m
p

le
ti

o
n

 T
im

e

Bin

LRU-OSA LFU-OSA LRFU EXD XGB

Fig. 4: Percent reduction in completion time over HDFS

the fixed-intervals approach, we discretized time into twelve
30-minute intervals before the reference point, while for the
growing-intervals approach we used 6 intervals, starting from
a 15-minute interval and doubling it each time (recall Section
III-A). The class window sizes for the eviction and admission
policies were set to 20 minutes and 90 minutes, respectively.

Figure 3 shows the 4 ROC curves for the eviction and
admission models for our two approaches: using fixed and
growing time intervals (note the logarithmic scale of the x-
axis). In all four cases, the curves are near point (0, 1) with
AUC values higher than 0.96 (1 is the max), which indicate the
very high prediction performance of our models. The growing-
intervals models are slightly better compared to the fixed-
intervals models, offering ∼1% and ∼2% better accuracy and
precision, respectively.

Training an XGBoost model given a 5-hour workload trace
takes about 5.3 seconds in total. Using the model to make
a single prediction takes 1.8ns. Overall, during the entire
workload run, selecting a file to evict or admit into the cache
amounts to 0.49 CPU seconds; showcasing the negligible CPU
overhead caused by XGBoost for both training and prediction.

B. Workload Performance Evaluation

We executed the derived workload over default HDFS and
the modified HDFS with the eviction and admission policies
listed in Tables I and II. Since LRU and LFU do not have
corresponding admission policies, we paired them with the
OSA policy. For XGB, we only present results using the
growing intervals models as they behave very similarly to
the fixed intervals models. We compare executions using two
complementary performance metrics: (i) the average comple-
tion time of jobs, and (ii) the cluster efficiency, defined as
finishing the jobs by using the least amount of resources [9].
Even though cache hit ratio is a popular metric for evaluating
caching policies, we did not use it as previous work has shown
that maximizing hit ratio neither minimizes job completion
time nor maximizes cluster efficiency [9].

Figure 4 shows the reduction percentage in job completion
time compared to HDFS for each bin (recall Table III). Small
jobs (Bins A, B) experience only a small improvement (<5%)
in completion time for all policies. This is not surprising since
time spent in I/O is only a small fraction compared to CPU
and scheduling overheads. The gains in job completion time



0%

10%

20%

30%

40%

A B C D E F

Im
p

ro
v

e
m

e
n

t 
in

 E
ff

ic
ie

n
c

y

Bin

LRU-OSA LFU-OSA LRFU EXD XGB

Fig. 5: Percent improvement in cluster efficiency over HDFS

increase as the input size increases, while we start observing
different behavior across the policies. Specifically, LRU-OSA
and LRFU are performing well as the workload exhibits
good temporal locality of reference, resulting in up to 15%
reduction in completion time for large jobs (Bin F). LFU-
OSA trails them with only 2% difference. EXD performs well
only for jobs in Bin D with 8% gains in completion time,
while it performs poorly for larger jobs. Recall that EXD
explores the tradeoff between recency and frequency without
taking file size into account, which is an important factor in
caching. Finally, our XGB policy is able to provide the highest
reduction in average completion time across all job bins, with
16%-25% gains for large jobs, almost double compared to the
second-best policy. Overall, XGB is able to effectively learn
the different access patterns and detect data reuse across jobs.

With each cache access, the cluster efficiency improves.
Figure 5 shows how this improvement is derived from the
different job bins. Larger jobs have a higher contribution in
efficiency improvement compared to small jobs since they
are responsible for performing a larger amount of I/O (recall
Table III). Across different policies, the trends for efficiency
improvement are similar to the trends for completion time
reduction discussed above: the conventional policies generally
offer good benefits; EXD offers poor gains; and XGB offers the
best benefits. Hence, improvements in cluster efficiency are of-
ten accompanied by lower job completion times, doubling the
benefits. For example, XGB is able to reduce completion time
of large jobs by 26% while consuming 39% less resources.
Results from further analysis (not shown due to lack of space)
reveal that XGB (i) results in the highest percentage of cache
accesses and (ii) is the most selective in terms of admission.

VII. RELATED WORK

The Google File System (GFS) [17] explicitly states that it
relies on the local file system’s buffer cache to keep frequently
accessed data in memory. However, the local cache is not
aware of the files that are distributedly stored and accessed in
the cluster, and hence is missing out on potential cluster-wide
performance optimizations. Other distributed file systems, such
as HDFS [3] and OctopusFS [7], now support storing files in
memory, but they do not offer any support for automatically
adding or removing files from it. In-memory file systems (e.g.,
Alluxio [5], GridGain [6]) can also be used for storing or

caching data in clusters, while Spark enables jobs to persist a
specified dataset in memory [2]. However, these system only
use conventional cache eviction policies (e.g., LRU) and rely
on the user to manually cache the data.

PACMan [9] is a memory caching system designed for
data-intensive parallel jobs. PACMan implements two eviction
policies, one that prioritizes small inputs and one that evicts
less frequently accessed files. However, PACMan does not
allow jobs to specify hot data in memory and does not
implement cache admission policies. Big SQL [10] is an SQL-
on-hadoop system that uses HDFS cache for caching table
partitions. Big SQL proposes two algorithms, namely SLRU-
K and EXD, that explore the tradeoff between recency and
frequency of data accesses. The two algorithms drive both
cache eviction and admission policies but, unlike our approach,
do not learn from file access patterns as the workload changes.

Caching is a well-studied problem that appears in various
contexts and discussed extensively in several surveys [8],
[18]. In the context of CPU caches and database buffer
caches, there is extensive work on cache eviction policies such
as LRU, LFU, ARC, and MQ. Unlike our approach, these
policies operate on fixed-size pages and assume that every
accessed page will be inserted into the cache. Web caching
policies (e.g., SIZE, Hyper-G, Greedy-Dual-Size [8]) operate
on variable size objects but are designed to improve hit ratio,
which does not necessarily improves performance in a large-
scale cluster environment [9].

Machine learning techniques such as logistic regression and
artificial neural networks have also been used for developing
better web caching policies [8], [19]. However, most of these
approaches try to identify and predict relationships between
web objects; for example, a visit to web page X is typically
followed by a visit to web page Y . Other approaches try
to capture associations between file attributes (e.g., owner,
creation time, and permissions) and properties (e.g., access
pattern, lifespan, and size) [11]. However, such relationships
and associations are not expected to be present in big data
analytics workloads and, hence, are not applicable in our
setting. LeCaR [20] models cache eviction as an online
learning problem involving regret minimization between LRU
and LFU, but it was designed for caches that are significantly
smaller than the working set. More recently, deep learning
has been used in eviction policies for content caching [21]
and admission policies for object store caching [22], which
try to learn temporal relationships between requested objects.
Finally, none of the aforementioned approaches take advantage
of access patterns for automatically managing a DFS cache.

VIII. CONCLUSIONS

This paper describes AutoCache, a framework for automati-
cally admitting and evicting files from a cache in a distributed
file system (DFS). Our cache policies employ light-weight
gradient boosted trees for learning file access patterns and
predicting which files should be cached or uncached. The
framework and policies have been implemented in a real DFS
and successfully evaluated over real-world workload traces.



REFERENCES

[1] V. K. Vavilapalli, A. C. Murthy, C. Douglas, S. Agarwal, M. Konar,
R. Evans, T. Graves, J. Lowe, H. Shah, S. Seth et al., “Apache Hadoop
YARN: Yet Another Resource Negotiator,” in Proc. of the 4th Symp. on
Cloud Computing (SoCC). ACM, 2013, pp. 5–21.

[2] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma et al., “Resilient
Distributed Datasets: A Fault-tolerant Abstraction for In-memory Cluster
Computing,” in Proc. of the 9th Symp. on Networked Systems Design
and Implementation (NSDI). USENIX, 2012, pp. 15–28.

[3] K. Shvachko, H. Kuang, S. Radia, and R. Chansler, “The Hadoop
Distributed File System,” in Proc. of the 26th IEEE Symp. on Mass
Storage Systems and Technologies (MSST). IEEE, 2010, pp. 1–10.

[4] “HDFS Centralized Cache Management,” 2016, https:
//hadoop.apache.org/docs/r2.4.1/hadoop-project-dist/hadoop-hdfs/
CentralizedCacheManagement.html.

[5] “Alluxio: Open Source Memory Speed Virtual Distributed Storage,”
2018. [Online]. Available: https://www.alluxio.org/

[6] “GridGain In-Memory Computing Platform,” 2018. [Online]. Available:
https://www.gridgain.com/

[7] E. Kakoulli and H. Herodotou, “OctopusFS: A Distributed File System
with Tiered Storage Management,” in Proc. of the 2017 ACM Intl. Conf.
on Management of Data (SIGMOD). ACM, 2017, pp. 65–78.

[8] W. Ali, S. M. Shamsuddin, and A. S. Ismail, “A Survey of Web Caching
and Prefetching,” International Journal of Advances in Soft Computing
and its Applications (IJASCA), vol. 3, no. 1, pp. 18–44, 2011.

[9] G. Ananthanarayanan, A. Ghodsi, A. Wang, D. Borthakur, S. Kandula,
S. Shenker, and I. Stoica, “PACMan: Coordinated Memory Caching for
Parallel Jobs,” in Proc. of the 9th Symp. on Networked Systems Design
and Implementation (NSDI). USENIX, 2012, pp. 267–280.

[10] A. Floratou, N. Megiddo, N. Potti, F. Özcan, U. Kale, and J. Schmitz-
Hermes, “Adaptive Caching in Big SQL using the HDFS Cache,” in
Proc. of the 7th ACM Symp. on Cloud Computing (SoCC). ACM,
2016, pp. 321–333.

[11] M. Mesnier, E. Thereska, G. R. Ganger, and D. Ellard, “File Classi-
fication in Self-* Storage Systems,” in Proc. of the 1st Intl. Conf. on
Autonomic Computing (ICAC). IEEE Computer Society, 2004, pp. 44–
51.

[12] Y. Chen, S. Alspaugh, and R. Katz, “Interactive Analytical Processing in
Big Data Systems: A Cross-industry Study of MapReduce Workloads,”
Proc. of the VLDB Endowment, vol. 5, no. 12, pp. 1802–1813, 2012.

[13] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,”
in Proc. of the 22nd ACM Intl. Conf. on Knowledge Discovery and Data
Mining (SIGKDD). ACM, 2016, pp. 785–794.

[14] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz, “The Case for
Evaluating MapReduce Performance using Workload Suites,” in Proc. of
the 19th Intl. Symp. on Modelling, Analysis & Simulation of Computer
and Telecommunication Systems (MASCOTS). IEEE, 2011, pp. 390–
399.

[15] “SWIM: Statistical Workload Injector for MapReduce,” 2016. [Online].
Available: https://github.com/SWIMProjectUCB/SWIM/wiki

[16] H. Schütze, C. D. Manning, and P. Raghavan, Introduction to Informa-
tion Retrieval. Cambridge University Press, 2008.

[17] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google File System,”
ACM SIGOPS Operating Systems Review, vol. 37, no. 5, pp. 29–43,
2003.

[18] S. Podlipnig and L. Böszörmenyi, “A Survey of Web Cache Replacement
Strategies,” ACM Computing Surveys (CSUR), vol. 35, no. 4, pp. 374–
398, 2003.

[19] P. Venketesh and R. Venkatesan, “A Survey on Applications of Neural
Networks and Evolutionary Techniques in Web Caching,” IETE Techni-
cal review, vol. 26, no. 3, pp. 171–180, 2009.

[20] G. Vietri, L. V. Rodriguez, W. A. Martinez, S. Lyons, J. Liu, R. Ran-
gaswami, M. Zhao, and G. Narasimhan, “Driving Cache Replacement
with ML-based LeCaR,” in Proc. of the 10th USENIX Workshop on Hot
Topics in Storage and File Systems (HotStorage). USENIX, 2018, pp.
928–936.

[21] C. Zhong, M. C. Gursoy, and S. Velipasalar, “A Deep Reinforcement
Learning-based Framework for Content Caching,” in Proc. of the 52nd
Annual Conference on Information Sciences and Systems (CISS). IEEE,
2018, pp. 1–6.

[22] E. Ofer, A. Epstein, D. Sadeh, and D. Harnik, “Applying Deep Learning
to Object Store Caching,” in Proc. of the 11th ACM Intl. Systems and
Storage Conference (SYSTOR). ACM, 2018, pp. 126–126.


